1
|
Masominia A, Calvet LE, Thorpe S, Barbay S. Online spike-based recognition of digits with ultrafast microlaser neurons. Front Comput Neurosci 2023; 17:1164472. [PMID: 37465646 PMCID: PMC10350502 DOI: 10.3389/fncom.2023.1164472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Classification and recognition tasks performed on photonic hardware-based neural networks often require at least one offline computational step, such as in the increasingly popular reservoir computing paradigm. Removing this offline step can significantly improve the response time and energy efficiency of such systems. We present numerical simulations of different algorithms that utilize ultrafast photonic spiking neurons as receptive fields to allow for image recognition without an offline computing step. In particular, we discuss the merits of event, spike-time and rank-order based algorithms adapted to this system. These techniques have the potential to significantly improve the efficiency and effectiveness of optical classification systems, minimizing the number of spiking nodes required for a given task and leveraging the parallelism offered by photonic hardware.
Collapse
Affiliation(s)
- Amir Masominia
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France
| | | | - Simon Thorpe
- CERCO UMR5549, CNRS—Université Toulouse III, Toulouse, France
| | - Sylvain Barbay
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France
| |
Collapse
|
2
|
Ruschel S, Krauskopf B, Broderick NGR. The limits of sustained self-excitation and stable periodic pulse trains in the Yamada model with delayed optical feedback. CHAOS (WOODBURY, N.Y.) 2020; 30:093101. [PMID: 33003905 DOI: 10.1063/5.0007758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
We consider the Yamada model for an excitable or self-pulsating laser with saturable absorber and study the effects of delayed optical self-feedback in the excitable case. More specifically, we are concerned with the generation of stable periodic pulse trains via repeated self-excitation after passage through the delayed feedback loop and their bifurcations. We show that onset and termination of such pulse trains correspond to the simultaneous bifurcation of countably many fold periodic orbits with infinite period in this delay differential equation. We employ numerical continuation and the concept of reappearance of periodic solutions to show that these bifurcations coincide with codimension-two points along families of connecting orbits and fold periodic orbits in a related advanced differential equation. These points include heteroclinic connections between steady states and homoclinic bifurcations with non-hyperbolic equilibria. Tracking these codimension-two points in parameter space reveals the critical parameter values for the existence of periodic pulse trains. We use the recently developed theory of temporal dissipative solitons to infer necessary conditions for the stability of such pulse trains.
Collapse
Affiliation(s)
- Stefan Ruschel
- Department of Mathematics, The University of Auckland, Auckland 1142, New Zealand
| | - Bernd Krauskopf
- Department of Mathematics, The University of Auckland, Auckland 1142, New Zealand
| | - Neil G R Broderick
- Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin 9054, New Zealand
| |
Collapse
|
3
|
Alfaro-Bittner K, Barbay S, Clerc MG. Pulse propagation in a 1D array of excitable semiconductor lasers. CHAOS (WOODBURY, N.Y.) 2020; 30:083136. [PMID: 32872804 DOI: 10.1063/5.0006195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Nonlinear pulse propagation is a major feature in continuously extended excitable systems. The persistence of this phenomenon in coupled excitable systems is expected. Here, we investigate theoretically the propagation of nonlinear pulses in a 1D array of evanescently coupled excitable semiconductor lasers. We show that the propagation of pulses is characterized by a hopping dynamics. The average pulse speed and bifurcation diagram are characterized as a function of the coupling strength between the lasers. Several instabilities are analyzed such as the onset and disappearance of pulse propagation and a spontaneous breaking of the translation symmetry. The pulse propagation modes evidenced are specific to the discrete nature of the 1D array of excitable lasers.
Collapse
Affiliation(s)
- K Alfaro-Bittner
- Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110V, Valparaíso, Chile
| | - S Barbay
- Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, 91120 Palaiseau, France
| | - M G Clerc
- Departamento de Física and Millennium Institute for Research in Optics, FCFM, Universidad de Chile, Casilla, 487-3 Santiago, Chile
| |
Collapse
|
4
|
Abstract
Neurons communicate by brief bursts of spikes separated by silent phases and information may be encoded into the burst duration or through the structure of the interspike intervals. Inspired by the importance of bursting activities in neuronal computation, we have investigated the bursting oscillations of an optically injected quantum dot laser. We find experimentally that the laser periodically switches between two distinct operating states with distinct optical frequencies exhibiting either fast oscillatory or nearly steady state evolutions (two-color bursting oscillations). The conditions for their emergence and their control are analyzed by systematic simulations of the laser rate equations. By projecting the bursting solution onto the bifurcation diagram of a fast subsystem, we show how a specific hysteresis phenomenon explains the transitions between active and silent phases. Since size-controlled bursts can contain more information content than single spikes our results open the way to new forms of neuron inspired optical communication.
