1
|
Kumar CHSSP, Klimov NN, Kuo PS. Optimization of waveguide fabrication processes in lithium-niobate-on-insulator platform. AIP ADVANCES 2024; 14:10.1063/6.0003522. [PMID: 38915883 PMCID: PMC11194688 DOI: 10.1063/6.0003522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Lithium niobate (LN) is used in diverse applications such as spectroscopy, remote sensing, and quantum communications. The emergence of lithium-niobate-on-insulator (LNOI) technology and its commercial accessibility represent significant milestones. This technology aids in harnessing the full potential of LN's properties, such as achieving tight mode confinement and strong overlap with applied electric fields, which has enabled LNOI-based electro-optic modulators to have ultra-broad bandwidths with low-voltage operation and low power consumption. Consequently, LNOI devices are emerging as competitive contenders in the integrated photonics landscape. However, the nanofabrication, particularly LN etching, presents a notable challenge. LN is hard, dense, and chemically inert. It has anisotropic etch behavior and a propensity to produce material redeposition during the reactive-ion plasma etch process. These factors make fabricating low-loss LNOI waveguides (WGs) challenging. Recognizing the pivotal role of addressing these fabrication challenges for obtaining low-loss WGs, our research focuses on a systematic study of various process steps in fabricating LNOI WGs and other photonic structures. In particular, our study involves (i) careful selection of hard mask materials, (ii) optimization of inductively coupled plasma etch parameters, and finally, (iii) determining the optimal post-etch cleaning approach to remove redeposited material on the sidewalls of the etched photonic structures. Using the recipe established, we realized optical WGs with total (propagation and coupling) loss value of -10.5 dB, comparable to established values found in the literature. Our findings broaden our understanding of optimizing fabrication processes for low-loss lithium-niobate waveguides and can serve as an accessible resource in advancing LNOI technology.
Collapse
Affiliation(s)
- CH. S. S. Pavan Kumar
- Information Technology Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899
| | - Nikolai N. Klimov
- Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899
| | - Paulina S. Kuo
- Information Technology Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899
| |
Collapse
|
2
|
Du H, Zhang X, Wang L, Chen F. Highly efficient, modal phase-matched second harmonic generation in a double-layered thin film lithium niobate waveguide. OPTICS EXPRESS 2023; 31:9713-9726. [PMID: 37157534 DOI: 10.1364/oe.482572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this contribution, we numerically investigate second harmonic generation in double-layered lithium niobate on the insulator platform by means of the modal phase matching. The modal dispersion of the ridge waveguides at the C waveband of optical fiber communication is calculated numerically and analyzed. Modal phase matching can be achieved by changing the geometric dimensions of the ridge waveguide. The phase-matching wavelength and conversion efficiencies versus the geometric dimensions in the modal phase-matching process are investigated. We also analyze the thermal-tuning ability of the present modal phase matching scheme. Our results show that highly efficient second harmonic generation can be realized by the modal phase matching in the double-layered thin film lithium niobate ridge waveguide.
Collapse
|
3
|
Wang F, Liu H, Ma T, Ma S, Liu Y. Polarization beam splitter based on the asymmetric directional coupler of lithium niobate film. APPLIED OPTICS 2023; 62:21-26. [PMID: 36606844 DOI: 10.1364/ao.476196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
A polarization beam splitter (PBS) based on a lithium niobate film asymmetric directional coupler is proposed. The PBS is located on a lithium niobate platform on an insulator consisting of a silicon nitride-lithium niobate waveguide (SLW) and a lithium niobate waveguide (LNW). By rationally designing the SLW and LNW sizes, TE polarization satisfies the phase matching condition and TM polarization phase mismatch. The numerical simulation results show that the extinction ratio (ER) and insertion loss (IL) of PBS for TE mode are 30.57 and 0.66 dB, respectively, and the ER and IL of PBS for TM mode are 28.15 and 0.11 dB, respectively, at an operating wavelength of 1.55 µm.
