1
|
Wårdell K, Klint E, Milos P, Richter J. One-Insertion Stereotactic Brain Biopsy Using In Vivo Optical Guidance-A Case Study. Oper Neurosurg (Hagerstown) 2023; 25:176-182. [PMID: 37083519 PMCID: PMC10313274 DOI: 10.1227/ons.0000000000000722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/21/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Stereotactic neurosurgical brain biopsies are afflicted with risks of inconclusive results and hemorrhage. Such complications can necessitate repeated trajectories and prolong surgical time. OBJECTIVE To develop and introduce a 1-insertion stereotactic biopsy kit with direct intraoperative optical feedback and to evaluate its applicability in 3 clinical cases. METHODS An in-house forward-looking probe with optical fibers was designed to fit the outer cannula of a side-cutting biopsy kit. A small aperture was made at the tip of the outer cannula and the edges aligned with the optical probe inside. Stereotactic biopsies were performed using the Leksell Stereotactic System. Optical signals were measured in millimeter steps along the preplanned trajectory during the insertion. At the region with the highest 5-aminolevulinic acid (5-ALA)-induced fluorescence, the probe was replaced by the inner cannula, and tissue samples were taken. The waiting time for pathology diagnosis was noted. RESULTS Measurements took 5 to 10 minutes, and the surgeon received direct visual feedback of intraoperative 5-ALA fluorescence, microcirculation, and tissue gray-whiteness. The 5-ALA fluorescence corroborated with the pathological findings which had waiting times of 45, 50, and 75 minutes. Because only 1 trajectory was required and the patient could be prepared for the end of surgery immediately after sampling, this shortened the total surgical time. CONCLUSION A 1-insertion stereotactic biopsy procedure with real-time optical guidance has been presented and successfully evaluated in 3 clinical cases. The method can be modified for frameless navigation and thus has great potential to improve safety and diagnostic yield for both frameless and frame-based neurosurgical biopsy procedures.
Collapse
Affiliation(s)
- Karin Wårdell
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Elisabeth Klint
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Peter Milos
- Department of Neurosurgery and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johan Richter
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Department of Neurosurgery and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
2
|
Akshulakov SK, Kerimbayev TT, Biryuchkov MY, Urunbayev YA, Farhadi DS, Byvaltsev VA. Current Trends for Improving Safety of Stereotactic Brain Biopsies: Advanced Optical Methods for Vessel Avoidance and Tumor Detection. Front Oncol 2019; 9:947. [PMID: 31632903 PMCID: PMC6783564 DOI: 10.3389/fonc.2019.00947] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/09/2019] [Indexed: 01/06/2023] Open
Abstract
Stereotactic brain needle biopsies are indicated for deep-seated or multiple brain lesions and for patients with poor prognosis in whom the risks of resection outweigh the potential outcome benefits. The main goal of such procedures is not to improve the resection extent but to safely acquire viable tissue representative of the lesion for further comprehensive histological, immunohistochemical, and molecular analyses. Herein, we review advanced optical techniques for improvement of safety and efficacy of stereotactic needle biopsy procedures. These technologies are aimed at three main areas of improvement: (1) avoidance of vessel injury, (2) guidance for biopsy acquisition of the viable diagnostic tissue, and (3) methods for rapid intraoperative assessment of stereotactic biopsy specimens. The recent technological developments in stereotactic biopsy probe design include the incorporation of fluorescence imaging, spectroscopy, and label-free imaging techniques. The future advancements of stereotactic biopsy procedures in neuro-oncology include the incorporation of optical probes for real-time vessel detection along and around the biopsy needle trajectory and in vivo confirmation of the diagnostic tumor tissue prior to sample acquisition.
