Fan C, Zhao H, Zhao Z, Li J, Du Y, Yang X, Zhang L. Single-shot quantitative phase imaging with phase modulation of a liquid crystal spatial light modulator (LC-SLM) under white light illumination.
OPTICS LETTERS 2022;
47:5264-5267. [PMID:
36240338 DOI:
10.1364/ol.468807]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
We propose a novel, to the best of our knowledge, single-shot quantitative phase imaging (QPI) technique with the phase modulation of a liquid crystal spatial light modulator (LC-SLM) under white light illumination. By studying the phase modulation characteristics of an LC-SLM under white light illumination, images captured at different wavelengths are equivalent to those captured at different defocus distances when loading a Fresnel lens pattern on the LC-SLM. Consequently, a color camera is able to simultaneously acquire multi-intensity images at different defocus distances. Finally, the phase is retrieved from a single-shot color image using the transport of intensity equation. To demonstrate the flexibility and accuracy of our method, a photoetched phase object and human red blood cells are quantitatively measured. An investigation of living yeast cells is conducted to verify the dynamic measurement capability. The proposed method provides a simple, efficient, and flexible means to accomplish real-time high-resolution quantitative phase imaging without sacrificing the field of view (FOV), which can be further integrated into a conventional microscope to achieve real-time microscopic QPI.
Collapse