1
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
2
|
Hack JH, Lewis NHC, Knight S, Carpenter WB, De Marco L, Ramasesha K, Tokmakoff A. Generation and Implementation of Continuum Infrared Pulses for Broadband Detection in 2D IR Spectroscopy. J Phys Chem A 2024; 128:4901-4910. [PMID: 38836554 DOI: 10.1021/acs.jpca.4c01746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
In recent years, new methods of generating continuum mid-infrared pulses through filamentation in gases have been developed for ultrafast time-resolved infrared vibrational spectroscopy. The generated infrared pulses can have thousands of wavenumbers of bandwidth, spanning the entire mid-IR region while retaining pulse length below 100 fs. This technology has had a significant impact on problems involving ultrafast structural dynamics in congested spectra with broad features, such as those found in aqueous solutions and molecules with strong intermolecular interactions. This study describes the recent advances in generating and characterizing these pulses and the practical aspects of implementing these sources for broadband detection in transient absorption and 2D IR spectroscopy.
Collapse
Affiliation(s)
- John H Hack
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Nicholas H C Lewis
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Samuel Knight
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - William B Carpenter
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Luigi De Marco
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Krupa Ramasesha
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Andrei Tokmakoff
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
3
|
Lüttig J, Mueller S, Malý P, Krich JJ, Brixner T. Higher-Order Multidimensional and Pump-Probe Spectroscopies. J Phys Chem Lett 2023; 14:7556-7573. [PMID: 37589504 DOI: 10.1021/acs.jpclett.3c01694] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Transient absorption and coherent two-dimensional spectroscopy are widely established methods for the investigation of ultrafast dynamics in quantum systems. Conventionally, they are interpreted in the framework of perturbation theory at the third order of interaction. Here, we discuss the potential of higher-(than-third-)order pump-probe and multidimensional spectroscopy to provide insight into excited multiparticle states and their dynamics. We focus on recent developments from our group. In particular, we demonstrate how phase cycling can be used in fluorescence-detected two-dimensional spectroscopy to isolate higher-order spectra that provide information about highly excited states such as the correlation of multiexciton states. We discuss coherently detected fifth-order 2D spectroscopy and its power to track exciton diffusion. Finally, we show how to extract higher-order signals even from ordinary pump-probe experiments, providing annihilation-free signals at high excitation densities and insight into multiexciton interactions.
Collapse
Affiliation(s)
- Julian Lüttig
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Stefan Mueller
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Pavel Malý
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague, Czech Republic
| | - Jacob J Krich
- Department of Physics, University of Ottawa, Ottawa K1N 6N5, Canada
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Tobias Brixner
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| |
Collapse
|
4
|
Huang-Fu ZC, Qian Y, Deng GH, Zhang T, Schmidt S, Brown J, Rao Y. Development of Two-Dimensional Electronic-Vibrational Sum Frequency Generation (2D-EVSFG) for Vibronic and Solvent Couplings of Molecules at Interfaces and Surfaces. ACS PHYSICAL CHEMISTRY AU 2023; 3:374-385. [PMID: 37520317 PMCID: PMC10375875 DOI: 10.1021/acsphyschemau.3c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 08/01/2023]
Abstract
Many photoinduced excited states' relaxation processes and chemical reactions occur at interfaces and surfaces, including charge transfer, energy transfer, proton transfer, proton-coupled electron transfer, configurational dynamics, conical intersections, etc. Of them, interactions of electronic and vibrational motions, namely, vibronic couplings, are the main determining factors for the relaxation processes or reaction pathways. However, time-resolved electronic-vibrational spectroscopy for interfaces and surfaces is lacking. Here we develop interface/surface-specific two-dimensional electronic-vibrational sum frequency generation spectroscopy (2D-EVSFG) for time-dependent vibronic coupling of excited states at interfaces and surfaces. We further demonstrate the fourth-order technique by investigating vibronic coupling, solvent correlation, and time evolution of the coupling for photoexcited interface-active molecules, crystal violet (CV), at the air/water interface as an example. The two vibronic absorption peaks for CV molecules at the interface from the 2D-EVSFG experiments were found to be more prominent than their counterparts in bulk from 2D-EV. Quantitative analysis of the vibronic peaks in 2D-EVSFG suggested that a non-Condon process participates in the photoexcitation of CV at the interface. We further reveal vibrational solvent coupling for the zeroth level on the electronic state with respect to that on the ground state, which is directly related to the magnitude of its change in solvent reorganization energy. The change in the solvent reorganization energy at the interface is much smaller than that in bulk methanol. Time-dependent center line slopes (CLSs) of 2D-EVSFG also showed that kinetic behaviors of CV at the air/water interface are significantly different from those in bulk methanol. Our ultrafast 2D-EVSFG experiments not only offer vibrational information on both excited states and the ground state as compared with the traditional doubly resonant sum frequency generation and electronic-vibrational coupling but also provide vibronic coupling, dynamical solvent effects, and time evolution of vibronic coupling at interfaces.