Collapse
Affiliation(s)
- Serik K Akshulakov
- Department of Neurosurgery, JSC "National Center for Neurosurgery", Nur-Sultan, Kazakhstan
| | - Talgat T Kerimbayev
- Department of Neurosurgery, JSC "National Center for Neurosurgery", Nur-Sultan, Kazakhstan
| | - Michael Y Biryuchkov
- Department of Neurosurgery and Traumatology, West Kazakhstan Marat Ospanov State Medical University, Aktobe, Kazakhstan
| | - Yermek A Urunbayev
- Department of Neurosurgery, JSC "National Center for Neurosurgery", Nur-Sultan, Kazakhstan
| | - Dara S Farhadi
- University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Vadim A Byvaltsev
- Department of Neurosurgery, JSC "National Center for Neurosurgery", Nur-Sultan, Kazakhstan.,Department of Neurosurgery and Innovative Medicine, Irkutsk State Medical University, Irkutsk, Russia
| |
Collapse
|
3
|
Picot F, Goyette A, Obaid S, Desroches J, Lessard S, Tremblay MA, Strupler M, Wilson B, Petrecca K, Soulez G, Leblond F. Interstitial imaging with multiple diffusive reflectance spectroscopy projections for in vivo blood vessels detection during brain needle biopsy procedures. NEUROPHOTONICS 2019; 6:025003. [PMID: 31037243 PMCID: PMC6477697 DOI: 10.1117/1.nph.6.2.025003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/20/2019] [Indexed: 05/05/2023]
Abstract
Blood vessel injury during image-guided brain biopsy poses a risk of hemorrhage. Approaches that reduce this risk may minimize related patient morbidity. We present here an intraoperative imaging device that has the potential to detect the brain vasculature in situ. The device uses multiple diffuse reflectance spectra acquired in an outward-viewing geometry to detect intravascular hemoglobin, enabling the construction of an optical image in the vicinity of the biopsy needle revealing the proximity to blood vessels. This optical detection system seamlessly integrates into a commercial biopsy system without disrupting the neurosurgical clinical workflow. Using diffusive brain tissue phantoms, we show that this device can detect 0.5-mm diameter absorptive carbon rods up to ∼ 2 mm from the biopsy window. We also demonstrate feasibility and practicality of the technique in a clinical environment to detect brain vasculature in an in vivo model system. In situ brain vascular detection may add a layer of safety to image-guided biopsies and minimize patient morbidity.
Collapse
Affiliation(s)
- Fabien Picot
- Polytechnique Montreal, Department of Engineering Physics, Montreal, Québec, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
| | - Andréanne Goyette
- Polytechnique Montreal, Department of Engineering Physics, Montreal, Québec, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
| | - Sami Obaid
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
| | - Joannie Desroches
- Polytechnique Montreal, Department of Engineering Physics, Montreal, Québec, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
| | - Simon Lessard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
| | - Marie-André Tremblay
- Polytechnique Montreal, Department of Engineering Physics, Montreal, Québec, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
| | - Mathias Strupler
- Polytechnique Montreal, Department of Engineering Physics, Montreal, Québec, Canada
| | - Brian Wilson
- University Health Network/University of Toronto, TMDT 15-314, Toronto, Ontario, Canada
| | - Kevin Petrecca
- McGill University, Brain Tumour Research Center Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, Montreal, Québec, Canada
| | - Gilles Soulez
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
| | - Frédéric Leblond
- Polytechnique Montreal, Department of Engineering Physics, Montreal, Québec, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
- Address all correspondence to Frédéric Leblond, E-mail:
| |
Collapse
|
4
|
Pinto M, Zorn KC, Tremblay JP, Desroches J, Dallaire F, Aubertin K, Marple E, Kent C, Leblond F, Trudel D, Lesage F. Integration of a Raman spectroscopy system to a robotic-assisted surgical system for real-time tissue characterization during radical prostatectomy procedures. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-10. [PMID: 30767440 PMCID: PMC6987653 DOI: 10.1117/1.jbo.24.2.025001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/21/2018] [Indexed: 05/28/2023]
Abstract
Surgical excision of the whole prostate through a radical prostatectomy procedure is part of the standard of care for prostate cancer. Positive surgical margins (cancer cells having spread into surrounding nonresected tissue) occur in as many as 1 in 5 cases and strongly correlate with disease recurrence and the requirement of adjuvant treatment. Margin assessment is currently only performed by pathologists hours to days following surgery and the integration of a real-time surgical readout would benefit current prostatectomy procedures. Raman spectroscopy is a promising technology to assess surgical margins: its in vivo use during radical prostatectomy could help insure the extent of resected prostate and cancerous tissue is maximized. We thus present the design and development of a dual excitation Raman spectroscopy system (680- and 785-nm excitations) integrated to the robotic da Vinci surgical platform for in vivo use. Following validation in phantoms, spectroscopic data from 20 whole human prostates immediately following radical prostatectomy are obtained using the system. With this dataset, we are able to distinguish prostate from extra prostatic tissue with an accuracy, sensitivity, and specificity of 91%, 90.5%, and 96%, respectively. Finally, the integrated Raman spectroscopy system is used to collect preliminary spectroscopic data at the surgical margin in vivo in four patients.
