1
|
Song S, Hormel TT, Jia Y. Visible-light optical coherence tomography and its applications. NEUROPHOTONICS 2025; 12:020601. [PMID: 40206421 PMCID: PMC11981582 DOI: 10.1117/1.nph.12.2.020601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 04/11/2025]
Abstract
Visible-light optical coherence tomography (vis-OCT) is an emerging OCT technology that uses visible rather than near-infrared illumination and is useful for pre-clinical and clinical imaging. It provides one-micron level axial resolution and distinct scattering and absorption contrast that enables oximetry but requires additional considerations in system implementation and practical settings. We review the development of vis-OCT and demonstrated applications. We also provide insights into prospects and possible technological improvements that may address current challenges.
Collapse
Affiliation(s)
- Siyu Song
- Oregon Health and Science University, Casey Eye Institute, Portland, Oregon, United States
- Oregon Health and Science University, Department of Biomedical Engineering, Portland, Oregon, United States
| | - Tristan T. Hormel
- Oregon Health and Science University, Casey Eye Institute, Portland, Oregon, United States
| | - Yali Jia
- Oregon Health and Science University, Casey Eye Institute, Portland, Oregon, United States
- Oregon Health and Science University, Department of Biomedical Engineering, Portland, Oregon, United States
| |
Collapse
|
2
|
Miller DA, Grannonico M, Liu M, Savier E, McHaney K, Erisir A, Netland PA, Cang J, Liu X, Zhang HF. Visible-Light Optical Coherence Tomography Fibergraphy of the Tree Shrew Retinal Ganglion Cell Axon Bundles. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2769-2777. [PMID: 38517719 PMCID: PMC11366081 DOI: 10.1109/tmi.2024.3380530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
We seek to develop techniques for high-resolution imaging of the tree shrew retina for visualizing and parameterizing retinal ganglion cell (RGC) axon bundles in vivo. We applied visible-light optical coherence tomography fibergraphy (vis-OCTF) and temporal speckle averaging (TSA) to visualize individual RGC axon bundles in the tree shrew retina. For the first time, we quantified individual RGC bundle width, height, and cross-sectional area and applied vis-OCT angiography (vis-OCTA) to visualize the retinal microvasculature in tree shrews. Throughout the retina, as the distance from the optic nerve head (ONH) increased from 0.5 mm to 2.5 mm, bundle width increased by 30%, height decreased by 67%, and cross-sectional area decreased by 36%. We also showed that axon bundles become vertically elongated as they converge toward the ONH. Ex vivo confocal microscopy of retinal flat-mounts immunostained with Tuj1 confirmed our in vivo vis-OCTF findings.
Collapse
|
3
|
Wang L, Sahel JA, Pi S. Sub2Full: split spectrum to boost optical coherence tomography despeckling without clean data. OPTICS LETTERS 2024; 49:3062-3065. [PMID: 38824328 DOI: 10.1364/ol.518906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024]
Abstract
Optical coherence tomography (OCT) suffers from speckle noise, causing the deterioration of image quality, especially in high-resolution modalities such as visible light OCT (vis-OCT). Here, we proposed an innovative self-supervised strategy called Sub2Full (S2F) for OCT despeckling without clean data. This approach works by acquiring two repeated B-scans, splitting the spectrum of the first repeat as a low-resolution input, and utilizing the full spectrum of the second repeat as the high-resolution target. The proposed method was validated on vis-OCT retinal images visualizing sublaminar structures in the outer retina and demonstrated superior performance over state-of-the-art Noise2Noise (N2N) and Noise2Void (N2V) schemes.
