6
|
Choi W, Park EY, Jeon S, Yang Y, Park B, Ahn J, Cho S, Lee C, Seo DK, Cho JH, Kim C. Three-dimensional Multistructural Quantitative Photoacoustic and US Imaging of Human Feet in Vivo. Radiology 2022; 303:467-473. [PMID: 35191741 DOI: 10.1148/radiol.211029] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background Monitoring the microcirculation in human feet is crucial in assessing peripheral vascular diseases, such as diabetic foot. However, conventional imaging modalities are more focused on diagnosis in major arteries, and there are limited methods to provide microvascular information in early stages of the disease. Purpose To investigate a three-dimensional (3D) noncontrast bimodal photoacoustic (PA)/US imaging system that visualizes the human foot morphologically and also reliably quantifies podiatric vascular parameters noninvasively. Materials and Methods A clinically relevant PA/US imaging system was combined with a foot scanner to obtain 3D PA and US images of the human foot in vivo. Healthy participants were recruited from September 2020 to June 2021. The collected 3D PA and US images were postprocessed to present structural information about the foot. The quantitative reliability was evaluated in five repeated scans of 10 healthy feet by calculating the intraclass correlation coefficient and minimal detectable change, and the detectability of microvascular changes was tested by imaging 10 healthy feet intentionally occluded with use of a pressure cuff (160 mm Hg). Statistically significant difference is indicated with P values. Results Ten feet from six healthy male volunteers (mean age ± standard deviation, 27 years ± 3) were included. The foot images clearly visualized the structure of the vasculature, bones, and skin and provided such functional information as the total hemoglobin concentration (HbT), hemoglobin oxygen saturation (SO2), vessel density, and vessel depth. Functional information from five independent measurements of 10 healthy feet was moderately reliable (intraclass correlation coefficient, 0.51-0.74). Significant improvements in HbT (P = .006) and vessel density (P = .046) as well as the retention of SO2 were observed, which accurately described the microvascular change due to venous occlusion. Conclusion Three-dimensional photoacoustic and US imaging was able to visualize morphologic and physiologic features of the human foot, including the peripheral microvasculature, in healthy volunteers. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Mezrich in this issue.
Collapse
Affiliation(s)
- Wonseok Choi
- From the Departments of Convergence IT Engineering (W.C., E.Y.P, S.J., B.P., J.A., C.K.), Electrical Engineering (C.K.), Mechanical Engineering (C.L., C.K.), School of Interdisciplinary Bioscience and Bioengineering (S.C.), and Medical Device Innovation Center (W.C., E.Y.P., S.J., B.P., J.A., S.C., C.L., C.K.), Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Catholic Smart Health Care Center, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Gangneung Asan Hospital, University of Ulsan College of Medicine, Seoul, Korea (D.K.S.); and Opticho, Pohang, Korea (C.K.)
| | - Eun-Yeong Park
- From the Departments of Convergence IT Engineering (W.C., E.Y.P, S.J., B.P., J.A., C.K.), Electrical Engineering (C.K.), Mechanical Engineering (C.L., C.K.), School of Interdisciplinary Bioscience and Bioengineering (S.C.), and Medical Device Innovation Center (W.C., E.Y.P., S.J., B.P., J.A., S.C., C.L., C.K.), Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Catholic Smart Health Care Center, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Gangneung Asan Hospital, University of Ulsan College of Medicine, Seoul, Korea (D.K.S.); and Opticho, Pohang, Korea (C.K.)
| | - Seungwan Jeon
- From the Departments of Convergence IT Engineering (W.C., E.Y.P, S.J., B.P., J.A., C.K.), Electrical Engineering (C.K.), Mechanical Engineering (C.L., C.K.), School of Interdisciplinary Bioscience and Bioengineering (S.C.), and Medical Device Innovation Center (W.C., E.Y.P., S.J., B.P., J.A., S.C., C.L., C.K.), Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Catholic Smart Health Care Center, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Gangneung Asan Hospital, University of Ulsan College of Medicine, Seoul, Korea (D.K.S.); and Opticho, Pohang, Korea (C.K.)
| | - Yeoree Yang
- From the Departments of Convergence IT Engineering (W.C., E.Y.P, S.J., B.P., J.A., C.K.), Electrical Engineering (C.K.), Mechanical Engineering (C.L., C.K.), School of Interdisciplinary Bioscience and Bioengineering (S.C.), and Medical Device Innovation Center (W.C., E.Y.P., S.J., B.P., J.A., S.C., C.L., C.K.), Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Catholic Smart Health Care Center, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Gangneung Asan Hospital, University of Ulsan College of Medicine, Seoul, Korea (D.K.S.); and Opticho, Pohang, Korea (C.K.)
| | - Byullee Park
- From the Departments of Convergence IT Engineering (W.C., E.Y.P, S.J., B.P., J.A., C.K.), Electrical Engineering (C.K.), Mechanical Engineering (C.L., C.K.), School of Interdisciplinary Bioscience and Bioengineering (S.C.), and Medical Device Innovation Center (W.C., E.Y.P., S.J., B.P., J.A., S.C., C.L., C.K.), Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Catholic Smart Health Care Center, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Gangneung Asan Hospital, University of Ulsan College of Medicine, Seoul, Korea (D.K.S.); and Opticho, Pohang, Korea (C.K.)