Collapse
|
4
|
Evolution of Nanodomains and Formation of Self-Organized Structures during Local Switching in X-Cut LNOI. CRYSTALS 2022. [DOI: 10.3390/cryst12050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The features of nanodomain growth during local switching in X-cut lithium niobate on insulator (LNOI) were comprehensively studied using the biased tip of a scanning probe microscope. The obtained results were discussed in terms of the kinetic approach. The revealed differences in domain growth in bulk LN and LNOI were attributed to the higher bulk conductivity of LNOI. The obtained influence of humidity on the shape and growth of isolated domains was attributed to the water meniscus. Analysis of the transition between the “forward growth” and “sideways growth” stages was performed by switching to the stripe electrode. A sand-glass-shaped domain was formed due to growth in the opposite direction after the domain touched the electrode. Stable periodical domain structures down to 300 nm were created and characterized in LNOI. Highly ordered comb-like domains of various alternating lengths, including four- and eight-fold increase periods, were produced by performing biased tip scanning along the Y axis. The obtained knowledge is important for the future development of nanodomain engineering methods in monocrystalline ferroelectric thin films on insulators.
Collapse
|
5
|
“Seeing Is Believing”—In-Depth Analysis by Co-Imaging of Periodically-Poled X-Cut Lithium Niobate Thin Films. CRYSTALS 2021. [DOI: 10.3390/cryst11030288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nonlinear and quantum optical devices based on periodically-poled thin film lithium niobate (PP-TFLN) have gained considerable interest lately, due to their significantly improved performance as compared to their bulk counterparts. Nevertheless, performance parameters such as conversion efficiency, minimum pump power, and spectral bandwidth strongly depend on the quality of the domain structure in these PP-TFLN samples, e.g., their homogeneity and duty cycle, as well as on the overlap and penetration depth of domains with the waveguide mode. Hence, in order to propose improved fabrication protocols, a profound quality control of domain structures is needed that allows quantifying and thoroughly analyzing these parameters. In this paper, we propose to combine a set of nanometer-to-micrometer-scale imaging techniques, i.e., piezoresponse force microscopy (PFM), second-harmonic generation (SHG), and Raman spectroscopy (RS), to access the relevant and crucial sample properties through cross-correlating these methods. Based on our findings, we designate SHG to be the best-suited standard imaging technique for this purpose, in particular when investigating the domain poling process in x-cut TFLNs. While PFM is excellently recommended for near-surface high-resolution imaging, RS provides thorough insights into stress and/or defect distributions, as associated with these domain structures. In this context, our work here indicates unexpectedly large signs for internal fields occurring in x-cut PP-TFLNs that are substantially larger as compared to previous observations in bulk LN.
Collapse
|
6
|
Xu H, Dai D, Liu L, Shi Y. Proposal for an ultra-broadband polarization beam splitter using an anisotropy-engineered Mach-Zehnder interferometer on the x-cut lithium-niobate-on-insulator. OPTICS EXPRESS 2020; 28:10899-10908. [PMID: 32403611 DOI: 10.1364/oe.390075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
We propose and theoretically demonstrate an integrated polarization beam splitter on the x-cut lithium-niobate-on-insulator (LNOI) platform. The device is based on a Mach-Zehnder interferometer with an anisotropy-engineered multi-section phase shifter. The phase shift can be simultaneously controlled for the TE and TM polarizations by engineering the length and direction of the anisotropic LNOI waveguide. For TE polarization, the phase shift is -π/2, while for TM polarization, the phase shift is π/2. Thus, the incident TE and TM modes can be coupled into different output ports. The simulation results show an ultra-high polarization extinction ratio of ∼47.7 dB, a low excess loss of ∼0.9 dB and an ultra-broad working bandwidth of ∼200 nm. To the best of our knowledge, the proposed structure is the first integrated polarization beam splitter on the x-cut LNOI platform.