Collapse
|
4
|
Chauhan P, Kho AM, Srinivasan VJ. From Soma to Synapse: Imaging Age-Related Rod Photoreceptor Changes in the Mouse with Visible Light OCT. OPHTHALMOLOGY SCIENCE 2023; 3:100321. [PMID: 37388138 PMCID: PMC10302163 DOI: 10.1016/j.xops.2023.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/05/2023] [Accepted: 04/24/2023] [Indexed: 07/01/2023]
Abstract
Purpose Although the outer nuclear layer (ONL) and outer plexiform layer (OPL) each exhibit a complex internal organization, near-infrared OCT depicts both as monolithic bands. Here, using visible light OCT in the C57BL/6J mouse retina, sublaminar age-related changes in photoreceptor features were imaged and interpreted. These features were (1) oscillations in reflectivity, or striations, in the ONL and (2) a moderately reflective subband in the OPL. Design Cross-sectional study. Participants Pigmented mice (C57BL/6J, n = 14). Methods A 1.0-μm axial resolution visible light spectral/Fourier domain OCT system was used for in vivo retinal imaging. Light and electron microscopy were performed ex vivo. Linear mixed effects models or regression were employed for statistical analysis. Main Outcome Measures Comparison of OCT subbands with corresponding histological features, as well as quantification of subband thickness and reflectivity. Results Corresponding histological comparisons confirm that striations in the ONL arise from the rowlike arrangement of photoreceptor nuclei and reveal that the moderately reflective OPL subband arises from rod spherules. Compression of outer ONL striations with age suggests changes in soma organization. Thinning of the moderately reflective OPL subband with age supports a reduction of synapses in the OPL. Critically, the ONL somas are tightly correlated with the purported spherule layer but not with the rest of the OPL. Conclusions Visible light OCT imaging of the mouse OPL resolves postsynaptic and synaptic differences. Visible light OCT can study rod photoreceptor changes from the soma to the synapse in the living mouse retina. Financial Disclosures Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Pooja Chauhan
- Department of Radiology, NYU Langone Health, New York, New York
| | - Aaron M. Kho
- Department of Biomedical Engineering, University of California Davis, Davis, California
| | - Vivek J. Srinivasan
- Department of Radiology, NYU Langone Health, New York, New York
- Department of Biomedical Engineering, University of California Davis, Davis, California
- Department of Ophthalmology, NYU Langone Health, New York, New York
| |
Collapse
|
5
|
Wang B, Brown R, Chhablani J, Pi S. Volumetrically tracking retinal and choroidal structural changes in central serous chorioretinopathy. BIOMEDICAL OPTICS EXPRESS 2023; 14:5528-5538. [PMID: 37854572 PMCID: PMC10581807 DOI: 10.1364/boe.506422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023]
Abstract
Central serous chorioretinopathy (CSCR) leads to the accumulation of subretinal fluid and retinal thickness change, which can be readily detected in clinics using optical coherence tomography (OCT). However, current quantification methods usually require sophisticated processing such as retinal layer segmentations, and volumetric visualization of structural changes is generally challenging, which can hinder fast and accurate assessment of disease progression and/or treatment efficacy. In this study, we developed an algorithm that can register the OCT scans acquired from different visits without requiring prior layer segmentation and calculated the three-dimensional (3-D) structural change maps for patients with CSCR. Our results demonstrate that this tool can be useful in monitoring the progression of CSCR and revealing the resolution of pathologies following treatment automatically with minimal pre-processing.
Collapse
Affiliation(s)
- Bingjie Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- UPMC Vision Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Richard Brown
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- UPMC Vision Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- UPMC Vision Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Shaohua Pi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- UPMC Vision Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Wang B, Brown R, Chhablani J, Pi S. Volumetrically tracking retinal and choroidal structural changes in central serous chorioretinopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.557791. [PMID: 37781629 PMCID: PMC10541109 DOI: 10.1101/2023.09.18.557791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Central serous chorioretinopathy (CSCR) leads to accumulation of subretinal fluid and retinal thickness change, which can be readily detected in clinics using optical coherence tomography (OCT). However, current quantification methods usually require sophisticated processing such as retinal layer segmentations, and volumetric visualization of structural changes is generally challenging, which can hinder fast and accurate assessment of disease progression and/or treatment efficacy. In this study, we developed an algorithm that can register the OCT scans acquired from different visits without requiring prior layer segmentation and calculated the three-dimensional (3-D) structural change maps for patients with CSCR. Our results demonstrate that this tool can be useful in monitoring the progression of CSCR and revealing the resolution of pathologies following treatment automatically with minimal pre-processing.
Collapse
|
7
|
Malone JD, Hussain I, Bowden AK. SmartOCT: smartphone-integrated optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:3138-3151. [PMID: 37497502 PMCID: PMC10368059 DOI: 10.1364/boe.492439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 07/28/2023]
Abstract
Smartphone devices have seen unprecedented technical innovation in computational power and optical imaging capabilities, making them potentially invaluable tools in scientific imaging applications. The smartphone's compact form-factor and broad accessibility has motivated researchers to develop smartphone-integrated imaging systems for a wide array of applications. Optical coherence tomography (OCT) is one such technique that could benefit from smartphone-integration. Here, we demonstrate smartOCT, a smartphone-integrated OCT system that leverages built-in components of a smartphone for detection, processing and display of OCT data. SmartOCT uses a broadband visible-light source and line-field OCT design that enables snapshot 2D cross-sectional imaging. Furthermore, we describe methods for processing smartphone data acquired in a RAW data format for scientific applications that improves the quality of OCT images. The results presented here demonstrate the potential of smartphone-integrated OCT systems for low-resource environments.
