1
|
Peng W, Zhang X, Jing L, Gao Y, Deng Z, Fan D, Zhang L. Soliton-sinc optical pulse propagation in the presence of high-order effects. OPTICS EXPRESS 2023; 31:9961-9972. [PMID: 37157559 DOI: 10.1364/oe.482040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We investigate the propagation dynamics of the soliton-sinc, a kind of novel hybrid pulse, in the presence of higher-order effects with emphasis on the third-order dispersion (TOD) and Raman effects. At variance with the fundamental sech soliton, the traits of the band-limited soliton-sinc pulse can effectively manipulate the radiation process of dispersive waves (DWs) induced by the TOD. The energy enhancement and the radiated frequency tunability strongly depend on the band-limited parameter. A modified phase-matching condition is proposed for predicting the resonant frequency of the DWs emitted by soliton-sinc pulses, which is verified by the numerically calculated results. In addition, Raman-induced frequency shift (RIFS) of the soliton sinc pulse increases exponentially with a decrease of the band-limited parameter. Finally, we further discuss the simultaneous contribution of the Raman and TOD effects to the generation of the DWs emitted from the soliton-sinc pulses. The Raman effect can then either reduce or amplify the radiated DWs depending on the sign of the TOD. These results show that soliton-sinc optical pulses should be relevant for practical applications such as broadband supercontinuum spectra generation as well as nonlinear frequency conversion.
Collapse
|
2
|
Bu L, Baronio F, Chen S, Trillo S. Quadratic Peregrine solitons resonantly radiating without higher-order dispersion. OPTICS LETTERS 2022; 47:2370-2373. [PMID: 35561353 DOI: 10.1364/ol.456187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/10/2022] [Indexed: 06/15/2023]
Abstract
We show that two-color Peregrine solitary waves in quadratic nonlinear media can resonantly radiate dispersive waves even in the absence of higher-order dispersion, owing to a phase-matching mechanism that involves the weaker second-harmonic component. We give very simple criteria for calculating the radiated frequencies in terms of material parameters, finding excellent agreement with numerical simulations.
Collapse
|
3
|
Wang Y, Shi L, Wu W, Ming X, Sun Q, Wang L, Zhao W. Simultaneous generation of a broadband MIR and NIR frequency comb in a GaP microring. APPLIED OPTICS 2022; 61:2629-2633. [PMID: 35471332 DOI: 10.1364/ao.454007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Midinfrared (MIR) optical frequency combs are of great significance as broadband coherent light sources used in extensive areas such as coherent communications and molecule detections. Conventional MIR combs are usually restricted in size and power, while most microcombs are focused in the near-infrared (NIR) region because of the limited accessible Q-factor of microrings and the poor performances of available pumps. In this paper, we numerically demonstrate the simultaneous generation of a broadband MIR and NIR comb in a GaP microring with an additive waveguide. The achieved octave-spanning (1890-4050 nm) MIR microcomb at a low pump power of 34 mW can be effectively converted to the second-harmonic NIR comb covering 1120-1520 nm with separate dispersion optimization of the ring cavity and straight waveguide. The proposed system has the advantage of simple structure and low power threshold, which could find potential in highly integrated MIR optical sources and related applications.
Collapse
|
4
|
Liu M, Wang L, Sun Q, Li S, Ge Z, Lu Z, Zeng C, Wang G, Zhang W, Hu X, Zhao W. Influences of high-order dispersion on temporal and spectral properties of microcavity solitons. OPTICS EXPRESS 2018; 26:16477-16487. [PMID: 30119478 DOI: 10.1364/oe.26.016477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
We theoretically and numerically investigate the effects of high-order dispersion (HOD) on microcavity solitons, both in time and frequency domain with an extended normalized Lugiato-Lefever equation (LLE). The observed temporal drift of bright and dark solitons is shown to originate from high-odd-order dispersion, while the sign determines the direction of soliton movement and the amplitude decides the drift speed. HOD can also be introduced to stabilize the breathing bright and dark cavity solitons. In spectral domain, the nonlinear symmetry breaking is mainly introduced by third-order dispersion, whereas both third- and fourth-order dispersion can introduce dispersive wave accompanied by soliton tail oscillation. This work could give insight for exploring detailed intracavity pulse dynamics and spectral characteristics of Kerr combs influenced by HOD, as well as provide a viable route to delicate control of Kerr comb generation through tailoring the dispersion parameters.
