1
|
Zhang Y, Lu M, Hu J, Li Y, Shum PP, Chen J, Wei H. Rapid coherent Raman hyperspectral imaging based on delay-spectral focusing dual-comb method and deep learning algorithm. OPTICS LETTERS 2023; 48:550-553. [PMID: 36723528 DOI: 10.1364/ol.480667] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/20/2022] [Indexed: 05/22/2023]
Abstract
Rapid coherent Raman hyperspectral imaging shows great promise for applications in sensing, medical diagnostics, and dynamic metabolism monitoring. However, the spectral acquisition speed of current multiplex coherent anti-Stokes Raman scattering (CARS) microscopy is generally limited by the spectrometer integration time, and as the detection speed increases, the signal-to-noise ratio (SNR) of single spectrum will decrease, leading to a terrible imaging quality. In this Letter, we report a dual-comb coherent Raman hyperspectral microscopy imaging system developed by integrating two approaches, a rapid delay-spectral focusing method and deep learning. The spectral refresh rate is exploited by focusing the relative delay scanning in the effective Raman excitation region, enabling a spectral acquisition speed of 36 kHz, ≈4 frames/s, for a pixel resolution of 95 × 95 pixels and a spectral bandwidth no less than 200 cm-1. To improve the spectral SNR and imaging quality, the deep learning models are designed for spectral preprocessing and automatic unsupervised feature extraction. In addition, by changing the relative delay focusing region of the comb pairs, the detected spectral wavenumber region can be flexibly tuned to the high SNR region of the spectrum.
Collapse
|
2
|
Xu S, Jin Y, Lee YJ. 3D Orientation Imaging of Polymer Chains with Polarization-Controlled Coherent Raman Microscopy. J Am Chem Soc 2022; 144:23030-23043. [PMID: 36475719 PMCID: PMC9795402 DOI: 10.1021/jacs.2c10029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the ubiquity of three-dimensional (3D) anisotropic materials, their 3D molecular alignment cannot be measured using conventional two-dimensional (2D) polarization imaging. Here, we present images of the 3D angles of molecular orientations with submicrometer spatial resolution acquired through polarization-controlled coherent anti-Stokes Raman scattering microscopy. The hyperspectral Raman data of a polyethylene (PE) film were converted into images, showing the polymer chains' 3D angles and order parameters. The 3D orientation images of PE chains in ring-banded spherulites show that the azimuthal angles of the chains are perpendicular to the crystal growth direction, while the out-of-plane angles display limited-range oscillations synchronous with ring banding. The prevailing crystal growth model of fully twisting lamellae is inconsistent with the observed restricted oscillations of the out-of-plane direction, which are unobservable through conventional 2D projected imaging. This high-resolution, label-free, quantitative imaging of 3D molecular orientation can become a standard measurement tool for the microscopic structures of complex synthetic and biological materials.
Collapse
Affiliation(s)
- Shuyu Xu
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Ying Jin
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Young Jong Lee
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
3
|
Talone B, Bazzarelli M, Schirato A, Dello Vicario F, Viola D, Jacchetti E, Bregonzio M, Raimondi MT, Cerullo G, Polli D. Phototoxicity induced in living HeLa cells by focused femtosecond laser pulses: a data-driven approach. BIOMEDICAL OPTICS EXPRESS 2021; 12:7886-7905. [PMID: 35003873 PMCID: PMC8713694 DOI: 10.1364/boe.441225] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Nonlinear optical microscopy is a powerful label-free imaging technology, providing biochemical and structural information in living cells and tissues. A possible drawback is photodamage induced by high-power ultrashort laser pulses. Here we present an experimental study on thousands of HeLa cells, to characterize the damage induced by focused femtosecond near-infrared laser pulses as a function of laser power, scanning speed and exposure time, in both wide-field and point-scanning illumination configurations. Our data-driven approach offers an interpretation of the underlying damage mechanisms and provides a predictive model that estimates its probability and extension and a safety limit for the working conditions in nonlinear optical microscopy. In particular, we demonstrate that cells can withstand high temperatures for a short amount of time, while they die if exposed for longer times to mild temperatures. It is thus better to illuminate the samples with high irradiances: thanks to the nonlinear imaging mechanism, much stronger signals will be generated, enabling fast imaging and thus avoiding sample photodamage.
