1
|
Gao M, Lüpken NM, Fallnich C. Highly efficient and widely tunable Si 3N 4 waveguide-based optical parametric oscillator. OPTICS EXPRESS 2024; 32:10899-10909. [PMID: 38570952 DOI: 10.1364/oe.515511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/05/2024] [Indexed: 04/05/2024]
Abstract
We demonstrate an efficient and widely tunable synchronously pumped optical parametric oscillator (OPO) exploiting four-wave mixing (FWM) in a silicon nitride (Si3N4) waveguide with inverted tapers. At a pump pulse duration of 2 ps, the waveguide-based OPO (WOPO) exhibited a high external pump-to-idler conversion efficiency of up to -7.64 dB at 74% pump depletion and a generation of up to 387 pJ output idler pulse energy around 1.13 μm wavelength. Additionally, the parametric oscillation resulted in a 64 dB amplification of idler power spectral density in comparison to spontaneous FWM, allowing for a wide idler wavelength tunability of 191 nm around 1.15 μm. Our WOPO represents a significant improvement of conversion efficiency as well as output energy among χ3 WOPOs, rendering an important step towards a highly efficient and widely tunable chip-based light source for, e.g., coherent anti-Stokes Raman scattering.
Collapse
|
2
|
Xia L, van der Slot PJM, Timmerkamp M, Bastiaens HMJ, Fallnich C, Boller KJ. On-chip phase-shift induced control of supercontinuum generation in a dual-core Si 3N 4 waveguide. OPTICS EXPRESS 2023; 31:37472-37482. [PMID: 38017875 DOI: 10.1364/oe.501938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/12/2023] [Indexed: 11/30/2023]
Abstract
We investigate on-chip spectral control of supercontinuum generation, taking advantage of the additional spatial degree of freedom in strongly-coupled dual-core waveguides. Using numerical integration of the multi-mode generalized nonlinear Schrödinger equation, we show that, with proper waveguide cross-section design, selective excitation of supermodes can vary the dispersion to its extremes, i.e., all-normal or anomalous dispersion can be selected via phase shifting in a Mach-Zehnder input circuit. The resulting control allows to provide vastly different supercontinuum spectra with the same waveguide circuit.
Collapse
|
3
|
Lüpken NM, Becker D, Würthwein T, Boller KJ, Fallnich C. Toward integrated synchronously pumped optical parametric oscillators in silicon nitride. OPTICS EXPRESS 2021; 29:39895-39903. [PMID: 34809344 DOI: 10.1364/oe.438910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
We present a tunable, hybrid waveguide-fiber optical parametric oscillator (OPO) synchronously pumped by an ultra-fast fiber laser exploiting four-wave mixing (FWM) generated in silicon nitride waveguides. Parametric oscillation results in a 35 dB enhancement of the idler spectral power density in comparison to spontaneous FWM, with the ability of wide wavelength tuning over 86 nm in the O-band. Measurements of the oscillation threshold and the efficiency of the feedback loop reveal how an integration of the OPO on a single silicon nitride chip can be accomplished at standard repetition rates of pump lasers in the order of 100 MHz.
Collapse
|
4
|
Würthwein T, Wallmeier K, Brinkmann M, Hellwig T, Lüpken NM, Lemberger NS, Fallnich C. Multi-color stimulated Raman scattering with a frame-to-frame wavelength-tunable fiber-based light source. BIOMEDICAL OPTICS EXPRESS 2021; 12:6228-6236. [PMID: 34745731 PMCID: PMC8547978 DOI: 10.1364/boe.436299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
We present multi-color imaging by stimulated Raman scattering (SRS) enabled by an ultrafast fiber-based light source with integrated amplitude modulation and frame-to-frame wavelength tuning. With a relative intensity noise level of -153.7 dBc/Hz at 20.25 MHz the light source is well suited for SRS imaging and outperforms other fiber-based light source concepts for SRS imaging. The light source is tunable in under 5 ms per arbitrary wavelength step between 700 cm-1 and 3200 cm-1, which allows for addressing Raman resonances from the fingerprint to the CH-stretch region. Moreover, the compact and environmentally stable system is predestined for fast multi-color assessments of medical or rapidly evolving samples with high chemical specificity, paving the way for diagnostics and sensing outside of specialized laser laboratories.