Collapse
|
5
|
Artificial Neuron Based on Integrated Semiconductor Quantum Dot Mode-Locked Lasers. Sci Rep 2016; 6:39317. [PMID: 27991574 PMCID: PMC5171909 DOI: 10.1038/srep39317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/19/2016] [Indexed: 11/08/2022] Open
Abstract
Neuro-inspired implementations have attracted strong interest as a power efficient and robust alternative to the digital model of computation with a broad range of applications. Especially, neuro-mimetic systems able to produce and process spike-encoding schemes can offer merits like high noise-resiliency and increased computational efficiency. Towards this direction, integrated photonics can be an auspicious platform due to its multi-GHz bandwidth, its high wall-plug efficiency and the strong similarity of its dynamics under excitation with biological spiking neurons. Here, we propose an integrated all-optical neuron based on an InAs/InGaAs semiconductor quantum-dot passively mode-locked laser. The multi-band emission capabilities of these lasers allows, through waveband switching, the emulation of the excitation and inhibition modes of operation. Frequency-response effects, similar to biological neural circuits, are observed just as in a typical two-section excitable laser. The demonstrated optical building block can pave the way for high-speed photonic integrated systems able to address tasks ranging from pattern recognition to cognitive spectrum management and multi-sensory data processing.
Collapse
|
6
|
Selmi F, Braive R, Beaudoin G, Sagnes I, Kuszelewicz R, Erneux T, Barbay S. Spike latency and response properties of an excitable micropillar laser. Phys Rev E 2016; 94:042219. [PMID: 27841605 DOI: 10.1103/physreve.94.042219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Indexed: 06/06/2023]
Abstract
We present experimental measurements concerning the response of an excitable micropillar laser with saturable absorber to incoherent as well as coherent perturbations. The excitable response is similar to the behavior of spiking neurons but with much faster time scales. It is accompanied by a subnanosecond nonlinear delay that is measured for different bias pump values. This mechanism provides a natural scheme for encoding the strength of an ultrafast stimulus in the response delay of excitable spikes (temporal coding). Moreover, we demonstrate coherent and incoherent perturbations techniques applied to the micropillar with perturbation thresholds in the range of a few femtojoules. Responses to coherent perturbations assess the cascadability of the system. We discuss the physical origin of the responses to single and double perturbations with the help of numerical simulations of the Yamada model and, in particular, unveil possibilities to control the relative refractory period that we recently evidenced in this system. Experimental measurements are compared to both numerical simulations of the Yamada model and analytic expressions obtained in the framework of singular perturbation techniques. This system is thus a good candidate to perform photonic spike processing tasks in the framework of novel neuroinspired computing systems.
Collapse
Affiliation(s)
- F Selmi
- Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris-Sud, Université Paris-Saclay, C2N-Marcoussis, 91460 Marcoussis, France
| | - R Braive
- Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris-Sud, Université Paris-Saclay, C2N-Marcoussis, 91460 Marcoussis, France
- Université Paris Diderot, 5 rue Thomas-Mann, 75013 Paris, France
| | - G Beaudoin
- Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris-Sud, Université Paris-Saclay, C2N-Marcoussis, 91460 Marcoussis, France
| | - I Sagnes
- Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris-Sud, Université Paris-Saclay, C2N-Marcoussis, 91460 Marcoussis, France
| | - R Kuszelewicz
- Neurophotonics Laboratory, CNRS/Université Paris Descartes, 45, rue des Saints-Pères, 75270 Paris, France
| | - T Erneux
- Université Libre de Bruxelles, Optique Nonlinéaire Théorique, Campus Plaine C.P. 231, 1050 Bruxelles, Belgium
| | - S Barbay
- Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris-Sud, Université Paris-Saclay, C2N-Marcoussis, 91460 Marcoussis, France
| |
Collapse
|