Collapse
Affiliation(s)
- B. Talone
- Department of Physics, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy
| | | | - A. Schirato
- Department of Physics, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy
- Istituto Italiano di Tecnologia, via Morego 30, I- 16163, Genoa, Italy
| | | | - D. Viola
- Department of Physics, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy
| | - E. Jacchetti
- Department of Chemistry, Materials and Chemical Engineering ’G. Natta’, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy
| | - M. Bregonzio
- 3rdPlace SRL, Foro Bonaparte 71, 20121 Milan, Italy
| | - M. T. Raimondi
- Department of Chemistry, Materials and Chemical Engineering ’G. Natta’, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy
| | - G. Cerullo
- Department of Physics, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy
- Istituto di Fotonica e Nanotecnologie (IFN), Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - D. Polli
- Department of Physics, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy
- Istituto di Fotonica e Nanotecnologie (IFN), Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| |
Collapse
|
4
|
Kizawa S, Hashimoto M. Ultrahigh-speed multiplex coherent anti-Stokes Raman scattering microspectroscopy using scanning elliptical focal spot. J Chem Phys 2021; 155:144201. [PMID: 34654303 DOI: 10.1063/5.0063987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We present a beam-scanning multiplex coherent anti-Stokes Raman scattering (CARS) microspectroscopy system using parallel excitation and parallel detection schemes based on an elliptical focal spot, which enables highly efficient signal acquisition even for short exposures. The elliptical focal spot was used to simultaneously observe the CARS signals of an enlarged region and reduce the peak irradiance. The developed system realized an acquisition rate of 34 139 spectra/s and enabled ultrahigh-speed acquisition of a vibrational spectroscopic image, covering the fingerprint region of 930-1 830 cm-1 with 256(x) × 256(y) × 512(spectrum) pixels in 1.92 s or with 128(x) × 128(y) × 256(spectrum) pixels in 0.54 s. We demonstrated ultrahigh-speed hyperspectral imaging of a mixture of polymer beads in liquid linoleic acid and living adipocytes using the developed system. All of the present demonstrations were performed with a low-peak irradiance excitation of ∼19 GW/cm2, which has been reported in previous studies to cause less photodamage to living cells. The label-free and ultrahigh-speed identification and visualization of various molecules made possible by the present system will accelerate the development of practical live-cell investigation.
Collapse
Affiliation(s)
- Shun Kizawa
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo 060-0 814, Japan
| | - Mamoru Hashimoto
- Division of Bioengineering and Bioinformatics, Faculty of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo 060-0 814, Japan
| |
Collapse
|
5
|
Xu S, Camp CH, Lee YJ. Coherent
anti‐Stokes
Raman scattering microscopy for polymers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shuyu Xu
- Biosystems and Biomaterials Division National Institute of Standards and Technology Gaithersburg Maryland USA
| | - Charles H. Camp
- Biosystems and Biomaterials Division National Institute of Standards and Technology Gaithersburg Maryland USA
| | - Young Jong Lee
- Biosystems and Biomaterials Division National Institute of Standards and Technology Gaithersburg Maryland USA
| |
Collapse
|
6
|
Cassabaum AA, Bera K, Rich CC, Nebgen BR, Kwang SY, Clapham ML, Frontiera RR. Femtosecond stimulated Raman spectro-microscopy for probing chemical reaction dynamics in solid-state materials. J Chem Phys 2020; 153:030901. [DOI: 10.1063/5.0009976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Alyssa A. Cassabaum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Kajari Bera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Christopher C. Rich
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Bailey R. Nebgen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Siu Yi Kwang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Margaret L. Clapham