Collapse
Affiliation(s)
- Thomas Würthwein
- Institute of Applied Physics, University of Münster, Corrensstraße 2, 48149 Münster, Germany
| | - Kristin Wallmeier
- Institute of Applied Physics, University of Münster, Corrensstraße 2, 48149 Münster, Germany
| | | | - Tim Hellwig
- Refined Laser Systems GmbH, Mendelstraße 11, 48149 Münster, Germany
| | - Niklas M. Lüpken
- Institute of Applied Physics, University of Münster, Corrensstraße 2, 48149 Münster, Germany
| | - Nick S. Lemberger
- Institute of Applied Physics, University of Münster, Corrensstraße 2, 48149 Münster, Germany
| | - Carsten Fallnich
- Institute of Applied Physics, University of Münster, Corrensstraße 2, 48149 Münster, Germany
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
- Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| |
Collapse
|
5
|
Würthwein T, Brinkmann M, Hellwig T, Wallmeier K, Fallnich C. High-sensitivity frequency modulation CARS with a compact and fast tunable fiber-based light source. OPTICS LETTERS 2021; 46:3544-3547. [PMID: 34329220 DOI: 10.1364/ol.425578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Frequency modulation (FM) coherent anti-Stokes Raman scattering (CARS) is presented, using a compact as well as fast and widely tunable fiber-based light source. With this light source, Raman resonances between 700cm-1 and 3200cm-1 can be addressed via wavelength tuning within only 5 ms, which allows for FM CARS measurements with frame-to-frame wavelength switching. Moreover, the functionality for high-sensitivity FM CARS measurements was integrated by means of fiber optics to keep a stable and reliable operation. The light source accomplished FM CARS measurements with a 40 times enhanced sensitivity at a lock-in amplifier (LIA) bandwidth of 1 Hz. For fast imaging with frame-to-frame wavelength switching at a LIA bandwidth of 1 MHz, an 18-fold contrast enhancement could be verified, making this light source ideal for routine and out-of-lab FM CARS measurements for medical diagnostics or environmental sensing.
Collapse
|
6
|
Lüpken NM, Würthwein T, Boller KJ, Fallnich C. Optical parametric amplification in silicon nitride waveguides for coherent Raman imaging. OPTICS EXPRESS 2021; 29:10424-10433. [PMID: 33820177 DOI: 10.1364/oe.418052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
We present tunable waveguide-based optical parametric amplification by four-wave mixing (FWM) in silicon nitride waveguides, with the potential to be set up as an all-integrated device, for narrowband coherent anti-Stokes Raman scattering (CARS) imaging. Signal and idler pulses are generated via FWM with only 3 nJ pump pulse energy and stimulated by using only 4 mW of a continuous-wave seed source, resulting in a 35 dB enhancement of the idler spectral power density in comparison to spontaneous FWM. By using waveguides with different widths and tuning the wavelength of the signal wave seed, idler wavelengths covering the spectral region from 1.1 µm up to 1.6 µm can be generated. The versatility of the chip-based FWM light source is demonstrated by acquiring CARS images.
Collapse
|
7
|
Lüpken NM, Würthwein T, Epping JP, Boller KJ, Fallnich C. Spontaneous four-wave mixing in silicon nitride waveguides for broadband coherent anti-Stokes Raman scattering spectroscopy. OPTICS LETTERS 2020; 45:3873-3876. [PMID: 32667307 DOI: 10.1364/ol.396394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
We present a light source for coherent anti-Stokes Raman scattering (CARS) based on broadband spontaneous four-wave mixing, with the potential to be further integrated. By using 7 mm long silicon nitride waveguides, which offer tight mode confinement and a high nonlinear refractive index coefficient, broadband signal and idler pulses were generated with 4 nJ of input pulse energy. In comparison to fiber-based experiments, the input energy and the waveguide length were reduced by two orders of magnitude, respectively. The idler and residual pump pulses were used for CARS measurements, enabling chemically selective and label-free spectroscopy over the entire fingerprint region, with an ultrafast fiber-based pump source at 1033 nm wavelength. The presented simple light source paves the path towards cost-effective, integrated lab-on-a-chip CARS applications.
Collapse
|
8
|
Brinkmann M, Fast A, Hellwig T, Pence I, Evans CL, Fallnich C. Portable all-fiber dual-output widely tunable light source for coherent Raman imaging. BIOMEDICAL OPTICS EXPRESS 2019; 10:4437-4449. [PMID: 31565500 PMCID: PMC6757451 DOI: 10.1364/boe.10.004437] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 05/06/2023]
Abstract
We present a rapidly tunable dual-output all-fiber light source for coherent Raman imaging, based on a dispersively matched mode-locked laser pumping a parametric oscillator. Output pump and Stokes pulses with a maximal power of 170 and 400 mW, respectively, and equal durations of 7 ps could be generated. The tuning mechanism required no mechanical delay line, enabling all-electronic arbitrary wavelength switching across more than 2700 cm - 1 in less than 5 ms. The compact setup showed a reliable operation despite mechanical shocks of more than 25 m / s 2 and is, thus, well suited for operation in a mobile cart. Imaging mouse and human skin tissue with both the portable light source and a commercial laboratory-bound reference system yielded qualitatively equal results and verified the portable light source being well suited for coherent Raman microscopy.