Collapse
Affiliation(s)
- Michael Pinto
- Polytechnique Montreal, Montreal, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Canada
| | - Kevin C. Zorn
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Canada
| | | | - Joannie Desroches
- Polytechnique Montreal, Montreal, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Canada
| | - Frédérick Dallaire
- Polytechnique Montreal, Montreal, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Canada
| | - Kelly Aubertin
- Polytechnique Montreal, Montreal, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Canada
| | | | | | - Frederic Leblond
- Polytechnique Montreal, Montreal, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Canada
| | - Dominique Trudel
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Canada
| | - Frederic Lesage
- Polytechnique Montreal, Montreal, Canada
- Centre de Recherche de l’Institut de Cardiologie de Montréal, Montréal, Canada
| |
Collapse
|
5
|
Haj-Hosseini N, Richter JCO, Milos P, Hallbeck M, Wårdell K. 5-ALA fluorescence and laser Doppler flowmetry for guidance in a stereotactic brain tumor biopsy. BIOMEDICAL OPTICS EXPRESS 2018; 9:2284-2296. [PMID: 29760987 PMCID: PMC5946788 DOI: 10.1364/boe.9.002284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/27/2018] [Accepted: 04/09/2018] [Indexed: 05/21/2023]
Abstract
A fiber optic probe was developed for guidance during stereotactic brain biopsy procedures to target tumor tissue and reduce the risk of hemorrhage. The probe was connected to a setup for the measurement of 5-aminolevulinic acid (5-ALA) induced fluorescence and microvascular blood flow. Along three stereotactic trajectories, fluorescence (n = 109) and laser Doppler flowmetry (LDF) (n = 144) measurements were done in millimeter increments. The recorded signals were compared to histopathology and radiology images. The median ratio of protoporphyrin IX (PpIX) fluorescence and autofluorescence (AF) in the tumor was considerably higher than the marginal zone (17.3 vs 0.9). The blood flow showed two high spots (3%) in total. The proposed setup allows simultaneous and real-time detection of tumor tissue and microvascular blood flow for tracking the vessels.
Collapse
Affiliation(s)
| | - Johan C. O. Richter
- Department of Biomedical Engineering, Linköping University, Sweden
- Department of Neurosurgery, Linköping University Hospital, County Council Östergötland, Linköping, Sweden
| | - Peter Milos
- Department of Neurosurgery, Linköping University Hospital, County Council Östergötland, Linköping, Sweden
| | - Martin Hallbeck
- Department of Clinical Pathology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Karin Wårdell
- Department of Biomedical Engineering, Linköping University, Sweden
| |
Collapse
|
6
|
Markwardt NA, Stepp H, Franz G, Sroka R, Goetz M, Zelenkov P, Rühm A. Remission spectrometry for blood vessel detection during stereotactic biopsy of brain tumors. JOURNAL OF BIOPHOTONICS 2017; 10:1080-1094. [PMID: 27714967 DOI: 10.1002/jbio.201600193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
Stereotactic biopsy is used to enable diagnostic confirmation of brain tumors and treatment planning. Despite being a well-established technique, it is related to significant morbidity and mortality rates mostly caused by hemorrhages due to blood vessel ruptures. This paper presents a method of vessel detection during stereotactic biopsy that can be easily implemented by integrating two side-view fibers into a conventional side-cutting biopsy needle. Tissue within the needle window is illuminated through the first fiber; the second fiber detects the remitted light. By taking the ratio of the intensities at two wavelengths with strongly differing hemoglobin absorption, blood vessels can be recognized immediately before biopsy sampling. Via ray tracing simulations and phantom experiments, the dependency of the remission ratio R = I578 /I650 on various parameters (blood oxygenation, fiber-to-vessel and inter-fiber distance, vessel diameter and orientation) was investigated for a bare-fiber probe. Up to 800-1200 µm away from the probe, a vessel can be recognized by a considerable reduction of the remission ratio from the background level. The technique was also successfully tested with a real biopsy needle probe on both optical phantoms and ex-vivo porcine brain tissue, thus showing potential to improve the safety of stereotactic biopsy. Dual-wavelength remission measurement for the detection of blood vessels during stereotactic biopsy.