Collapse
|
5
|
Huang-Fu ZC, Qian Y, Zhang T, Deng GH, Brown JB, Fisher H, Schmidt S, Chen H, Rao Y. Orientational Coupling of Molecules at Interfaces Revealed by Two-Dimensional Electronic-Vibrational Sum Frequency Generation (2D-EVSFG). JACS AU 2023; 3:1413-1423. [PMID: 37234121 PMCID: PMC10206597 DOI: 10.1021/jacsau.3c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023]
Abstract
Photoinduced relaxation processes at interfaces are intimately related to many fields such as solar energy conversion, photocatalysis, and photosynthesis. Vibronic coupling plays a key role in the fundamental steps of the interface-related photoinduced relaxation processes. Vibronic coupling at interfaces is expected to be different from that in bulk due to the unique environment. However, vibronic coupling at interfaces has not been well understood due to the lack of experimental tools. We have recently developed a two-dimensional electronic-vibrational sum frequency generation (2D-EVSFG) for vibronic coupling at interfaces. In this work, we present orientational correlations in vibronic couplings of electronic and vibrational transition dipoles as well as the structural evolution of photoinduced excited states of molecules at interfaces with the 2D-EVSFG technique. We used malachite green molecules at the air/water interface as an example, to be compared with those in bulk revealed by 2D-EV. Together with polarized VSFG and ESHG experiments, polarized 2D-EVSFG spectra were used to extract relative orientations of an electronic transition dipole and vibrational transition dipoles at the interface. Combined with molecular dynamics calculations, time-dependent 2D-EVSFG data have demonstrated that structural evolutions of photoinduced excited states at the interface have different behaviors than those in bulk. Our results showed that photoexcitation leads to intramolecular charge transfer but no conical interactions in 25 ps. Restricted environment and orientational orderings of molecules at the interface are responsible for the unique features of vibronic coupling.
Collapse
Affiliation(s)
- Zhi-Chao Huang-Fu
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Yuqin Qian
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Tong Zhang
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Gang-Hua Deng
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Jesse B. Brown
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Haley Fisher
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Sydney Schmidt
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Hanning Chen
- Texas
Advanced Computing Center, The University
of Texas at Austin, Austin, Texas 78758, United States
| | - Yi Rao
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| |
Collapse
|
6
|
Stingel AM, Leemans J, Hens Z, Geiregat P, Petersen PB. Narrow homogeneous linewidths and slow cooling dynamics across infrared intra-band transitions in n-doped HgSe colloidal quantum dots. J Chem Phys 2023; 158:114202. [PMID: 36948807 DOI: 10.1063/5.0139795] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Intra-band transitions in colloidal quantum dots (QDs) are promising for opto-electronic applications in the mid-IR spectral region. However, such intra-band transitions are typically very broad and spectrally overlapping, making the study of individual excited states and their ultrafast dynamics very challenging. Here, we present the first full spectrum two-dimensional continuum infrared (2D CIR) spectroscopy study of intrinsically n-doped HgSe QDs, which exhibit mid-infrared intra-band transitions in their ground state. The obtained 2D CIR spectra reveal that underneath the broad absorption line shape of ∼500 cm-1, the transitions exhibit surprisingly narrow intrinsic linewidths with a homogeneous broadening of 175-250 cm-1. Furthermore, the 2D IR spectra are remarkably invariant, with no sign of spectral diffusion dynamics at waiting times up to 50 ps. Accordingly, we attribute the large static inhomogeneous broadening to the distribution of size and doping level of the QDs. In addition, the two higher-lying P-states of the QDs can be clearly identified in the 2D IR spectra along the diagonal with a cross-peak. However, there is no indication of cross-peak dynamics indicating that, despite the strong spin-orbit coupling in HgSe, transitions between the P-states must be longer than our maximum waiting time of 50 ps. This study illustrates a new frontier of 2D IR spectroscopy enabling the study of intra-band carrier dynamics in nanocrystalline materials across the entire mid-infrared spectrum.