Collapse
Affiliation(s)
- Joseph D. Malone
- Vanderbilt University, Dept. of Biomedical Engineering, Nashville, TN
37235, USA
- Vanderbilt University, Vanderbilt Biophotonics Center, Nashville, TN
37235, USA
| | - Iftak Hussain
- Vanderbilt University, Dept. of Biomedical Engineering, Nashville, TN
37235, USA
- Vanderbilt University, Vanderbilt Biophotonics Center, Nashville, TN
37235, USA
| | - Audrey K. Bowden
- Vanderbilt University, Dept. of Biomedical Engineering, Nashville, TN
37235, USA
- Vanderbilt University, Vanderbilt Biophotonics Center, Nashville, TN
37235, USA
- Vanderbilt University, Dept. of Electrical and Computer Engineering,
Nashville, TN 37235, USA
- Vanderbilt University, Vanderbilt Institute of Global Health, Nashville,
TN 37235, USA
| |
Collapse
|
8
|
Miller DA, Grannonico M, Liu M, Savier E, McHaney K, Erisir A, Netland PA, Cang J, Liu X, Zhang HF. Visible-Light Optical Coherence Tomography Fibergraphy of the Tree Shrew Retinal Ganglion Cell Axon Bundles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541062. [PMID: 37293064 PMCID: PMC10245691 DOI: 10.1101/2023.05.16.541062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We seek to develop techniques for high-resolution imaging of the tree shrew retina for visualizing and parameterizing retinal ganglion cell (RGC) axon bundles in vivo. We applied visible-light optical coherence tomography fibergraphy (vis-OCTF) and temporal speckle averaging (TSA) to visualize individual RGC axon bundles in the tree shrew retina. For the first time, we quantified individual RGC bundle width, height, and cross-sectional area and applied vis-OCT angiography (vis-OCTA) to visualize the retinal microvasculature in tree shrews. Throughout the retina, as the distance from the optic nerve head (ONH) increased from 0.5 mm to 2.5 mm, bundle width increased by 30%, height decreased by 67%, and cross-sectional area decreased by 36%. We also showed that axon bundles become vertically elongated as they converge toward the ONH. Ex vivo confocal microscopy of retinal flat-mounts immunostained with Tuj1 confirmed our in vivo vis-OCTF findings.
Collapse
|
9
|
Pi S, Wang B, Gao M, Cepurna W, Lozano DC, Morrison JC, Jia Y. Longitudinal Observation of Retinal Response to Optic Nerve Transection in Rats Using Visible Light Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2023; 64:17. [PMID: 37057973 PMCID: PMC10117226 DOI: 10.1167/iovs.64.4.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/14/2023] [Indexed: 04/15/2023] Open
Abstract
Purpose To characterize rat retinal responses after optic nerve transection (ONT) by visible-light optical coherence tomography (vis-OCT). Methods Unilateral ONT was performed in Brown Norway rats (n = 8). In vivo, vis-OCT retinal imaging was performed on the experimental eyes before ONT (baseline), and two days, one week, two weeks, and four weeks (endpoint) after ONT, as well as on fellow eyes at the endpoint. The system was operated at a 70 kHz A-line sampling rate with both raster scans (512 × 2 × 512 A-lines), and circular scans (2048 × 100 A-lines) acquired around the optic disc. Retinal layers were segmented to calculate layer thicknesses and project en face images for visualization and quantifications. Vessel densities and oxygen saturation were used to evaluate the morphologic and functional impact on the retinal vasculature. Results After ONT, retinal nerve fiber bundles demonstrated significant degeneration, starting at two weeks, with a reduction of thicknesses quantified on the nerve fiber layer, ganglion cell complex, and total retina. Along with that, the activation of macrophage-like cells in the vitreoretinal interface was also observed. Vessel densities for all three retinal plexuses were unaffected over the period of observation. However, oxygen saturation in retinal arteries and veins was significantly reduced at four weeks after ONT. Conclusions Vis-OCT can provide high-definition, in vivo characterization of retinal responses to ONT in rats. Despite a significant reduction in retinal layer thickness, this was not accompanied by alterations in vascular density. Despite this, oximetry indicates reduced retinal oxygen saturation, suggesting that altered vascular physiology is not reflected in the anatomic appearance of retinal blood vessel density alone.