Collapse
Affiliation(s)
- Maximilian Brinkmann
- Institute of Applied Physics, Corrensstr. 2, 48149 Münster, Germany
- Refined Laser Systems UG (haftungsbeschränkt), Münster, Germany
- Shared first author
| | - Alexander Fast
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Shared first author
| | - Tim Hellwig
- Institute of Applied Physics, Corrensstr. 2, 48149 Münster, Germany
- Refined Laser Systems UG (haftungsbeschränkt), Münster, Germany
| | - Isaac Pence
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Carsten Fallnich
- Institute of Applied Physics, Corrensstr. 2, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
| |
Collapse
|
9
|
Ebner L, Zumbusch A. Yb fiber based laser source for tunable, narrow bandwidth picosecond pulses in the visible. OPTICS LETTERS 2019; 44:2290-2293. [PMID: 31042205 DOI: 10.1364/ol.44.002290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
We present a simple Yb fiber pumped source for narrow bandwidth picosecond pulses which are tunable in the visible spectral region. This emission is obtained by frequency doubling of a soliton generated in a photonic crystal fiber. The system is attractive for different types of nonlinear optical microscopy and can easily be adapted to meet different experimental prerequisites. As an example, we demonstrate coherent anti-Stokes Raman scattering microscopy using the laser source described.
Collapse
|
10
|
Yang K, Zheng S, Ye P, Hao Q, Huang K, Zeng H. Fiber-based optical parametric oscillator with flexible repetition rates by rational harmonic pumping. OPTICS EXPRESS 2019; 27:4897-4906. [PMID: 30876099 DOI: 10.1364/oe.27.004897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
We demonstrated a fiber-based synchronously pumped optical parametric oscillator (SPOPO) with flexible repetition rates while retaining the cavity length. In contrast to conventional free-space SPOPO, the repetition rate of output signal pulses was solely determined by the repetition rate of the pump source in harmonic, fractional and rational operations. The relevant mechanism relies on synchronous pumping and intrinsic losses in our fiber resonator. The novel scheme enabled us to flexibly tune the repetition rate from 0.5 to 6.0 MHz without altering the resonator configuration. The resulting pulse properties were systematically analyzed at various operation conditions, and particularly showed that a wavelength tuning range of 157 nm was obtained. Such rational harmonic resonance implemented in our SPOPO provides not only a simple yet effective way to tune the repetition rate, but also a feasible approach to narrow down the spectral bandwidth. The presented SPOPO could be useful in nonlinear biomedical imaging by offering a convenient approach to optimize the pulse repetition rate for different biomedical samples with minimum photodamage.
Collapse
|
11
|
Yang K, Zheng S, Wu Y, Ye P, Huang K, Hao Q, Zeng H. Low-repetition-rate all-fiber integrated optical parametric oscillator for coherent anti-Stokes Raman spectroscopy. OPTICS EXPRESS 2018; 26:17519-17528. [PMID: 30119563 DOI: 10.1364/oe.26.017519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/18/2018] [Indexed: 05/25/2023]
Abstract
All-fiber optical parametric oscillator (OPO), offering advantages like robustness, compactness and low lost, has attracted intense interest in coherent anti-Stokes Raman scattering spectroscopy. In typical fiber-based OPO configurations, detrimental nonlinear effects due to intense pump field in fiber coupling devices would inevitably degrade the spectral purity and conversion efficiency, especially when the OPO operated at low repetition rates. Here we demonstrated a new OPO design by placing the main amplifier inside the cavity, where the amplified pump pulses were directly coupled into the nonlinear fiber. Consequently, lower threshold, higher output power and narrower spectrum were obtained. In particular, effective suppression of spectral noise was experimentally observed, resulting in threshold reductions of 37.5%, 17.2%, and 5.2% with a comparison to a conventional OPO operating at repetition rates of 1, 2 and 3 MHz, respectively. Furthermore, the generated synchronized two-color laser sources at a low repetition rate were then employed to detect CH vibrational bands in an ethanol sample. This spectral tailored cavity design is expected to greatly promote the spread of compact all-fiber laser source to nonlinear biomedical imaging.
Collapse
|
12
|
Gottschall T, Meyer T, Schmitt M, Popp J, Limpert J, Tünnermann A. Advances in laser concepts for multiplex, coherent Raman scattering micro-spectroscopy and imaging. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Brinkmann M, Hellwig T, Fallnich C. Optical parametric chirped pulse oscillation. OPTICS EXPRESS 2017; 25:12884-12895. [PMID: 28786640 DOI: 10.1364/oe.25.012884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
A concept to flexibly adjust the spectral bandwidth of the output pulses of a fiber optical parametric oscillator is presented. By adjusting the chirp of the pump pulses appropriate to the chirp of the resonant pulses, the energy of the output pulses can be transferred into a user-defined spectral bandwidth. For this concept of optical parametric chirped pulse oscillation, we present numerical simulations of a parametric oscillator, which is able to convert pump pulses with a spectral bandwidth of 3.3 nm into output pulses with an adjustable spectral bandwidth between 9 and 0.05 nm. Combined with a wavelength tunability between 1200 and 1300 nm and pulse energies of up to 100 nJ, the concept should allow to adapt a single all-fiber parametric oscillator to a variety of applications, e.g., in multimodal nonlinear microscopy.
Collapse
|