Collapse
|
7
|
Investigation of Ytterbium Incorporation in Lithium Niobate for Active Waveguide Devices. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10062189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this work, we report on an investigation of the ytterbium diffusion characteristics in lithium niobate. Ytterbium-doped substrates were prepared by in-diffusion of thin metallic layers coated onto x- and z-cut congruent substrates at different temperatures. The ytterbium profiles were investigated in detail by means of secondary neutral mass spectroscopy, optical microscopy, and optical spectroscopy. Diffusion from an infinite source was used to determine the solubility limit of ytterbium in lithium niobate as a function of temperature. The derived diffusion parameters are of importance for the development of active waveguide devices in ytterbium-doped lithium niobate.
Collapse
|
8
|
Zhang L, Zheng D, Li W, Bo F, Gao F, Kong Y, Zhang G, Xu J. Microdisk resonators with lithium-niobate film on silicon substrate. OPTICS EXPRESS 2019; 27:33662-33669. [PMID: 31878429 DOI: 10.1364/oe.27.033662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
In this paper, we report the fabrication of lithium niobate (LN) microdisk resonators on a pulsed-laser deposited polycrystalline LN film on a silicon substrate rather than commercially provide LN film on insulator. The quality factor of these polycrystalline LN microdisks were measured above 3.4×104 in the 1550-nm band. Second harmonic generation was demonstrated in the fabricated microresonators. Because the properties of homemade LN film can be easily tuned by doping various ions, LN devices on homemade LN film may have more flexible functions and broad applications.
Collapse
|
9
|
Rusing M, Weigel PO, Zhao J, Mookherjea S. Toward 3D Integrated Photonics Including Lithium Niobate Thin Films: A Bridge Between Electronics, Radio Frequency, and Optical Technology. IEEE NANOTECHNOLOGY MAGAZINE 2019. [DOI: 10.1109/mnano.2019.2916115] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Xu Q, Shao Y, Piao R, Chen F, Wang X, Yang X, Wong W, Pun EY, Zhang D. A Theoretical Study on Rib‐Type Photonic Wires Based on LiNbO
3
Thin Film on Insulator. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201900115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qing Xu
- Department of Opto‐electronics and Information EngineeringSchool of Precision Instruments and Opto‐electronics EngineeringKey Laboratory of Optoelectronic Information Science & Technology (Ministry of Education)Tianjin University Tianjin 300072 China
| | - Yan‐Xue Shao
- Department of Opto‐electronics and Information EngineeringSchool of Precision Instruments and Opto‐electronics EngineeringKey Laboratory of Optoelectronic Information Science & Technology (Ministry of Education)Tianjin University Tianjin 300072 China
| | - Rui‐Qi Piao
- Department of Opto‐electronics and Information EngineeringSchool of Precision Instruments and Opto‐electronics EngineeringKey Laboratory of Optoelectronic Information Science & Technology (Ministry of Education)Tianjin University Tianjin 300072 China
| | - Feng Chen
- Department of Opto‐electronics and Information EngineeringSchool of Precision Instruments and Opto‐electronics EngineeringKey Laboratory of Optoelectronic Information Science & Technology (Ministry of Education)Tianjin University Tianjin 300072 China
| | - Xiao Wang
- Department of Opto‐electronics and Information EngineeringSchool of Precision Instruments and Opto‐electronics EngineeringKey Laboratory of Optoelectronic Information Science & Technology (Ministry of Education)Tianjin University Tianjin 300072 China
| | - Xiao‐Fei Yang
- Department of Opto‐electronics and Information EngineeringSchool of Precision Instruments and Opto‐electronics EngineeringKey Laboratory of Optoelectronic Information Science & Technology (Ministry of Education)Tianjin University Tianjin 300072 China
| | - Wing‐Han Wong
- Department of Electronic EngineeringState Key Laboratory of Terahertz and Millimeter WavesCity University of Hong Kong Hong Kong China
| | - Edwin Yue‐Bun Pun
- Department of Electronic EngineeringState Key Laboratory of Terahertz and Millimeter WavesCity University of Hong Kong Hong Kong China
| | - De‐Long Zhang
- Department of Opto‐electronics and Information EngineeringSchool of Precision Instruments and Opto‐electronics EngineeringKey Laboratory of Optoelectronic Information Science & Technology (Ministry of Education)Tianjin University Tianjin 300072 China
- Department of Electronic EngineeringState Key Laboratory of Terahertz and Millimeter WavesCity University of Hong Kong Hong Kong China
| |
Collapse
|
11
|
Brüske D, Suntsov S, Rüter CE, Kip D. Efficient Nd:Ti:LiNbO 3 ridge waveguide lasers emitting around 1085 nm. OPTICS EXPRESS 2019; 27:8884-8889. [PMID: 31052699 DOI: 10.1364/oe.27.008884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
In this work, we report on efficient neodymium-doped titanium in-diffused ridge waveguide lasers in x-cut congruent LiNbO3 under excitation at 814 nm. For the sample fabrication we used our novel technique of three-side evaporation and in-diffusion for Nd and Ti incorporation into pre-defined ridges. Due to improved photorefractive damage resistance by indium tin oxide (ITO) coating we achieved stable laser operation at 1084.7 nm with a maximum output power of 108 mW and a slope efficiency of 34% exceeding the best literature values for Nd:Ti:LiNbO3 ridge waveguide lasers.