| | - Joongho Ahn
- From the Departments of Convergence IT Engineering (W.C., E.Y.P, S.J., B.P., J.A., C.K.), Electrical Engineering (C.K.), Mechanical Engineering (C.L., C.K.), School of Interdisciplinary Bioscience and Bioengineering (S.C.), and Medical Device Innovation Center (W.C., E.Y.P., S.J., B.P., J.A., S.C., C.L., C.K.), Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Catholic Smart Health Care Center, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Gangneung Asan Hospital, University of Ulsan College of Medicine, Seoul, Korea (D.K.S.); and Opticho, Pohang, Korea (C.K.)
| | - Seonghee Cho
- From the Departments of Convergence IT Engineering (W.C., E.Y.P, S.J., B.P., J.A., C.K.), Electrical Engineering (C.K.), Mechanical Engineering (C.L., C.K.), School of Interdisciplinary Bioscience and Bioengineering (S.C.), and Medical Device Innovation Center (W.C., E.Y.P., S.J., B.P., J.A., S.C., C.L., C.K.), Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Catholic Smart Health Care Center, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Gangneung Asan Hospital, University of Ulsan College of Medicine, Seoul, Korea (D.K.S.); and Opticho, Pohang, Korea (C.K.)
| | - Changyeop Lee
- From the Departments of Convergence IT Engineering (W.C., E.Y.P, S.J., B.P., J.A., C.K.), Electrical Engineering (C.K.), Mechanical Engineering (C.L., C.K.), School of Interdisciplinary Bioscience and Bioengineering (S.C.), and Medical Device Innovation Center (W.C., E.Y.P., S.J., B.P., J.A., S.C., C.L., C.K.), Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Catholic Smart Health Care Center, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Gangneung Asan Hospital, University of Ulsan College of Medicine, Seoul, Korea (D.K.S.); and Opticho, Pohang, Korea (C.K.)
| | - Dong-Kyo Seo
- From the Departments of Convergence IT Engineering (W.C., E.Y.P, S.J., B.P., J.A., C.K.), Electrical Engineering (C.K.), Mechanical Engineering (C.L., C.K.), School of Interdisciplinary Bioscience and Bioengineering (S.C.), and Medical Device Innovation Center (W.C., E.Y.P., S.J., B.P., J.A., S.C., C.L., C.K.), Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Catholic Smart Health Care Center, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Gangneung Asan Hospital, University of Ulsan College of Medicine, Seoul, Korea (D.K.S.); and Opticho, Pohang, Korea (C.K.)
| | - Jae-Hyoung Cho
- From the Departments of Convergence IT Engineering (W.C., E.Y.P, S.J., B.P., J.A., C.K.), Electrical Engineering (C.K.), Mechanical Engineering (C.L., C.K.), School of Interdisciplinary Bioscience and Bioengineering (S.C.), and Medical Device Innovation Center (W.C., E.Y.P., S.J., B.P., J.A., S.C., C.L., C.K.), Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Catholic Smart Health Care Center, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Gangneung Asan Hospital, University of Ulsan College of Medicine, Seoul, Korea (D.K.S.); and Opticho, Pohang, Korea (C.K.)
| | - Chulhong Kim
- From the Departments of Convergence IT Engineering (W.C., E.Y.P, S.J., B.P., J.A., C.K.), Electrical Engineering (C.K.), Mechanical Engineering (C.L., C.K.), School of Interdisciplinary Bioscience and Bioengineering (S.C.), and Medical Device Innovation Center (W.C., E.Y.P., S.J., B.P., J.A., S.C., C.L., C.K.), Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Catholic Smart Health Care Center, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Gangneung Asan Hospital, University of Ulsan College of Medicine, Seoul, Korea (D.K.S.); and Opticho, Pohang, Korea (C.K.)
| |
Collapse
|
8
|
Park B, Han M, Park J, Kim T, Ryu H, Seo Y, Kim WJ, Kim HH, Kim C. A photoacoustic finder fully integrated with a solid-state dye laser and transparent ultrasound transducer. PHOTOACOUSTICS 2021; 23:100290. [PMID: 34401325 PMCID: PMC8358697 DOI: 10.1016/j.pacs.2021.100290] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/11/2021] [Accepted: 08/02/2021] [Indexed: 05/11/2023]
Abstract
The standard-of-care for evaluating lymph node status in breast cancers and melanoma metastasis is sentinel lymph node (SLN) assessment performed with a handheld gamma probe and radioisotopes. However, this method inevitably exposes patients and physicians to radiation, and the special facilities required limit its accessibility. Here, we demonstrate a non-ionizing, cost-effective, handheld photoacoustic finder (PAF) fully integrated with a solid-state dye laser and transparent ultrasound transducer (TUT). The solid-state dye laser handpiece is coaxially aligned with the spherically focused TUT. The integrated finder readily detected photoacoustic signals from a tube filled with methylene blue (MB) beneath a 22 mm thick layer of chicken tissue. In live animals, we also photoacoustically detected both SLNs injected with MB and subcutaneously injected melanomas. We believe that our radiation-free and inexpensive PAF can play a vital role in SLN assessment.
Collapse
Affiliation(s)
- Byullee Park
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Moongyu Han
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Jeongwoo Park
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Taejeong Kim
- Department of Chemistry, Postech-Catholic Biomedical Engineering Institute, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Hanyoung Ryu
- R&D center, Wontech Co. Ltd., Daejeon, 34028, Republic of Korea
| | - Youngseok Seo
- R&D center, Wontech Co. Ltd., Daejeon, 34028, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, Postech-Catholic Biomedical Engineering Institute, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Hyung Ham Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
- Corresponding authors.
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
- Corresponding authors.
| |
Collapse
|