1
|
Yao F, Pei Y, Hou C, Sun X. Numerical study on a random plasmonic laser in the metal-insulator-metal structure. OPTICS LETTERS 2022; 47:2770-2773. [PMID: 35648926 DOI: 10.1364/ol.458103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
This Letter proposes a random plasmonic laser in the metal-insulator-metal (MIM) structure, in which the dielectric core with gain is dispersed with circular dielectric nanoscatterers. The numerical results from finite-difference time-domain simulation indicate that scattering by the randomly distributed dielectric nanoscatterers in the MIM waveguide provides feedback to the random laser with surface plasmon. The design bypasses the requirement of a distributed feedback structure for the plasmonic waveguide-based nanolasers, which is challenging and expensive in fabrication. Additionally, the MIM structure makes this type of random laser easily applicable to nanoscale integrated photonic devices and circuits.
Collapse
|
2
|
Chen SW, Lu JY, Tung PH, Lin JH, Chiesa M, Hung BY, Yang TCK. Study of laser actions by bird's feathers with photonic crystals. Sci Rep 2021; 11:2430. [PMID: 33510303 PMCID: PMC7843591 DOI: 10.1038/s41598-021-81976-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/12/2021] [Indexed: 11/09/2022] Open
Abstract
Random lasers had been made by some biomaterials as light scattering materials, but natural photonic crystals have been rarely reported as scattering materials. Here we demonstrate the ability of natural photonic crystals to drive laser actions by sandwiched the feathers of the Turquoise-Fronted Amazon parrot and dye between two plastic films. Parrot feathers comprise abundant photonic crystals, and different color feathers compose of different ratios of the photonic crystal, which directly affect the feather reflectance. In this study, the multi-reflection scattering that occurred at the interface between the photonic crystal and gain media efficiently reduce the threshold; therefore, the more photonic crystal constitutes in the feathers; the lower threshold can be obtained. The random lasers can be easily made by the integration of bird feather photonic crystals and dye with a simple and sustainable manufacturing approach.
Collapse
Affiliation(s)
- Shih-Wen Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei, 10608, Taiwan.
| | - Jin-You Lu
- Laboratory for Energy and Nano Science, Department of Mechanical and Materials Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Po-Han Tung
- Department of Electro-Optical Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei, 10608, Taiwan
| | - Ja-Hon Lin
- Department of Electro-Optical Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei, 10608, Taiwan.
| | - Matteo Chiesa
- Laboratory for Energy and Nano Science, Department of Mechanical and Materials Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Bing-Yi Hung
- Department of Electro-Optical Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei, 10608, Taiwan
| | - Thomas Chung-Kuang Yang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei, 10608, Taiwan.
| |
Collapse
|