Collapse
Affiliation(s)
- Shaohua Pi
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Bingjie Wang
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Min Gao
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - William Cepurna
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Diana C. Lozano
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - John C. Morrison
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Yali Jia
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
10
|
Ma G, Son T, Adejumo T, Yao X. Rotational Distortion and Compensation in Optical Coherence Tomography with Anisotropic Pixel Resolution. Bioengineering (Basel) 2023; 10:313. [PMID: 36978706 PMCID: PMC10045376 DOI: 10.3390/bioengineering10030313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Accurate image registration is essential for eye movement compensation in optical coherence tomography (OCT) and OCT angiography (OCTA). The spatial resolution of an OCT instrument is typically anisotropic, i.e., has different resolutions in the lateral and axial dimensions. When OCT images have anisotropic pixel resolution, residual distortion (RD) and false translation (FT) are always observed after image registration for rotational movement. In this study, RD and FT were quantitively analyzed over different degrees of rotational movement and various lateral and axial pixel resolution ratio (RL/RA) values. The RD and FT provide the evaluation criteria for image registration. The theoretical analysis confirmed that the RD and FT increase significantly with the rotation degree and RL/RA. An image resizing assisting registration (RAR) strategy was proposed for accurate image registration. The performance of direct registration (DR) and RAR for retinal OCT and OCTA images were quantitatively compared. Experimental results confirmed that unnormalized RL/RA causes RD and FT; RAR can effectively improve the performance of OCT and OCTA image registration and distortion compensation.
Collapse
Affiliation(s)
- Guangying Ma
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Taeyoon Son
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Tobiloba Adejumo
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Xincheng Yao
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
11
|
Song W, Zhang S, Kim YM, Sadlak N, Fiorello MG, Desai M, Yi J. Visible Light Optical Coherence Tomography of Peripapillary Retinal Nerve Fiber Layer Reflectivity in Glaucoma. Transl Vis Sci Technol 2022; 11:28. [PMID: 36166221 PMCID: PMC9526364 DOI: 10.1167/tvst.11.9.28] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/19/2022] [Indexed: 01/01/2023] Open
Abstract
Purpose To evaluate the clinical utility of visible light optical coherence tomography (VIS-OCT) and to test whether VIS-OCT reflectivity and spectroscopy of peripapillary retinal nerve fiber layer (pRNFL) are correlated with severity of glaucoma, compared with standard-of-care OCT thickness measurements. Methods In total 54 eyes (20 normal, 17 suspect/preperimetric glaucoma [GS/PPG], 17 perimetric glaucoma [PG]) were successfully imaged with complete datasets. All the eyes were scanned by a custom-designed dual-channel device that simultaneously acquired VIS-OCT and near-infrared OCT (NIR-OCT) images. A 5 × 5 mm2 scan was taken of the pRNFL. The pRNFL reflectivity was calculated for both channels and the spectroscopic marker was quantified by pVN, defined as the ratio of VIS-OCT to NIR-OCT pRNFL reflectivity. The results were compared with ophthalmic examinations and Zeiss Cirrus OCT. Results VIS-OCT pRNFL reflectivity significantly, sequentially decreased from normal to GS/PPG to PG, as did NIR-OCT pRNFL reflectivity. The pVN had the same decreasing trend among three groups. Normal and GS/PPG eyes were significantly different in VIS-OCT pRNFL reflectivity (P = 0.002) and pVN (P < 0.001), but were not in NIR-OCT pRNFL reflectivity (P = 0.14), circumpapillary RNFL thickness (P = 0.17), or macular ganglion cell layer and inner plexiform layer thickness (P = 0.07) in a mixed linear regression model. Conclusions VIS-OCT pRNFL reflectivity and pVN better distinguished GS/PPG from normal eyes than Cirrus OCT thickness measurements. Translational Relevance VIS-OCT pRNFL reflectivity and pVN could be useful metrics in the early detection of glaucoma upon further longitudinal validation.
Collapse
Affiliation(s)
- Weiye Song
- Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Sui Zhang
- Department of Epidemiology, School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Yumi Mun Kim
- Department of Philosophy & Neuroscience, Boston University, Boston, USA
| | - Natalie Sadlak
- Department of Ophthalmology, Boston Medical Center, Boston, MA, USA
| | | | - Manishi Desai
- Department of Ophthalmology, Boston Medical Center, Boston, MA, USA
| | - Ji Yi
- Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
- Department of Ophthalmology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
12
|
Srinivasan VJ, Kho AM, Chauhan P. Visible Light Optical Coherence Tomography Reveals the Relationship of the Myoid and Ellipsoid to Band 2 in Humans. Transl Vis Sci Technol 2022; 11:3. [PMID: 36053140 PMCID: PMC9440607 DOI: 10.1167/tvst.11.9.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Purpose We employ visible light optical coherence tomography (OCT) to investigate the relationship between the myoid, ellipsoid, and band 2 in the living human retina. Rather than refute existing theories, we aim to reveal new bands and better delineate the structures at hand. Methods An upgraded spectral/Fourier domain visible light OCT prototype, with 1.0-µm axial resolution, imaged 13 eyes of 13 young adult human subjects (23–40 years old) without a history of ocular pathology. The external limiting membrane (band 1) and band 2 edges were segmented. Reflectivity was examined along the inner segment (IS), defined as extending from band 1 to the band 2 center, and within band 2 itself. Results Images highlight a nearly continuously resolved extrafoveal internal limiting membrane, the peripheral single-cell thick ganglion cell layer, and the peripheral photoreceptor axonal fiber layer, a peripheral division of band 2 into bands 2a and 2b, and a reflectivity-based division of the IS into “m” and “e” zones. Discussion Topography and transverse intensity variations of the outermost band 2b suggest an association with rods. The “m” and “e” zone border is consistent with the myoid–ellipsoid boundary, even recapitulating the well-documented distribution of mitochondria throughout the IS at the foveal center. Theories of outer retinal reflectivity in OCT must adequately explain these observations. Translational Relevance Findings support that band 2 does partially overlap with the ellipsoid in transversally averaged OCT images due to photoreceptor IS length dispersion but argue that the inner ellipsoid must be inner to band 2, as suggested by prior quantitative measurements.