Collapse
|
5
|
Skryabin DV, Kartashov YV. Self-locking of the frequency comb repetition rate in microring resonators with higher order dispersions. OPTICS EXPRESS 2017; 25:27442-27451. [PMID: 29092217 DOI: 10.1364/oe.25.027442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
We predict that the free spectral range (FSR) of the soliton combs in microring resonators can self-lock through the back-action of the Cherenkov dispersive radiation on its parent soliton under the conditions typical for recent experiments on the generation of the octave wide combs. The comb FSR in the self-locked state remains quasi-constant over sufficiently broad intervals of the pump frequencies, implying that this effect can be potentially used as the comb self-stabilisation technique. The intervals of self-locking form a sequence of the discrete plateaus reminiscent to other staircase-like structures known in the oscillator synchronisation research. We derive a version of the Adler equation for the self-locking regime and confirm that it is favoured by the strong overlap between the soliton and the dispersive radiation parts of the comb signal.
Collapse
|
6
|
Li Q, Briles TC, Westly DA, Drake TE, Stone JR, Ilic BR, Diddams SA, Papp SB, Srinivasan K. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. OPTICA 2017; 4:193-203. [PMID: 28603754 PMCID: PMC5460676 DOI: 10.1364/optica.4.000193] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Microresonator frequency combs can be an enabling technology for optical frequency synthesis and timekeeping in low size, weight, and power architectures. Such systems require comb operation in low-noise, phase-coherent states such as solitons, with broad spectral bandwidths (e.g., octave-spanning) for self-referencing to detect the carrier-envelope offset frequency. However, accessing such states is complicated by thermo-optic dispersion. For example, in the Si3N4 platform, precisely dispersion-engineered structures can support broadband operation, but microsecond thermal time constants often require fast pump power or frequency control to stabilize the solitons. In contrast, here we consider how broadband soliton states can be accessed with simple pump laser frequency tuning, at a rate much slower than the thermal dynamics. We demonstrate octave-spanning soliton frequency combs in Si3N4 microresonators, including the generation of a multi-soliton state with a pump power near 40 mW and a single-soliton state with a pump power near 120 mW. We also develop a simplified two-step analysis to explain how these states are accessed without fast control of the pump laser, and outline the required thermal properties for such operation. Our model agrees with experimental results as well as numerical simulations based on a Lugiato-Lefever equation that incorporates thermo-optic dispersion. Moreover, it also explains an experimental observation that a member of an adjacent mode family on the red-detuned side of the pump mode can mitigate the thermal requirements for accessing soliton states.
Collapse
Affiliation(s)
- Qing Li
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
- Maryland NanoCenter, University of Maryland, College Park, Maryland 20742, USA
| | - Travis C. Briles
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Daron A. Westly
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Tara E. Drake
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Jordan R. Stone
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - B. Robert Ilic
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Scott A. Diddams
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Scott B. Papp
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Kartik Srinivasan
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
7
|
Matsko AB, Savchenkov AA, Huang SW, Maleki L. Clustered frequency comb. OPTICS LETTERS 2016; 41:5102-5105. [PMID: 27805695 DOI: 10.1364/ol.41.005102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We show theoretically that it is feasible to generate a spectrally broad Kerr frequency comb consisting of several spectral clusters phase matched due to interplay among second- and higher-order group velocity dispersion contributions. We validate the theoretical analysis experimentally by driving a magnesium fluoride resonator, characterized with 110 GHz free spectral range, with a continuous wave light at 1.55 μm and observing two comb clusters separated by nearly two-thirds of an octave.
Collapse
|
8
|
Abstract
We show a new class of complex solitary wave that exists in a nonlinear optical cavity with appropriate dispersion characteristics. The cavity soliton consists of multiple soliton-like spectro-temporal components that exhibit distinctive colors but coincide in time and share a common phase, formed together via strong inter-soliton four-wave mixing and Cherenkov radiation. The multicolor cavity soliton shows intriguing spectral locking characteristics and remarkable capability of spectrum management to tailor soliton frequencies, which would be very useful for versatile generation and manipulation of multi-octave spanning phase-locked Kerr frequency combs, with great potential for applications in frequency metrology, optical frequency synthesis, and spectroscopy.