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Renee R. Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
7
|
Chon B, Truong J, Hansen M, Hahm JI, Lee YJ. Position- and Polarization-Specific Waveguiding of Multi-Emissions in Single ZnO Nanorods. ACS PHOTONICS 2019; 6:10.1021/acsphotonics.8b01763. [PMID: 31579684 PMCID: PMC6774195 DOI: 10.1021/acsphotonics.8b01763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We examine multiphoton-produced optical signals waveguided through single ZnO nanorods (NRs) using a newly developed, scanning offset-emission hyperspectral microscopy (SOHM) technique. Specifically, we concurrently analyze waveguiding behaviors of sum-frequency generation (SFG), deep-trap emissions (DTE), and coherent anti-Stokes Raman scattering (CARS) occurring in individual ZnO NRs. SOHM acquires spectrally-indexed and spatially-resolved intensity maps/spectra of waveguided light intensity while excitation/emission collection positions and light polarization are scanned. Hence, the powerful measurement capabilities of SOHM enable quantitative analyses of the different ZnO NR waveguiding behaviors specific to the multiphoton-generated emissions as a function of measurement position, light-matter interaction geometry, and the optical origin of the guided signal. We subsequently reveal the distinct waveguiding behaviors of single ZnO NRs pertaining to the SFG-, DTE-, and CARS-originated signals and discuss particularly attractive ZnO NR properties in CARS waveguiding.
Collapse
Affiliation(s)
- Bonghwan Chon
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Johnson Truong
- Department of Chemistry, Georgetown University, Washington, DC 20057
| | - Matthew Hansen
- Department of Chemistry, Georgetown University, Washington, DC 20057
| | - Jong-in Hahm
- Department of Chemistry, Georgetown University, Washington, DC 20057
- Corresponding Authors YJL: ; JIH:
| | - Young Jong Lee
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
- Corresponding Authors YJL: ; JIH:
| |
Collapse
|
8
|
Gottschall T, Meyer T, Schmitt M, Popp J, Limpert J, Tünnermann A. Advances in laser concepts for multiplex, coherent Raman scattering micro-spectroscopy and imaging. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Label-Free Biomedical Imaging Using High-Speed Lock-In Pixel Sensor for Stimulated Raman Scattering. SENSORS 2017; 17:s17112581. [PMID: 29120358 PMCID: PMC5712989 DOI: 10.3390/s17112581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/30/2017] [Accepted: 11/07/2017] [Indexed: 11/17/2022]
Abstract
Raman imaging eliminates the need for staining procedures, providing label-free imaging to study biological samples. Recent developments in stimulated Raman scattering (SRS) have achieved fast acquisition speed and hyperspectral imaging. However, there has been a problem of lack of detectors suitable for MHz modulation rate parallel detection, detecting multiple small SRS signals while eliminating extremely strong offset due to direct laser light. In this paper, we present a complementary metal-oxide semiconductor (CMOS) image sensor using high-speed lock-in pixels for stimulated Raman scattering that is capable of obtaining the difference of Stokes-on and Stokes-off signal at modulation frequency of 20 MHz in the pixel before reading out. The generated small SRS signal is extracted and amplified in a pixel using a high-speed and large area lateral electric field charge modulator (LEFM) employing two-step ion implantation and an in-pixel pair of low-pass filter, a sample and hold circuit and a switched capacitor integrator using a fully differential amplifier. A prototype chip is fabricated using 0.11 μm CMOS image sensor technology process. SRS spectra and images of stearic acid and 3T3-L1 samples are successfully obtained. The outcomes suggest that hyperspectral and multi-focus SRS imaging at video rate is viable after slight modifications to the pixel architecture and the acquisition system.
