1
|
Liu Y, Qi Y, Cai Y, Bao X, Gao S. Recent advances in optical fiber-based gas sensors utilizing light-induced acoustic/elastic techniques. PHOTOACOUSTICS 2025; 43:100715. [PMID: 40236675 PMCID: PMC11997406 DOI: 10.1016/j.pacs.2025.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 04/17/2025]
Abstract
Gas sensing detects gas properties, such as physical, molecular, optical, thermodynamic, and dynamic properties. Light-induced acoustic techniques include monitoring the optical and physical properties of the gas. Fiber-based gas sensing is important because it offers several unique advantages compared to traditional gas sensing technologies, such as high sensitivity and accuracy, a compact and lightweight design, remote sensing capabilities, multiplexing, and distributed sensing. We review the recent developments in optical fiber-based gas sensors utilizing light-induced acoustic/elastic techniques based on photoacoustic spectroscopy, Brillouin scattering, and light-induced thermoelastic spectroscopy (LITES).
Collapse
Affiliation(s)
- Yuhui Liu
- Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yue Qi
- Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yangjian Cai
- Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Xiaoyi Bao
- University of Ottawa, Department of Physics, Ottawa (ON), K1N 6N5, Canada
| | - Song Gao
- Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
2
|
Wan Y, Xia M, Wang Z, Xia L, Li P, Zhang L, Li W. Anti-resonant hollow core fiber with excellent bending resistance in the visible spectral range. OPTICS EXPRESS 2024; 32:14659-14673. [PMID: 38859404 DOI: 10.1364/oe.519113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/22/2024] [Indexed: 06/12/2024]
Abstract
The development of wideband guided hollow-core anti-resonant fiber (HC-ARF) that covers the sensitive range of the human eye's visible spectrum is progressing rapidly. However, achieving low-loss wideband transmission with a small bending radius remains a challenging issue to be addressed. In light of this, we propose a novel, to our knowledge, HC-ARF with a nested double-semi-elliptical cladding structure in the visible spectral region. By employing finite element method simulations, we investigate the confinement loss, bending loss, and single-mode performance of this fiber design. The result shows that the confinement loss of this new fiber exhibits below 10-5 dB·m-1 across almost the entire visible band range, with a minimum loss of 1.55 × 10-7 dB·m-1 achieved for λ = 650 nm. Furthermore, this fiber demonstrates excellent resistance to bending and can maintain an ultra-low bending loss as low as 3 × 10-7 dB·m-1 even under extreme bending conditions with a radius of only 3 cm. Notably, its 3-dB bending radius reaches just 3.5 cm for λ = 532 nm. Additionally, it exhibits outstanding single-mode conductivity under various bending scenarios and achieves a high extinction ratio of up to 104 for higher-order modes after parameter optimization for specific wavelengths.
Collapse
|
3
|
Deng B, Sima C, Tan H, Zhang X, Lian Z, Chen G, Yu Q, Xu J, Liu D. Design of hollow core step-index antiresonant fiber with stepped refractive indices cladding. FRONTIERS OF OPTOELECTRONICS 2021; 14:407-413. [PMID: 36637758 PMCID: PMC9743842 DOI: 10.1007/s12200-020-1109-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/09/2020] [Indexed: 06/16/2023]
Abstract
With the benefits of low latency, wide transmission bandwidth, and large mode field area, hollow-core antiresonant fiber (HC-ARF) has been a research hotspot in the past decade. In this paper, a hollow core step-index antiresonant fiber (HC-SARF), with stepped refractive indices cladding, is proposed and numerically demonstrated with the benefits of loss reduction and bending improvement. Glass-based capillaries with both high (n = 1.45) and low (as low as n = 1.36) refractive indices layers are introduced and formatted in the cladding air holes. Using the finite element method to perform numerical analysis of the designed fiber, results show that at the laser wavelengths of 980 and 1064 nm, the confinement loss is favorably reduced by about 6 dB/km compared with the conventional uniform cladding HC-ARF. The bending loss, around 15 cm bending radius of this fiber, is also reduced by 2 dB/km. The cladding air hole radius in this fiber is further investigated to optimize the confinement loss and the mode field diameter with single-mode transmission behavior. This proposed HC-SARF has great potential in optical fiber transmission and high energy delivery.