Collapse
Affiliation(s)
- Vivek J Srinivasan
- Department of Ophthalmology, NYU Langone Health, New York, NY, USA.,Department of Radiology, NYU Langone Health, New York, NY, USA.,Tech4Health Institute, NYU Langone Health, New York, NY, USA.,Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Aaron M Kho
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Pooja Chauhan
- Department of Radiology, NYU Langone Health, New York, NY, USA.,Tech4Health Institute, NYU Langone Health, New York, NY, USA
| |
Collapse
|
13
|
Ong J, Zarnegar A, Corradetti G, Singh SR, Chhablani J. Advances in Optical Coherence Tomography Imaging Technology and Techniques for Choroidal and Retinal Disorders. J Clin Med 2022; 11:jcm11175139. [PMID: 36079077 PMCID: PMC9457394 DOI: 10.3390/jcm11175139] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Optical coherence tomography (OCT) imaging has played a pivotal role in the field of retina. This light-based, non-invasive imaging modality provides high-quality, cross-sectional analysis of the retina and has revolutionized the diagnosis and management of retinal and choroidal diseases. Since its introduction in the early 1990s, OCT technology has continued to advance to provide quicker acquisition times and higher resolution. In this manuscript, we discuss some of the most recent advances in OCT technology and techniques for choroidal and retinal diseases. The emerging innovations discussed include wide-field OCT, adaptive optics OCT, polarization sensitive OCT, full-field OCT, hand-held OCT, intraoperative OCT, at-home OCT, and more. The applications of these rising OCT systems and techniques will allow for a closer monitoring of chorioretinal diseases and treatment response, more robust analysis in basic science research, and further insights into surgical management. In addition, these innovations to optimize visualization of the choroid and retina offer a promising future for advancing our understanding of the pathophysiology of chorioretinal diseases.
Collapse
Affiliation(s)
- Joshua Ong
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Arman Zarnegar
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Giulia Corradetti
- Department of Ophthalmology, Doheny Eye Institute, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at the University of California, Los Angeles, CA 90033, USA
| | | | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Correspondence:
| |
Collapse
|
14
|
Alexopoulos P, Madu C, Wollstein G, Schuman JS. The Development and Clinical Application of Innovative Optical Ophthalmic Imaging Techniques. Front Med (Lausanne) 2022; 9:891369. [PMID: 35847772 PMCID: PMC9279625 DOI: 10.3389/fmed.2022.891369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Abstract
The field of ophthalmic imaging has grown substantially over the last years. Massive improvements in image processing and computer hardware have allowed the emergence of multiple imaging techniques of the eye that can transform patient care. The purpose of this review is to describe the most recent advances in eye imaging and explain how new technologies and imaging methods can be utilized in a clinical setting. The introduction of optical coherence tomography (OCT) was a revolution in eye imaging and has since become the standard of care for a plethora of conditions. Its most recent iterations, OCT angiography, and visible light OCT, as well as imaging modalities, such as fluorescent lifetime imaging ophthalmoscopy, would allow a more thorough evaluation of patients and provide additional information on disease processes. Toward that goal, the application of adaptive optics (AO) and full-field scanning to a variety of eye imaging techniques has further allowed the histologic study of single cells in the retina and anterior segment. Toward the goal of remote eye care and more accessible eye imaging, methods such as handheld OCT devices and imaging through smartphones, have emerged. Finally, incorporating artificial intelligence (AI) in eye images has the potential to become a new milestone for eye imaging while also contributing in social aspects of eye care.