Collapse
Affiliation(s)
- Ashley M Stingel
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Jari Leemans
- Physics and Chemistry of Nanostructures Group, Department of Chemistry, Faculty of Sciences, Ghent University, 9000 Gent, Belgium
| | - Zeger Hens
- Physics and Chemistry of Nanostructures Group, Department of Chemistry, Faculty of Sciences, Ghent University, 9000 Gent, Belgium
| | - Pieter Geiregat
- Physics and Chemistry of Nanostructures Group, Department of Chemistry, Faculty of Sciences, Ghent University, 9000 Gent, Belgium
| | - Poul B Petersen
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
7
|
Stingel AM, Petersen PB. Full spectrum 2D IR spectroscopy reveals below-gap absorption and phonon dynamics in the mid-IR bandgap semiconductor InAs. J Chem Phys 2021; 155:104202. [PMID: 34525815 DOI: 10.1063/5.0056217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
While the mid-infrared spectral region spans more than 3000 cm-1, ultrafast mid-IR spectroscopies are normally limited to the spectral bandwidth that can be generated in optical parametric amplifiers-typically a few hundred cm-1. As such, the spectral coverage in conventional two dimensional infrared (2D IR) spectroscopy captures only about 1% of the full potential 2D mid-IR spectrum. Here, we present 2D IR spectra using a continuum source as both the excitation and probe pulses, thus capturing close to the full 2D IR spectrum. While the continuum pulses span the entire mid-IR range, they are currently too weak to efficiently excite molecular vibrational modes but strong enough to induce electronic responses and excite phonons in semiconductors. We demonstrate the full spectrum 2D IR spectroscopy of the mid-IR bandgap semiconductor indium arsenide with a bandgap at 2855 cm-1. The measured response extends far below the bandgap and is due to field-induced band-shifting, causing probe absorption below the bandgap. While the band-shifting induces an instantaneous response that exists only during pulse overlap, the 2D IR spectra reveal additional off-diagonal features that decay on longer timescales. These longer-lived off-diagonal features result from coherent phonons excited via a Raman-like process at specific excitation frequencies. This study illustrates that the full spectrum 2D IR spectroscopy of electronic states in the mid-IR is possible with current continuum pulse technology and is effective in characterizing semiconductor properties.
Collapse
Affiliation(s)
- Ashley M Stingel
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Poul B Petersen
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
8
|
Two-dimensional electronic-vibrational sum frequency spectroscopy for interactions of electronic and nuclear motions at interfaces. Proc Natl Acad Sci U S A 2021; 118:2100608118. [PMID: 34417312 DOI: 10.1073/pnas.2100608118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interactions of electronic and vibrational degrees of freedom are essential for understanding excited-states relaxation pathways of molecular systems at interfaces and surfaces. Here, we present the development of interface-specific two-dimensional electronic-vibrational sum frequency generation (2D-EVSFG) spectroscopy for electronic-vibrational couplings for excited states at interfaces and surfaces. We demonstrate this 2D-EVSFG technique by investigating photoexcited interface-active (E)-4-((4-(dihexylamino) phenyl)diazinyl)-1-methylpyridin-1- lum (AP3) molecules at the air-water interface as an example. Our 2D-EVSFG experiments show strong vibronic couplings of interfacial AP3 molecules upon photoexcitation and subsequent relaxation of a locally excited (LE) state. Time-dependent 2D-EVSFG experiments indicate that the relaxation of the LE state, S 2, is strongly coupled with two high-frequency modes of 1,529.1 and 1,568.1 cm-1 Quantum chemistry calculations further verify that the strong vibronic couplings of the two vibrations promote the transition from the S 2 state to the lower excited state S 1 We believe that this development of 2D-EVSFG opens up an avenue of understanding excited-state dynamics related to interfaces and surfaces.