Collapse
Affiliation(s)
- Niklas A Markwardt
- Laser-Forschungslabor, LIFE Center, University Hospital of Munich, Munich, Germany
- Department of Urology, University Hospital of Munich, Munich, Germany
| | - Herbert Stepp
- Laser-Forschungslabor, LIFE Center, University Hospital of Munich, Munich, Germany
- Department of Urology, University Hospital of Munich, Munich, Germany
| | - Gerhard Franz
- Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences, Munich, Germany
| | - Ronald Sroka
- Laser-Forschungslabor, LIFE Center, University Hospital of Munich, Munich, Germany
- Department of Urology, University Hospital of Munich, Munich, Germany
| | | | | | - Adrian Rühm
- Laser-Forschungslabor, LIFE Center, University Hospital of Munich, Munich, Germany
- Department of Urology, University Hospital of Munich, Munich, Germany
| |
Collapse
|
7
|
Hughes C, Voros S, Moreau-Gaudry A. Unintended Consequences of Sensor, Signal, and Imaging Informatics: New Problems and New Solutions. Yearb Med Inform 2016:159-162. [PMID: 27830245 DOI: 10.15265/iy-2016-053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES This synopsis presents a selection for the IMIA (International Medical Informatics Association) Yearbook 2016 of excellent research in the broad field of Sensor, Signal and Imaging Informatics published in the year 2015, with a focus on Unintended consequences: new problems and new solutions. METHODS We performed a systematic initial selection and a double blind peer review process to find the best papers in this domain published in 2015, from the PubMed and Web of Science databases. The set of MesH keywords used was provided by experts. RESULTS The constant advances in medical technology allow ever more relevant diagnostic and therapeutic approaches to be designed. Nevertheless, there is a need to acquire expert knowledge of these innovations in order to identify precociously new associated problems for which new solutions need to be designed and developed.
Collapse
|
8
|
Pichette J, Goyette A, Picot F, Tremblay MA, Soulez G, Wilson BC, Leblond F. Sensitivity analysis aimed at blood vessels detection using interstitial optical tomography during brain needle biopsy procedures. BIOMEDICAL OPTICS EXPRESS 2015; 6:4238-54. [PMID: 26600990 PMCID: PMC4646534 DOI: 10.1364/boe.6.004238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 05/06/2023]
Abstract
A brain needle biopsy procedure is performed for suspected brain lesions in order to sample tissue that is subsequently analysed using standard histopathology techniques. A common complication resulting from this procedure is brain hemorrhaging from blood vessels clipped off during tissue extraction. Interstitial optical tomography (iOT) has recently been introduced by our group as a mean to assess the presence of blood vessels in the vicinity of the needle. The clinical need to improve safety requires the detection of blood vessels within 2 mm from the outer surface of the needle, since this distance is representative of the volume of tissue that is aspirated durirng tissue extraction. Here, a sensitivity analysis is presented to establish the intrinsic detection limits of iOT based on simulations and experiments using brain tissue phantoms. It is demonstrated that absorbers can be detected with diameters >300 μm located up to >2 mm from the biopsy needle core for bulk optical properties consistent with brain tissue.