Collapse
Affiliation(s)
- Botao Deng
- Next Generation Internet Access National Engineering Laboratory, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chaotan Sima
- Next Generation Internet Access National Engineering Laboratory, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Hongyu Tan
- Next Generation Internet Access National Engineering Laboratory, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaohang Zhang
- Next Generation Internet Access National Engineering Laboratory, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenggang Lian
- Yangtze Optical Electronics Co., Ltd. (YOEC), Wuhan, 430205, China
| | - Guoqun Chen
- Yangtze Optical Electronics Co., Ltd. (YOEC), Wuhan, 430205, China
| | - Qianqing Yu
- Yangtze Optical Electronics Co., Ltd. (YOEC), Wuhan, 430205, China
| | - Jianghe Xu
- Yangtze Optical Electronics Co., Ltd. (YOEC), Wuhan, 430205, China
| | - Deming Liu
- Next Generation Internet Access National Engineering Laboratory, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
4
|
Abstract
Since their inception, about 20 years ago, hollow-core photonic crystal fiber and its gas-filled form are now establishing themselves both as a platform in advancing our knowledge on how light is confined and guided in microstructured dielectric optical waveguides, and a remarkable enabler in a large and diverse range of fields. The latter spans from nonlinear and coherent optics, atom optics and laser metrology, quantum information to high optical field physics and plasma physics. Here, we give a historical account of the major seminal works, we review the physics principles underlying the different optical guidance mechanisms that have emerged and how they have been used as design tools to set the current state-of-the-art in the transmission performance of such fibers. In a second part of this review, we give a nonexhaustive, yet representative, list of the different applications where gas-filled hollow-core photonic crystal fiber played a transformative role, and how the achieved results are leading to the emergence of a new field, which could be coined “Gas photonics”. We particularly stress on the synergetic interplay between glass, gas, and light in founding this new fiber science and technology.
Collapse
|
5
|
Wang J, Pei L, Weng S, Wu L, Li J, Ning T. Ultrashort polarization beam splitter based on liquid-filled dual-core photonic crystal fiber. APPLIED OPTICS 2018; 57:3847-3852. [PMID: 29791351 DOI: 10.1364/ao.57.003847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
An ultrashort polarization beam splitter (PBS) is proposed based on liquid-filled dual-core photonic crystal fiber (DCPCF). The two cores of DCPCF are formed by two side elliptical holes and a central circular hole in the horizontal direction. The properties of the PBS are analyzed first with a non-filled DCPCF by the finite element method. Then, the performances of the PBS are discussed when the DCPCF is filled with liquids in the central hole. As a result, an ultrashort PBS is realized with a length of 78 μm when glycerol solution with a concentration of 37% is filled in the central hole. In this case, an extinction ratio of 87 dB is obtained at 1550 nm wavelength. The significantly short device shows a great advantage when being integrated in ultra-compact optical systems.
Collapse
|
6
|
Maurel M, Chafer M, Amsanpally A, Adnan M, Amrani F, Debord B, Vincetti L, Gérôme F, Benabid F. Optimized inhibited-coupling Kagome fibers at Yb-Nd:Yag (8.5 dB/km) and Ti:Sa (30 dB/km) ranges. OPTICS LETTERS 2018; 43:1598-1601. [PMID: 29601039 DOI: 10.1364/ol.43.001598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
We report on the development of hypocycloid core-contour inhibited-coupling (IC) Kagome hollow-core photonic crystal fibers (HC-PCFs) with record transmission loss and spectral coverage that include the common industrial laser wavelengths. Using the scaling of the confinement loss with the core-contour negative curvature and the silica strut thickness, we fabricated an IC Kagome HC-PCF for Yb and Nd:Yag laser guidance with record loss level of 8.5 dB/km associated with a 225-nm-wide 3-dB bandwidth. A second HC-PCF is fabricated with reduced silica strut thickness while keeping the hypocycloid core contour. It exhibits a fundamental transmission window spanning down to the Ti:Sa spectral range and a loss figure of 30 dB/km at 750 nm. The fibers' modal properties and bending sensitivity show these HC-PCFs to be ideal for ultralow-loss, flexible, and robust laser beam delivery.
Collapse
|
7
|
Chen Y, Saleh MF, Joly NY, Biancalana F. Low-loss single-mode negatively curved square-core hollow fibers. OPTICS LETTERS 2017; 42:1285-1288. [PMID: 28362750 DOI: 10.1364/ol.42.001285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We introduce a novel design of anti-resonant fibers with negative-curvature square cores to be employed in 1.55 and 2.94 μm transmission bands. The fibers have low losses and single-mode operation via optimizing the negative curvature of the guiding walls. The first proposed fiber shows a broadband transmission window spanning 0.9-1.7 μm, with losses of 0.025 and 0.056 dB/m at 1.064 and 1.55 μm, respectively. The second proposed fiber has approximately a 0.023 dB/m guiding loss at 2.94 μm with a small cross-sectional area, useful for laser micromachining applications.