Collapse
|
9
|
Arsenault EA, Bhattacharyya P, Yoneda Y, Fleming GR. Two-dimensional electronic-vibrational spectroscopy: Exploring the interplay of electrons and nuclei in excited state molecular dynamics. J Chem Phys 2021; 155:020901. [PMID: 34266264 DOI: 10.1063/5.0053042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two-dimensional electronic-vibrational spectroscopy (2DEVS) is an emerging spectroscopic technique which exploits two different frequency ranges for the excitation (visible) and detection (infrared) axes of a 2D spectrum. In contrast to degenerate 2D techniques, such as 2D electronic or 2D infrared spectroscopy, the spectral features of a 2DEV spectrum report cross correlations between fluctuating electronic and vibrational energy gaps rather than autocorrelations as in the degenerate spectroscopies. The center line slope of the spectral features reports on this cross correlation function directly and can reveal specific electronic-vibrational couplings and rapid changes in the electronic structure, for example. The involvement of the two types of transition moments, visible and infrared, makes 2DEVS very sensitive to electronic and vibronic mixing. 2DEV spectra also feature improved spectral resolution, making the method valuable for unraveling the highly congested spectra of molecular complexes. The unique features of 2DEVS are illustrated in this paper with specific examples and their origin described at an intuitive level with references to formal derivations provided. Although early in its development and far from fully explored, 2DEVS has already proven to be a valuable addition to the tool box of ultrafast nonlinear optical spectroscopy and is of promising potential in future efforts to explore the intricate connection between electronic and vibrational nuclear degrees of freedom in energy and charge transport applications.
Collapse
Affiliation(s)
- Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | - Yusuke Yoneda
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
10
|
Gaynor JD, Weakly RB, Khalil M. Multimode two-dimensional vibronic spectroscopy. I. Orientational response and polarization-selectivity. J Chem Phys 2021; 154:184201. [PMID: 34241026 DOI: 10.1063/5.0047724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Two-dimensional Electronic-Vibrational (2D EV) spectroscopy and two-dimensional Vibrational-Electronic (2D VE) spectroscopy are among the newest additions to the coherent multidimensional spectroscopy toolbox, and they are directly sensitive to vibronic couplings. In this first of two papers, the complete orientational response functions are developed for a model system consisting of two coupled anharmonic oscillators and two electronic states in order to simulate polarization-selective 2D EV and 2D VE spectra with arbitrary combinations of linearly polarized electric fields. Here, we propose analytical methods to isolate desired signals within complicated spectra and to extract the relative orientation between vibrational and vibronic dipole moments of the model system using combinations of polarization-selective 2D EV and 2D VE spectral features. Time-dependent peak amplitudes of coherence peaks are also discussed as means for isolating desired signals within the time-domain. This paper serves as a field guide for using polarization-selective 2D EV and 2D VE spectroscopies to map coupled vibronic coordinates on the molecular frame.
Collapse
Affiliation(s)
- James D Gaynor
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, Washington 98195, USA
| | - Robert B Weakly
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, Washington 98195, USA
| | - Munira Khalil
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, Washington 98195, USA
| |
Collapse
|
11
|
Zhang J, Borrelli R, Tanimura Y. Probing photoinduced proton coupled electron transfer process by means of two-dimensional resonant electronic–vibrational spectroscopy. J Chem Phys 2021; 154:144104. [DOI: 10.1063/5.0046755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jiaji Zhang
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Raffaele Borrelli
- DISAFA, University of Torino, Largo Paolo Braccini 2, I-10095 Grugliasco, Italy
| | - Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
12
|
Song Y, Liu X, Li Y, Nguyen HH, Duan R, Kubarych KJ, Forrest SR, Ogilvie JP. Mechanistic Study of Charge Separation in a Nonfullerene Organic Donor-Acceptor Blend Using Multispectral Multidimensional Spectroscopy. J Phys Chem Lett 2021; 12:3410-3416. [PMID: 33788566 DOI: 10.1021/acs.jpclett.1c00407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organic photovoltaics (OPVs) based on nonfullerene acceptors are now approaching commercially viable efficiencies. One key to their success is efficient charge separation with low potential loss at the donor-acceptor heterojunction. Due to the lack of spectroscopic probes, open questions remain about the mechanisms of charge separation. Here, we study charge separation of a model system composed of the donor, poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione) (PBDB-T), and the nonfullerene acceptor, 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (ITIC), using multidimensional spectroscopy spanning the visible to the mid-infrared. We find that bound polaron pairs (BPPs) generated within ITIC domains play a dominant role in efficient hole transfer, transitioning to delocalized polarons within 100 fs. The weak electron-hole binding within the BPPs and the resulting polaron delocalization are key factors for efficient charge separation at nearly zero driving force. Our work provides useful insight into how to further improve the power conversion efficiency in OPVs.