Collapse
|
9
|
Karpov M, Guo H, Kordts A, Brasch V, Pfeiffer MHP, Zervas M, Geiselmann M, Kippenberg TJ. Raman Self-Frequency Shift of Dissipative Kerr Solitons in an Optical Microresonator. PHYSICAL REVIEW LETTERS 2016; 116:103902. [PMID: 27015482 DOI: 10.1103/physrevlett.116.103902] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Indexed: 05/27/2023]
Abstract
The formation of temporal dissipative Kerr solitons in microresonators driven by a continuous-wave laser enables the generation of coherent, broadband, and spectrally smooth optical frequency combs as well as femtosecond pulse sources with compact form factors. Here we report the observation of a Raman-induced soliton self-frequency shift for a microresonator dissipative Kerr soliton also referred to as the frequency-locked Raman soliton. In amorphous silicon nitride microresonator-based single soliton states the Raman effect manifests itself by a spectrum that is sech^{2} in shape and whose center is spectrally redshifted from the continuous wave pump laser. The shift is theoretically described by the first-order shock term of the material's Raman response, and we infer a Raman shock time of ∼20 fs for amorphous silicon nitride. Moreover, we observe that the Raman-induced frequency shift can lead to a cancellation or overcompensation of the soliton recoil caused by the formation of a coherent dispersive wave. The observations are in agreement with numerical simulations based on the Lugiato-Lefever equation with a Raman shock term. Our results contribute to the understanding of Kerr frequency combs in the soliton regime, enable one to substantially improve the accuracy of modeling, and are relevant to the understanding of the fundamental timing jitter of microresonator solitons.
Collapse
Affiliation(s)
- Maxim Karpov
- École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Hairun Guo
- École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Arne Kordts
- École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Victor Brasch
- École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Martin H P Pfeiffer
- École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Michail Zervas
- École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Michael Geiselmann
- École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Tobias J Kippenberg
- École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Bao C, Zhang L, Matsko A, Yan Y, Zhao Z, Xie G, Agarwal AM, Kimerling LC, Michel J, Maleki L, Willner AE. Nonlinear conversion efficiency in Kerr frequency comb generation. OPTICS LETTERS 2014; 39:6126-6129. [PMID: 25361295 DOI: 10.1364/ol.39.006126] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We analytically and numerically investigate the nonlinear conversion efficiency in ring microresonator-based mode-locked frequency combs under different dispersion conditions. Efficiency is defined as the ratio of the average round trip energy values for the generated pulse(s) to the input pump light. We find that the efficiency degrades with growth of the comb spectral width and is inversely proportional to the number of comb lines. It depends on the cold-cavity properties of a microresonator only and can be improved by increasing the coupling coefficient. Also, it can be increased in the multi-soliton state.
Collapse
|
11
|
Malaguti S, Conforti M, Trillo S. Dispersive radiation induced by shock waves in passive resonators. OPTICS LETTERS 2014; 39:5626-5629. [PMID: 25360944 DOI: 10.1364/ol.39.005626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We show that passive Kerr resonators pumped close to zero dispersion wavelengths on the normal dispersion side can develop the resonant generation of linear waves driven by cavity (mixed dispersive-dissipative) shock waves. The resonance mechanism can be successfully described in the framework of the generalized Lugiato-Lefever equation with higher-order dispersive terms. Substantial differences with radiation from cavity solitons and purely dispersive shock waves dispersion are highlighted.
Collapse
|
12
|
Okawachi Y, Lamont MRE, Luke K, Carvalho DO, Yu M, Lipson M, Gaeta AL. Bandwidth shaping of microresonator-based frequency combs via dispersion engineering. OPTICS LETTERS 2014; 39:3535-3538. [PMID: 24978530 DOI: 10.1364/ol.39.003535] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We investigate experimentally and theoretically the role of group-velocity dispersion and higher-order dispersion on the bandwidth of microresonator-based parametric frequency combs. We show that the comb bandwidth and the power contained in the comb can be tailored for a particular application. Additionally, our results demonstrate that fourth-order dispersion plays a critical role in determining the spectral bandwidth for comb bandwidths on the order of an octave.
Collapse
|