Collapse
|
10
|
Liu AP, Chaudhuri O, Parekh SH. New advances in probing cell-extracellular matrix interactions. Integr Biol (Camb) 2017; 9:383-405. [PMID: 28352896 PMCID: PMC5708530 DOI: 10.1039/c6ib00251j] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/20/2017] [Indexed: 12/17/2022]
Abstract
The extracellular matrix (ECM) provides structural and biochemical support to cells within tissues. An emerging body of evidence has established that the ECM plays a key role in cell mechanotransduction - the study of coupling between mechanical inputs and cellular phenotype - through either mediating transmission of forces to the cells, or presenting mechanical cues that guide cellular behaviors. Recent progress in cell mechanotransduction research has been facilitated by advances of experimental tools, particularly microtechnologies, engineered biomaterials, and imaging and analytical methods. Microtechnologies have enabled the design and fabrication of controlled physical microenvironments for the study and measurement of cell-ECM interactions. Advances in engineered biomaterials have allowed researchers to develop synthetic ECMs that mimic tissue microenvironments and investigate the impact of altered physicochemical properties on various cellular processes. Finally, advanced imaging and spectroscopy techniques have facilitated the visualization of the complex interaction between cells and ECM in vitro and in living tissues. This review will highlight the application of recent innovations in these areas to probing cell-ECM interactions. We believe cross-disciplinary approaches, combining aspects of the different technologies reviewed here, will inspire innovative ideas to further elucidate the secrets of ECM-mediated cell control.
Collapse
Affiliation(s)
- Allen P. Liu
- Department of Mechanical Engineering , University of Michigan , Ann Arbor , MI 48109 , USA .
- Department of Biomedical Engineering , University of Michigan , Ann Arbor , MI 48109 , USA
- Cellular and Molecular Biology Program , University of Michigan , Ann Arbor , MI 48109 , USA
- Biophysics Program , University of Michigan , Ann Arbor , MI 48109 , USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering , Stanford University , Stanford , CA 94305 , USA .
| | - Sapun H. Parekh
- Department of Molecular Spectroscopy , Max Planck Institute for Polymer Research , Mainz 55128 , Germany .
| |
Collapse
|
11
|
Duarte AS, Schnedermann C, Kukura P. Wide-Field Detected Fourier Transform CARS Microscopy. Sci Rep 2016; 6:37516. [PMID: 27881844 PMCID: PMC5121585 DOI: 10.1038/srep37516] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/27/2016] [Indexed: 01/11/2023] Open
Abstract
We present a wide-field imaging implementation of Fourier transform coherent anti-Stokes Raman scattering (wide-field detected FT-CARS) microscopy capable of acquiring high-contrast label-free but chemically specific images over the full vibrational 'fingerprint' region, suitable for a large field of view. Rapid resonant mechanical scanning of the illumination beam coupled with highly sensitive, camera-based detection of the CARS signal allows for fast and direct hyperspectral wide-field image acquisition, while minimizing sample damage. Intrinsic to FT-CARS microscopy, the ability to control the range of time-delays between pump and probe pulses allows for fine tuning of spectral resolution, bandwidth and imaging speed while maintaining full duty cycle. We outline the basic principles of wide-field detected FT-CARS microscopy and demonstrate how it can be used as a sensitive optical probe for chemically specific Raman imaging.
Collapse
Affiliation(s)
- Alex Soares Duarte
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Christoph Schnedermann
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Philipp Kukura
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|
12
|
Cicerone M. Molecular imaging with CARS micro-spectroscopy. Curr Opin Chem Biol 2016; 33:179-85. [PMID: 27400394 PMCID: PMC5018446 DOI: 10.1016/j.cbpa.2016.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/14/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
Abstract
After more than a decade of instrument and method development, broadband coherent anti-Stokes Raman scattering (CARS) micro-spectroscopy is beginning to live up to its potential as a label-free imaging modality that can rapidly generate high resolution images with full vibrational spectra at each image pixel. Presently these instruments are able to obtain quantitative, spatially resolved information on lipids from the CH stretch region of the Raman spectrum, and some instrument designs facilitate acquisition of high quality fingerprint spectra, containing information on a host of molecular species including structural proteins, nucleotides, and metabolites. While most of the existing instruments are research projects themselves, it appears that the relevant technologies are maturing so that commercially available instruments may not be too far in the future, making this remarkable imaging modality widely available.
Collapse
Affiliation(s)
- Marcus Cicerone
- NIST, 100 Bureau Drive, Gaithersburg, MD 20899, United States.
| |
Collapse
|