Collapse
|
8
|
Gao SF, Wang YY, Liu XL, Hong C, Gu S, Wang P. Nodeless hollow-core fiber for the visible spectral range. OPTICS LETTERS 2017; 42:61-64. [PMID: 28059178 DOI: 10.1364/ol.42.000061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We report on a hollow-core fiber (HCF) whose fundamental transmission band covers almost the whole visible spectral window, starting at 440 nm. This HCF, in the form of a nodeless structure (NL-HCF), exhibits unprecedented optical performance in terms of low transmission attenuation of 80 dB/km at 532 nm, a broad transmission bandwidth from 440 to 1200 nm, a low bending loss of 0.2 dB/m at 532 nm under 8 cm bending radius, and single-mode profile. When launched to high-power picosecond laser systems at 532 nm, the fiber, exposed to ambient air, could easily deliver an 80 ps, 58 MHz, 32 W average power laser pulse with no damage and a 20 ps, 1 kHz high-energy laser pulse with a damage threshold in excess of 144 μJ at a fiber output. A proof-of-concept experiment on Raman spectroscopy in ambient air shows the significance of this broadband visible guiding HCF for interdisciplinary applications in nonlinear optics, ultrafast optics, lasers, spectroscopy, biophotonics, material processing, etc.
Collapse
|
9
|
Yang J, Zhao J, Gong C, Tian H, Sun L, Chen P, Lin L, Liu W. 3D printed low-loss THz waveguide based on Kagome photonic crystal structure. OPTICS EXPRESS 2016; 24:22454-22460. [PMID: 27828318 DOI: 10.1364/oe.24.022454] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A low-loss hollow core terahertz waveguide based on Kagome photonic crystal structure has been designed and fabricated by 3D printing. The 3D printed waveguide has been characterized by using THz time-domain spectroscopy. The results demonstrate that the obtained waveguide features average power propagation loss of 0.02 cm-1 for 0.2-1.0 THz (the minimum is about 0.002 cm-1 at 0.75 THz). More interesting, it could be simply mechanically spliced without any additional alignment, while maintaining the excellent performance. The 3D printing technique will be a promising solution to fabricate Kagome THz waveguide with well controllable characteristics and low cost.
Collapse
|
10
|
Zheng X, Debord B, Vincetti L, Beaudou B, Gérôme F, Benabid F. Fusion splice between tapered inhibited coupling hypocycloid-core Kagome fiber and SMF. OPTICS EXPRESS 2016; 24:14642-14647. [PMID: 27410616 DOI: 10.1364/oe.24.014642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report for the first time on tapering inhibited coupling (IC) hypocycloid-core shape Kagome hollow-core photonic crystal fibers whilst maintaining their delicate core-contour negative curvature with a down-ratio as large as 2.4. The transmission loss of down-tapered sections reaches a figure as low as 0.07 dB at 1550 nm. The tapered IC fibers are also spliced to standard SMF with a total insertion loss of 0.48 dB. These results show that all-fiber photonic microcells with the ultra-low loss hypocycloid core-contour Kagome fibers is now possible.
Collapse
|
11
|
Gao SF, Wang YY, Liu XL, Ding W, Wang P. Bending loss characterization in nodeless hollow-core anti-resonant fiber. OPTICS EXPRESS 2016; 24:14801-11. [PMID: 27410632 DOI: 10.1364/oe.24.014801] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We report high performance nodeless hollow-core anti-resonant fibers (HARFs) with broadband guidance from 850 nm to >1700 nm and transmission attenuation of ~100 dB/km. We systematically investigate their bending loss behaviors using both theoretical and experimental approaches. While a low bending loss value of 0.2 dB/m at 5 cm bending radius is attained in the long wavelength side (LWS) of the spectrum, in this paper, we pursue light guidance in the short wavelength side (SWS) under tight bending, which is yet to be explored. We analytically predict and experimentally verify a sub transmission band in the SWS with a broad bandwidth of 110 THz and an acceptable loss of 4.5 dB/m at 2 cm bending radius, indicating that light can be simultaneously guided in LWS and SWS even under tight bending condition. This provides an unprecedented degree of freedom to tailor the transmission spectrum under a tight bending state and opens new opportunities for HARFs to march into practical applications where broadband guidance under small bending radius is a prerequisite.
