1
|
Simpson NG, Broadhead EJ, Casto AM, Tibbetts KM. Enhancement of Metal Nanostructure Deposition on Silicon Laser-Induced Periodic Surface Structures by Galvanic Replacement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:241-250. [PMID: 38113511 DOI: 10.1021/acs.langmuir.3c02435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
We report a chemically motivated, single-step method to enhance metal deposition onto silicon laser-induced periodic surface structures (LIPSSs) using reactive laser ablation in liquid (RLAL). Galvanic replacement (GR) reactions were used in conjunction with RLAL (GR-RLAL) to promote the deposition of Au and Cu nanostructures onto a Si LIPSS. To increase the deposition of Au, sacrificial metals Cu, Fe, and Zn were used; Fe and Zn also enhanced the deposition of Cu. We show that the deposited metal content, surface morphology, and metal crystallite size can be tuned based on the difference in electrochemical potentials of the deposited and sacrificial metal. Compared to the Au and Cu reference samples, GR more than doubled the metal content on the LIPSS and reduced metal crystallite sizes by up to 20%. The ability to tune the metal content and crystalline domain size simultaneously makes GR-RLAL a potentially useful approach in the manufacturing of functional metal-LIPSS materials such as surface-enhanced Raman spectroscopy substrates.
Collapse
Affiliation(s)
- Nicholas G Simpson
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Eric J Broadhead
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Addison M Casto
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Katharine Moore Tibbetts
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
2
|
Broadhead EJ, Tibbetts KM. Fabrication of Gold-Silicon Nanostructured Surfaces with Reactive Laser Ablation in Liquid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10120-10129. [PMID: 32787031 DOI: 10.1021/acs.langmuir.0c01581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Laser processing is an emerging technique capable of synthesizing metal-silicon composite surfaces for various applications. However, little is known about the chemical composition of these laser-processed surfaces, and the reaction mechanisms leading to their formation are poorly understood. In this work, we report the formation of gold-silicon nanostructured surfaces through reactive laser ablation in liquid. Silicon wafers were immersed in pH-controlled solutions of KAuCl4 and processed with ultrashort laser pulses. Gold deposition on the silicon wafers was found to depend on the pH of the precursor solution: neutral solutions (pH ∼6.3) resulted in much higher gold deposition than acidic or basic solutions. Laser processing of silicon wafers in water followed by immersion in the KAuCl4 solution resulted in lower gold deposition. X-ray photoelectron spectroscopy and depth profiling showed the existence of both gold (Au0) and gold-silicide (AuxSi) phases on the surfaces. Under both types of processing conditions, the gold atomic fraction and gold-silicide content increased with depth to at least 150 nm into the surface of the silicon wafer, although significantly more gold and gold-silicide were formed when the silicon was ablated in KAuCl4 solution as compared to immersion in KAuCl4 after ablation in water. Based on these data and existing literature on laser processing of silicon, we propose mechanisms that explain the observed gold penetration depth and its deposition dependence on solution pH. The mechanistic understanding gained in this work may be useful for synthesizing a variety of metal-silicon composite surfaces through laser processing to prepare functional materials such as catalysts and surface-enhanced Raman spectroscopy substrates.
Collapse
Affiliation(s)
- Eric J Broadhead
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Katharine Moore Tibbetts
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
3
|
Cheng J, Liu Y, Mao H, Zhao W, Ye Y, Zhao Y, Zhang L, Li M, Huang C. Wafer-level fabrication of 3D nanoparticles assembled nanopillars and click chemistry modification for sensitive SERS detection of trace carbonyl compounds. NANOTECHNOLOGY 2020; 31:265301. [PMID: 32208371 DOI: 10.1088/1361-6528/ab82d5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, we develop a new method for fabricating wafer-level gold nanoparticles covered silicon nanopillars (SNPs) combined with surface chemical modification to detect trace level carbonyl compounds based on surface-enhanced Raman scattering (SERS) technique. The SNPs are fabricated with an etching process using nano masks synthesized in oxygen-plasma bombardment of photoresist, and further deposited with gold nanoparticles on the surface, thus forming a 3D 'particles on pillars' nanostructure for sensitive SERS detection. The enhancement factor (EF) of the devices for R6G detection can achieve 1.56 × 106 times compared with a flat Si substrate. We also developed an oximation click chemistry reaction procedure by chemically modifying the nanostructures with aminooxy dodecane thiol (ADT) self-assemble modification. The chip is further integrated with a polydimethylsiloxane (PDMS) microfluidic chamber, which allows fast and convenient detection of trace carbonyl compounds in liquid samples. The SERS detection capability was demonstrated by the dropwise addition of fluorescent carbonyl compounds before and after elution. Furthermore, the device was proved with high surface consistency(<70%) for repeated measurement, which has the potential for ppb(parts per billion) level concentration of carbonyl compounds detection.