Collapse
Affiliation(s)
- Julien Pichette
- Department of Engineering Physics, Polytechnique Montreal, 2900 blvd Edouard-Montpetit, Campus de l’Université de Montréal, Montreal, Que, H3T 1J4, Canada
| | - Andréanne Goyette
- Department of Engineering Physics, Polytechnique Montreal, 2900 blvd Edouard-Montpetit, Campus de l’Université de Montréal, Montreal, Que, H3T 1J4, Canada
| | - Fabien Picot
- Department of Engineering Physics, Polytechnique Montreal, 2900 blvd Edouard-Montpetit, Campus de l’Université de Montréal, Montreal, Que, H3T 1J4, Canada
| | - Marie-Andrée Tremblay
- Department of Engineering Physics, Polytechnique Montreal, 2900 blvd Edouard-Montpetit, Campus de l’Université de Montréal, Montreal, Que, H3T 1J4, Canada
| | - Gilles Soulez
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, rue Saint-Denis, Que, Canada
| | - Brian C. Wilson
- Division of Biophysics and Bioimaging, Ontario Cancer Institute, 610 University Avenue, Toronto, On, M5B 2K3, Canada
| | - Frédéric Leblond
- Department of Engineering Physics, Polytechnique Montreal, 2900 blvd Edouard-Montpetit, Campus de l’Université de Montréal, Montreal, Que, H3T 1J4, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, rue Saint-Denis, Que, Canada
| |
Collapse
|
9
|
Desroches J, Jermyn M, Mok K, Lemieux-Leduc C, Mercier J, St-Arnaud K, Urmey K, Guiot MC, Marple E, Petrecca K, Leblond F. Characterization of a Raman spectroscopy probe system for intraoperative brain tissue classification. BIOMEDICAL OPTICS EXPRESS 2015; 6. [PMID: 26203368 PMCID: PMC4505696 DOI: 10.1364/boe.6.002380] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A detailed characterization study is presented of a Raman spectroscopy system designed to maximize the volume of resected cancer tissue in glioma surgery based on in vivo molecular tissue characterization. It consists of a hand-held probe system measuring spectrally resolved inelastically scattered light interacting with tissue, designed and optimized for in vivo measurements. Factors such as linearity of the signal with integration time and laser power, and their impact on signal to noise ratio, are studied leading to optimal data acquisition parameters. The impact of ambient light sources in the operating room is assessed and recommendations made for optimal operating conditions. In vivo Raman spectra of normal brain, cancer and necrotic tissue were measured in 10 patients, demonstrating that real-time inelastic scattering measurements can distinguish necrosis from vital tissue (including tumor and normal brain tissue) with an accuracy of 87%, a sensitivity of 84% and a specificity of 89%.
Collapse
Affiliation(s)
- Joannie Desroches
- Dept. of Engineering Physics, Polytechnique Montreal, CP 6079, Succ. Centre-Ville, Montreal, QC, H3C 3A7, Canada
| | - Michael Jermyn
- Dept. of Engineering Physics, Polytechnique Montreal, CP 6079, Succ. Centre-Ville, Montreal, QC, H3C 3A7, Canada
- Brain Tumour Research Centre, Montreal Neurological Institute and Hospital, Dept. of Neurology and Neurosurgery, McGill University, 3801 University St., Montreal, QC, H3A 2B4, Canada
| | - Kelvin Mok
- Neuronavigation Unit, Montreal Neurological Institute and Hospital, McGill University, 3801 University St., Montreal, QC, H3A 2B4, Canada
| | - Cédric Lemieux-Leduc
- Dept. of Engineering Physics, Polytechnique Montreal, CP 6079, Succ. Centre-Ville, Montreal, QC, H3C 3A7, Canada
| | - Jeanne Mercier
- Dept. of Engineering Physics, Polytechnique Montreal, CP 6079, Succ. Centre-Ville, Montreal, QC, H3C 3A7, Canada
| | - Karl St-Arnaud
- Dept. of Engineering Physics, Polytechnique Montreal, CP 6079, Succ. Centre-Ville, Montreal, QC, H3C 3A7, Canada
| | - Kirk Urmey
- EMVision LLC, 1471 F Road, Loxahatchee, Florida, 33470, USA
| | - Marie-Christine Guiot
- Division of Neuropathology, Department of Pathology, McGill University, 3801 University St., Montreal, QC, H3A 2B4, Canada
| | - Eric Marple
- EMVision LLC, 1471 F Road, Loxahatchee, Florida, 33470, USA
| | - Kevin Petrecca
- Brain Tumour Research Centre, Montreal Neurological Institute and Hospital, Dept. of Neurology and Neurosurgery, McGill University, 3801 University St., Montreal, QC, H3A 2B4, Canada
| | - Frédéric Leblond
- Dept. of Engineering Physics, Polytechnique Montreal, CP 6079, Succ. Centre-Ville, Montreal, QC, H3C 3A7, Canada
| |
Collapse
|