Collapse
Affiliation(s)
- Palaiologos Alexopoulos
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
| | - Chisom Madu
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
| | - Gadi Wollstein
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
- Center for Neural Science, College of Arts & Science, New York University, New York, NY, United States
| | - Joel S. Schuman
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
- Center for Neural Science, College of Arts & Science, New York University, New York, NY, United States
- Department of Electrical and Computer Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
| |
Collapse
|
15
|
Harper DJ, Vakoc BJ. Relationship between axial resolution and signal-to-noise ratio in optical coherence tomography. OPTICS LETTERS 2022; 47:1517-1520. [PMID: 35290353 PMCID: PMC8958905 DOI: 10.1364/ol.449421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
In optical coherence tomography (OCT), axial resolution and signal-to-noise ratio (SNR) are typically viewed as uncoupled parameters. We show that this is true only for mirror-like surfaces and that in diffuse scattering samples such as biological tissues there is an inherent coupling between axial resolution and measurement SNR. We explain the origin of this coupling and demonstrate that it can be used to achieve increased imaging penetration depth at the expense of resolution. Finally, we argue that this coupling should be considered during OCT system design processes that seek to balance the competing needs of resolution, sensitivity, and system/source complexity.
Collapse
Affiliation(s)
- Danielle J. Harper
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Benjamin J. Vakoc
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
16
|
Zhang L, Dong R, Zawadzki RJ, Zhang P. Volumetric data analysis enabled spatially resolved optoretinogram to measure the functional signals in the living retina. JOURNAL OF BIOPHOTONICS 2022; 15:e202100252. [PMID: 34817116 PMCID: PMC8901551 DOI: 10.1002/jbio.202100252] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 05/05/2023]
Abstract
Optoretinogram, a technique in which optical coherence tomography (OCT) is used to measure retinal functions in response to a visible light stimulus, can be a potentially useful tool to quantify retinal health alterations. Existing experimental studies on animals have focused on measuring the global retinal response by transversally averaging 3D data across the retina, which minimizes the spatial resolution of the signals, and limits the signal-to-noise ratio because only central B-scans are collected and analyzed. These problems were addressed in this study by collecting volumetric data to probe functional signals and developing an improved 3D registration approach to align such series-acquired OCT volumes. These data were then divided into small blocks and subject to a spatiotemporal analysis, whose results confirmed the spatial-dependence of functional signals. By further averaging, the overall measurement accuracies for the position and the scattering signals were estimated to be approximately 30 nm and 1.1 %, respectively. With improved accuracy, this method revealed certain novel functional signals that have not been previously reported. In conclusion, this work provides a powerful tool to monitor retinal local and global functional changes in aging, diseased, or treated rodent eyes.
Collapse
Affiliation(s)
- Lijie Zhang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, 116024, China
| | - Rongyao Dong
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, 116024, China
| | - Robert J. Zawadzki
- UC Davis Eye-Pod Small Animals Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, 95616, United States
- UC Davis Eye Center, Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, California, 95817, United States
| | - Pengfei Zhang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, 116024, China
- UC Davis Eye-Pod Small Animals Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, 95616, United States
- Correspondence: Pengfei Zhang, Dalian University of Technology, 116024, China,
| |
Collapse
|
17
|
Quantitative Optical Coherence Tomography for Longitudinal Monitoring of Postnatal Retinal Development in Developing Mouse Eyes. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A better study of postnatal retinal development is essential for the in-depth understanding of the nature of the vision system. To date, quantitative analysis of postnatal retinal development is primarily limited to endpoint histological examination. This study is to validate in vivo optical coherence tomography (OCT) for longitudinal monitoring of postnatal retinal development in developing mouse eyes. OCT images of C57BL/6J mice were recorded from postnatal day (P) 14 to P56. Three-dimensional (3D) frame registration and super averaging were adopted to investigate the fine structure of the retina. Quantitative OCT analysis revealed distinct outer and inner retinal layer changes, corresponding to eye development. At the outer retina, external limiting membrane (ELM) and ellipsoid zone (EZ) band intensities gradually increased with aging, and the IZ band was detectable by P28. At the inner retina, a hyporeflective layer (HRL) between the nerve fiber layer (NFL) and inner plexiform layer (IPL) was observed in developing eyes and gradually disappeared with aging. Further image analysis revealed individual RGCs within the HRL layer of the young mouse retina. However, RGCs were merged with the NFL and the IPL in the aged mouse retina. Moreover, the sub-IPL layer structure was observed to be gradually enhanced with aging. To interpret the observed retinal layer kinetics, a model based on eyeball expansion, cell apoptosis, and retinal structural modification was proposed.