Collapse
|
12
|
|
13
|
|
14
|
Wang C, Xiong X, Andrade N, Venkataraman V, Ren XF, Guo GC, Lončar M. Second harmonic generation in nano-structured thin-film lithium niobate waveguides. OPTICS EXPRESS 2017; 25:6963-6973. [PMID: 28381038 DOI: 10.1364/oe.25.006963] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Integrated thin-film lithium niobate platform has recently emerged as a promising candidate for next-generation, high-efficiency wavelength conversion systems that allow dense packaging and mass-production. Here we demonstrate efficient, phase-matched second harmonic generation in lithographically-defined thin-film lithium niobate waveguides with sub-micron dimensions. Both modal phase matching in fixed-width waveguides and quasi-phase matching in periodically grooved waveguides are theoretically proposed and experimentally demonstrated. Our low-loss (~3.0 dB/cm) nanowaveguides possess normalized conversion efficiencies as high as 41% W-1cm-2.
Collapse
|
15
|
Volk MF, Suntsov S, Rüter CE, Kip D. Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing. OPTICS EXPRESS 2016; 24:1386-1391. [PMID: 26832519 DOI: 10.1364/oe.24.001386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report on the fabrication and characterization of ridge waveguides in lithium niobate thin films by diamond blade dicing. The lithium niobate thin films with a thickness of 1 µm were fabricated by bonding a He-implanted lithium niobate wafer to a SiO(2)-coated lithium niobate wafer and crystal ion slicing. Propagation losses of 1.2 dB/cm for TE and 2.8 dB/cm for TM polarization were measured at 1550 nm for a 9.28 mm long and 2.1 µm wide waveguide using the Fabry-Perot method.
Collapse
|
16
|
Cai L, Kong R, Wang Y, Hu H. Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film. OPTICS EXPRESS 2015; 23:29211-29221. [PMID: 26561191 DOI: 10.1364/oe.23.029211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Proton exchanged channel waveguides in x-cut single-crystal lithium niobate thin film could avoid optical leakage loss which existed in the z-cut case. Indicated by simulations, the mechanism and condition of the optical leakage loss were studied. The light energy in the exchanged layer and the mode sizes were calculated to optimize the parameters for fabrication. By a very short time (3 minutes) proton exchange process without anneal, the channel waveguide with 2 μm width and 0.16 μm exchanged depth in the x-cut lithium niobate thin film had a propagation loss as low as 0.2 dB/cm at 1.55 μm. Furthermore, the Y-junctions based on the low-loss waveguide were designed and fabricated. For a Y-junction based on the 3 μm wide channel waveguide with 8000 μm bending radius, the total transmission could reach 85% ~90% and the splitting ratio maintained at a stable level around 1:1. The total length was smaller than 1 mm, much shorter than the conventional Ti-diffused and proton exchanged Y-junctions in bulk lithium niobate.
Collapse
|