Collapse
Affiliation(s)
- Jie Cheng
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, People's Republic of China. School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Jiang L, Wang AD, Li B, Cui TH, Lu YF. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. LIGHT, SCIENCE & APPLICATIONS 2018; 7:17134. [PMID: 30839523 PMCID: PMC6060063 DOI: 10.1038/lsa.2017.134] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/27/2017] [Accepted: 08/28/2017] [Indexed: 05/20/2023]
Abstract
During femtosecond laser fabrication, photons are mainly absorbed by electrons, and the subsequent energy transfer from electrons to ions is of picosecond order. Hence, lattice motion is negligible within the femtosecond pulse duration, whereas femtosecond photon-electron interactions dominate the entire fabrication process. Therefore, femtosecond laser fabrication must be improved by controlling localized transient electron dynamics, which poses a challenge for measuring and controlling at the electron level during fabrication processes. Pump-probe spectroscopy presents a viable solution, which can be used to observe electron dynamics during a chemical reaction. In fact, femtosecond pulse durations are shorter than many physical/chemical characteristic times, which permits manipulating, adjusting, or interfering with electron dynamics. Hence, we proposed to control localized transient electron dynamics by temporally or spatially shaping femtosecond pulses, and further to modify localized transient materials properties, and then to adjust material phase change, and eventually to implement a novel fabrication method. This review covers our progresses over the past decade regarding electrons dynamics control (EDC) by shaping femtosecond laser pulses in micro/nanomanufacturing: (1) Theoretical models were developed to prove EDC feasibility and reveal its mechanisms; (2) on the basis of the theoretical predictions, many experiments are conducted to validate our EDC-based femtosecond laser fabrication method. Seven examples are reported, which proves that the proposed method can significantly improve fabrication precision, quality, throughput and repeatability and effectively control micro/nanoscale structures; (3) a multiscale measurement system was proposed and developed to study the fundamentals of EDC from the femtosecond scale to the nanosecond scale and to the millisecond scale; and (4) As an example of practical applications, our method was employed to fabricate some key structures in one of the 16 Chinese National S&T Major Projects, for which electron dynamics were measured using our multiscale measurement system.
Collapse
Affiliation(s)
- Lan Jiang
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - An-Dong Wang
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bo Li
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tian-Hong Cui
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yong-Feng Lu
- Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511, USA
| |
Collapse
|
5
|
Cao W, Jiang L, Hu J, Wang A, Li X, Lu Y. Optical Field Enhancement in Au Nanoparticle-Decorated Nanorod Arrays Prepared by Femtosecond Laser and Their Tunable Surface-Enhanced Raman Scattering Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1297-1305. [PMID: 29256245 DOI: 10.1021/acsami.7b13241] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Various Au nanostructures have been demonstrated to have an enhanced local electric field around them because of surface plasmons. Herein, we propose a novel method for fabricating Au nanoparticle-decorated nanorod (NPDN) arrays through femtosecond laser irradiation combined with Au coating and annealing. The nanorod cavities strongly confined light and produced an enhanced optical field in response to Au nanoparticles (NPs) introduction. The nanogap and diameter of the fabricated Au NPs significantly affected the surface-enhanced Raman scattering (SERS) performance and could be simultaneously tuned with thickness-controllable Au films and substrate morphologies. The resulting Au NPDN substrate was observed to have efficient "hot spots" for tunable SERS applications. We experimentally determined that the enhancement factor of the Au NPDN substrate reached up to 8.3 × 107 at optimal parameters. Moreover, the Au NPDN substrate showed superior chemical stability, with the greatest intensity deviation of 3.2% on exposure to air for 2 months. This work provides a promising method to fabricate tunable plasmonic surfaces for highly sensitive, reproducible, and chemically stable SERS applications.