Collapse
|
18
|
Beckmann L, Cai Z, Cole J, Miller DA, Liu M, Grannonico M, Zhang X, Ryu HJ, Netland PA, Liu X, Zhang HF. In vivo imaging of the inner retinal layer structure in mice after eye-opening using visible-light optical coherence tomography. Exp Eye Res 2021; 211:108756. [PMID: 34492282 PMCID: PMC10061273 DOI: 10.1016/j.exer.2021.108756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/10/2021] [Accepted: 08/30/2021] [Indexed: 11/28/2022]
Abstract
The growth of the mouse eye and retina after birth is a dynamic, highly regulated process. In this study, we applied visible-light optical coherence tomography (vis-OCT), a non-invasive imaging technique, to examine developing retinal layer structures after eye-opening. We introduced a resampled circumpapillary B-scan averaging technique to improve the inter-layer contrast, enabling retinal layer thickness measurements as early as postnatal day 13 (P13) - right after eye-opening. We confirmed vis-OCT measurements using ex vivo confocal microscopy of retinal sections at different ages. Our results demonstrate that vis-OCT can visualize the developmental murine retinal layer structure in vivo, which offers us new opportunities to better characterize the pathological alterations in mouse models of developmental eye diseases.
Collapse
Affiliation(s)
- Lisa Beckmann
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Zhen Cai
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - James Cole
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - David A Miller
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Mingna Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Marta Grannonico
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Xian Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Hyun Jung Ryu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Peter A Netland
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA
| | - Xiaorong Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA; Department of Psychology, University of Virginia, Charlottesville, VA, USA.
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
19
|
Zhang T, Kho AM, Yiu G, Srinivasan VJ. Visible Light Optical Coherence Tomography (OCT) Quantifies Subcellular Contributions to Outer Retinal Band 4. Transl Vis Sci Technol 2021; 10:30. [PMID: 34003965 PMCID: PMC7998011 DOI: 10.1167/tvst.10.3.30] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/17/2021] [Indexed: 01/07/2023] Open
Abstract
Purpose To use visible light optical coherence tomography (OCT) to investigate subcellular reflectivity contributions to the outermost (4th) of the retinal hyperreflective bands visualized by current clinical near-infrared (NIR) OCT. Methods Visible light OCT, with 1.0 µm axial resolution, was performed in 28 eyes of 19 human subjects (21-57 years old) without history of ocular pathology. Two foveal and three extrafoveal hyperreflective zones were consistently depicted within band 4 in all eyes. The two outermost hyperreflective bands, occasionally visualized by NIR OCT, were presumed to be the retinal pigment epithelium (RPE) and Bruch's membrane (BM). RPE thickness, BM thickness, and RPE interior reflectivity were quantified topographically across the macula. Results A method for correcting RPE multiple scattering tails was found to both improve the Gaussian goodness-of-fit for the BM intensity profile and reduce the coefficient of variation of BM thickness in vivo. No major topographical differences in macular BM thickness were noted. RPE thickness decreased with increasing eccentricity. Visible light OCT signal intensity in the RPE was weighted to the apical side and attenuated more across the RPE in the fovea than peripherally. Conclusions Morphometry of the presumed RPE and BM bands is consistent with known anatomy. Weighting of RPE reflectivity toward the apical side suggests that melanosomes are the predominant contributors to RPE backscattering and signal attenuation in young eyes. Translational Relevance By enabling morphometric analysis of the RPE and BM, visible light OCT deciphers the main reflectivity contributions to outer retinal band 4, commonly visualized by commercial OCT systems.
Collapse
Affiliation(s)
- Tingwei Zhang
- Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Aaron M. Kho
- Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Glenn Yiu
- Department of Ophthalmology and Vision Science, University of California Davis, Davis School of Medicine, Sacramento, California, USA
| | - Vivek J. Srinivasan
- Department of Biomedical Engineering, University of California Davis, Davis, California, USA
- Department of Ophthalmology and Vision Science, University of California Davis, Davis School of Medicine, Sacramento, California, USA
- Department of Ophthalmology, New York University Langone Health, New York, New York, USA
- Department of Radiology, New York University Langone Health, New York, New York, USA
- Tech4Health Institute, New York University Langone Health, New York, New York, USA
| |
Collapse
|
20
|
Miller DA, Grannonico M, Liu M, Kuranov RV, Netland PA, Liu X, Zhang HF. Visible-Light Optical Coherence Tomography Fibergraphy for Quantitative Imaging of Retinal Ganglion Cell Axon Bundles. Transl Vis Sci Technol 2020; 9:11. [PMID: 33110707 PMCID: PMC7552935 DOI: 10.1167/tvst.9.11.11] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/18/2020] [Indexed: 01/15/2023] Open
Abstract
Purpose To develop a practical technique for visualizing and quantifying retinal ganglion cell (RGC) axon bundles in vivo. Methods We applied visible-light optical coherence tomography (vis-OCT) to image the RGC axon bundles, referred to as vis-OCT fibergraphy, of healthy wild-type C57BL/6 mice. After vis-OCT imaging, retinas were flat-mounted, immunostained with anti-beta-III tubulin (Tuj1) antibody for RGC axons, and imaged with confocal microscopy. We quantitatively compared the RGC axon bundle networks imaged by in vivo vis-OCT and ex vivo confocal microscopy using semi-log Sholl analysis. Results Side-by-side comparison of ex vivo confocal microscopy and in vivo vis-OCT confirmed that vis-OCT fibergraphy captures true RGC axon bundle networks. The semi-log Sholl regression coefficients extracted from vis-OCT fibergrams (3.7 ± 0.8 mm–1) and confocal microscopy (3.6 ± 0.3 mm–1) images also showed good agreement with each other (n = 6). Conclusions We demonstrated the feasibility of using vis-OCT fibergraphy to visualize RGC axon bundles. Further applying Sholl analysis has the potential to identify biomarkers for non-invasively assessing RGC health. Translational Relevance Our novel technique for visualizing and quantifying RGC axon bundles in vivo provides a potential measurement tool for diagnosing and tracking the progression of optic neuropathies.