Collapse
|
12
|
Garvie-Cook H, Stone JM, Yu F, Guy RH, Gordeev SN. Femtosecond pulsed laser ablation to enhance drug delivery across the skin. JOURNAL OF BIOPHOTONICS 2016; 9:144-154. [PMID: 26449289 DOI: 10.1002/jbio.201500120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 08/11/2015] [Accepted: 09/17/2015] [Indexed: 06/05/2023]
Abstract
Laser poration of the skin locally removes its outermost, barrier layer, and thereby provides a route for the diffusion of topically applied drugs. Ideally, no thermal damage would surround the pores created in the skin, as tissue coagulation would be expected to limit drug diffusion. Here, a femtosecond pulsed fiber laser is used to porate mammalian skin ex vivo. This first application of a hollow core negative curvature fiber (HC-NCF) to convey a femtosecond pulsed, visible laser beam results in reproducible skin poration. The effect of applying ink to the skin surface, prior to ultra-short pulsed ablation, has been examined and Raman spectroscopy reveals that the least, collateral thermal damage occurs in inked skin. Pre-application of ink reduces the laser power threshold for poration, an effect attributed to the initiation of plasma formation by thermionic electron emission from the dye in the ink. Poration under these conditions significantly increases the percutaneous permeation of caffeine in vitro. Dye-enhanced, plasma-mediated ablation of the skin is therefore a potentially advantageous approach to enhance topical/transdermal drug absorption. The combination of a fiber laser and a HC-NCF, capable of emitting and delivering femtosecond pulsed, visible light, may permit a compact poration device to be developed.
Collapse
Affiliation(s)
- Hazel Garvie-Cook
- Department of Physics, University of Bath, Bath, BA2 7AY, UK
- Department of Pharmacy & Pharmacology, University of Bath, Bath, BA2 7AY, UK
| | - James M Stone
- Department of Physics, University of Bath, Bath, BA2 7AY, UK
| | - Fei Yu
- Department of Physics, University of Bath, Bath, BA2 7AY, UK
| | - Richard H Guy
- Department of Pharmacy & Pharmacology, University of Bath, Bath, BA2 7AY, UK
| | | |
Collapse
|
13
|
Ding W, Wang YY. Hybrid transmission bands and large birefringence in hollow-core anti-resonant fibers. OPTICS EXPRESS 2015; 23:21165-21174. [PMID: 26367966 DOI: 10.1364/oe.23.021165] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We identify, for the first time to our best knowledge, a new type of transmission band having hybrid resonance nature in hollow-core anti-resonant fibers (ARF). We elucidate its unique phase-locking feature of the electric field at the outermost boundary. Exploiting this hybrid band, large birefringence in the order of 10(-4) is obtained. Our analyses based on Kramer-Kronig relation and transverse field confinement interpret the link between the hybrid transmission band and the large birefringence. Guided by these analyses, an experimentally realizable polarization-maintaining ARF design is proposed by introducing multi-layered dielectric structure into a negative curvature core-surround. This multi-layered ARF possesses characteristics of low loss, broad transmission band and large birefringence simultaneously.
Collapse
|
14
|
Jaworski P, Yu F, Carter RM, Knight JC, Shephard JD, Hand DP. High energy green nanosecond and picosecond pulse delivery through a negative curvature fiber for precision micro-machining. OPTICS EXPRESS 2015; 23:8498-8506. [PMID: 25968688 DOI: 10.1364/oe.23.008498] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this paper we present an anti-resonant guiding, low-loss Negative Curvature Fiber (NCF) for the efficient delivery of high energy short (ns) and ultrashort (ps) pulsed laser light in the green spectral region. The fabricated NCF has an attenuation of 0.15 dB/m and 0.18 dB/m at 532 nm and 515 nm respectively, and provided robust transmission of nanosecond and picosecond pulses with energies of 0.57 mJ (10.4 kW peak power) and 30 µJ (5 MW peak power) respectively. It provides single-mode, stable (low bend-sensitivity) output and maintains spectral and temporal properties of the source laser beam. The practical application of fiber-delivered pulses has been demonstrated in precision micro-machining and marking of metals and glass.
Collapse
|