Collapse
Affiliation(s)
- Wei Cao
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology , Beijing 100081, P. R. China
| | - Lan Jiang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology , Beijing 100081, P. R. China
- Laser Micro/Nano-Fabrication Laboratory, Department of Mechanical Engineering, Tsinghua University , Beijing 100084, P. R. China
| | - Jie Hu
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology , Beijing 100081, P. R. China
| | - Andong Wang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology , Beijing 100081, P. R. China
| | - Xiaowei Li
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology , Beijing 100081, P. R. China
| | - Yongfeng Lu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln , Lincoln, Nebraska 68588-0511, United States
| |
Collapse
|
6
|
Zuo P, Jiang L, Li X, Li B, Xu Y, Shi X, Ran P, Ma T, Li D, Qu L, Lu Y, Grigoropoulos CP. Shape-Controllable Gold Nanoparticle-MoS 2 Hybrids Prepared by Tuning Edge-Active Sites and Surface Structures of MoS 2 via Temporally Shaped Femtosecond Pulses. ACS APPLIED MATERIALS & INTERFACES 2017; 9:7447-7455. [PMID: 28156099 DOI: 10.1021/acsami.6b14805] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Edge-active site control of MoS2 is crucial for applications such as chemical catalysis, synthesis of functional composites, and biochemical sensing. This work presents a novel nonthermal method to simultaneously tune surface chemical (edge-active sites) and physical (surface periodic micro/nano structures) properties of MoS2 using temporally shaped femtosecond pulses, through which shape-controlled gold nanoparticles are in situ and self-assembly grown on MoS2 surfaces to form Au-MoS2 hybrids. The edge-active sites with unbound sulfurs of laser-treated MoS2 drive the reduction of gold nanoparticles, while the surface periodic structures of laser-treated MoS2 assist the shape-controllable growth of gold nanoparticles. The proposed novel method highlights the broad application potential of MoS2; for example, these Au-MoS2 hybrids exhibit tunable and highly sensitive SERS activity with an enhancement factor up to 1.2 × 107, indicating the marked potential of MoS2 in future chemical and biological sensing applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tianbao Ma
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084, P. R. China
| | - Dawei Li
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln , Lincoln, Nebraska 68588-0511, United States
| | | | - Yongfeng Lu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln , Lincoln, Nebraska 68588-0511, United States
| | - Costas P Grigoropoulos
- Laser Thermal Lab, Department of Mechanical Engineering, University of California, Berkeley Berkeley, California 94720, United States
| |
Collapse
|
7
|
Xu K, Zhang C, Zhou R, Ji R, Hong M. Hybrid micro/nano-structure formation by angular laser texturing of Si surface for surface enhanced Raman scattering. OPTICS EXPRESS 2016; 24:10352-10358. [PMID: 27409859 DOI: 10.1364/oe.24.010352] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Surface enhanced Raman spectroscopy (SERS) has drawn much research interest in the past decades as an efficient technique to detect low-concentration molecules. Among many technologies, which can be used to fabricate SERS substrates, laser ablation is a simple and high-speed method to produce large-area SERS substrates. This work investigates the angular texturing effect by dynamic laser ablation and its influence on SERS signals. By tuning the angle between the Si surface and laser irradiation, the distributions and sizes of laser induced hybrid micro/nano-structures are studied. By decorating with a silver film, plenty of hot spots can be created among these structures for SERS. It is found that when the incident laser angle is 15° at the laser fluence of 16.0 J/cm2, the SERS performance is well optimized. This work realizes antisymmetric distribution of nanoparticles deposited on Si surface, which provides a flexible tuning of the hybrid micro/nano-structures' fabrication with high controllability for practical applications.
Collapse
|