Collapse
Affiliation(s)
- David A Miller
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Marta Grannonico
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Mingna Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Roman V Kuranov
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.,Opticent Health, Evanston, IL, USA
| | - Peter A Netland
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA
| | - Xiaorong Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA.,Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.,Department of Ophthalmology, Northwestern University, Evanston, IL, USA
| |
Collapse
|
21
|
Song W, Shao W, Yi W, Liu R, Desai M, Ness S, Yi J. Visible light optical coherence tomography angiography (vis-OCTA) facilitates local microvascular oximetry in the human retina. BIOMEDICAL OPTICS EXPRESS 2020; 11:4037-4051. [PMID: 33014584 PMCID: PMC7510897 DOI: 10.1364/boe.395843] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 05/06/2023]
Abstract
We report herein the first visible light optical coherence tomography angiography (vis-OCTA) for human retinal imaging. Compared to the existing vis-OCT systems, we devised a spectrometer with a narrower bandwidth to increase the spectral power density for OCTA imaging, while retaining the major spectral contrast in the blood. We achieved a 100 kHz A-line rate, the fastest acquisition speed reported so far for human retinal vis-OCT. We rigorously optimized the imaging protocol such that a single acquisition took < 6 seconds with a field of view (FOV) of 3×7.8 mm2. The angiography enables accurate localization of microvasculature down to the capillary level and thus enables oximetry at vessels < 100 µm in diameter. We demonstrated microvascular hemoglobin oxygen saturation (sO2) at the feeding and draining vessels at the perifoveal region. The longitudinal repeatability was assessed by < 5% coefficient of variation (CV). The unique capabilities of our vis-OCTA system may allow studies on the role of microvascular oxygen in various retinal pathologies.
Collapse
Affiliation(s)
- Weiye Song
- Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston 02118, USA
| | - Wenjun Shao
- Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston 02118, USA
| | - Wei Yi
- Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston 02118, USA
| | - Rongrong Liu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Manishi Desai
- Department of Ophthalmology, Boston University School of Medicine, Boston Medical Center, Boston 02118, USA
| | - Steven Ness
- Department of Ophthalmology, Boston University School of Medicine, Boston Medical Center, Boston 02118, USA
| | - Ji Yi
- Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston 02118, USA
- Department of Biomedical Engineering, Boston University, Boston 02118, USA
- Department of Electronic and Computer Engineering, Boston University, Boston 02118, USA
| |
Collapse
|
22
|
Retinal capillary oximetry with visible light optical coherence tomography. Proc Natl Acad Sci U S A 2020; 117:11658-11666. [PMID: 32398376 DOI: 10.1073/pnas.1918546117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Assessing oxygen saturation (sO2) remains challenging but is nonetheless necessary for understanding retinal metabolism. We and others previously achieved oximetry on major retinal vessels and measured the total retinal oxygen metabolic rate in rats using visible-light optical coherence tomography. Here we extend oximetry measurements to capillaries and investigate all three retinal vascular plexuses by amplifying and extracting the spectroscopic signal from each capillary segment under the guidance of optical coherence tomography (OCT) angiography. Using this approach, we measured capillary sO2 in the retinal circulation in rats, demonstrated reproducibility of the results, validated the measurements in superficial capillaries with known perfusion pathways, and determined sO2 responses to hypoxia and hyperoxia in the different retinal capillary beds. OCT capillary oximetry has the potential to provide new insights into the retinal circulation in the normal eye as well as in retinal vascular diseases.
Collapse
|