Collapse
Affiliation(s)
- Yin Song
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xiao Liu
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yongxi Li
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hoang Huy Nguyen
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rong Duan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kevin J Kubarych
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stephen R Forrest
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Material Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Kwang SY, Frontiera RR. Spatially Offset Femtosecond Stimulated Raman Spectroscopy: Observing Exciton Transport through a Vibrational Lens. J Phys Chem Lett 2020; 11:4337-4344. [PMID: 32427490 DOI: 10.1021/acs.jpclett.0c01114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To design better molecular electronic devices, we need a strong understanding of how charges or excitons propagate, as many efficiency losses arise during transport. Exciton transport has been difficult to study because excitons tend to be short-lived, have short diffusion lengths, and can easily recombine. Here, we debut spatially offset femtosecond stimulated Raman spectroscopy (SO-FSRS), a three-pulse ultrafast microscopy technique. By offsetting the photoexcitation beam, we can monitor Raman spectral changes as a function of both time and position. We used SO-FSRS on 6,13-bis(triisopropylsilylethynyl) pentacene, a well-studied organic semiconductor used in photovoltaics and field-effect transistors. We demonstrated that the fast exciton and free charge carrier transport axes are identical and observed that exciton transport is less anisotropic by a factor of ∼3. SO-FSRS is the first technique that directly tracks molecular structural evolution during exciton transport, which can provide roadmaps for tailor-making molecules for specific electronic devices.
Collapse
Affiliation(s)
- Siu Yi Kwang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
14
|
Fox ZW, Blair TJ, Khalil M. Determining the Orientation and Vibronic Couplings between Electronic and Vibrational Coordinates with Polarization-Selective Two-Dimensional Vibrational-Electronic Spectroscopy. J Phys Chem Lett 2020; 11:1558-1563. [PMID: 32004009 DOI: 10.1021/acs.jpclett.9b03752] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We experimentally demonstrate polarization-selective two-dimensional (2D) vibrational-electronic (VE) spectroscopy on a transition-metal mixed-valence complex where the cyanide stretching vibrations are coupled to the metal-to-metal charge-transfer transition. A simultaneous fitting of the parallel and crossed polarized 2D VE spectra quantifies the relative vibronic coupling strengths and angles between the charge-transfer transition and three coupled cyanide stretching vibrations in a mode-specific manner. In particular, we find that the bridging vibration, which modulates the distance between the transition-metal centers, is oriented nearly parallel to the charge-transfer axis and is 9 times more strongly coupled to the electronic transition than the radial vibration, which is oriented almost perpendicular to the charge-transfer axis. The results from this experiment allow us to map the spectroscopically observed vibronic coordinates onto the molecular frame providing a general method to spatially resolve vibronic energy transfer on a femtosecond time scale.
Collapse
Affiliation(s)
- Zachary W Fox
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Tyler J Blair
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Munira Khalil
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
15
|
Jain A, Petit AS, Anna JM, Subotnik JE. Simple and Efficient Theoretical Approach To Compute 2D Optical Spectra. J Phys Chem B 2019; 123:1602-1617. [DOI: 10.1021/acs.jpcb.8b08674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amber Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Andrew S. Petit
- Department of Chemistry and Biochemistry, California State University, Fullerton, California 92834, United States
| | - Jessica M. Anna
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
16
|
Song Y, Konar A, Sechrist R, Roy VP, Duan R, Dziurgot J, Policht V, Matutes YA, Kubarych KJ, Ogilvie JP. Multispectral multidimensional spectrometer spanning the ultraviolet to the mid-infrared. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:013108. [PMID: 30709236 DOI: 10.1063/1.5055244] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Multidimensional spectroscopy is the optical analog to nuclear magnetic resonance, probing dynamical processes with ultrafast time resolution. At optical frequencies, the technical challenges of multidimensional spectroscopy have hindered its progress until recently, where advances in laser sources and pulse-shaping have removed many obstacles to its implementation. Multidimensional spectroscopy in the visible and infrared (IR) regimes has already enabled respective advances in our understanding of photosynthesis and the structural rearrangements of liquid water. A frontier of ultrafast spectroscopy is to extend and combine multidimensional techniques and frequency ranges, which have been largely restricted to operating in the distinct visible or IR regimes. By employing two independent amplifiers seeded by a single oscillator, it is straightforward to span a wide range of time scales (femtoseconds to seconds), all of which are often relevant to the most important energy conversion and catalysis problems in chemistry, physics, and materials science. Complex condensed phase systems have optical transitions spanning the ultraviolet (UV) to the IR and exhibit dynamics relevant to function on time scales of femtoseconds to seconds and beyond. We describe the development of the Multispectral Multidimensional Nonlinear Spectrometer (MMDS) to enable studies of dynamical processes in atomic, molecular, and material systems spanning femtoseconds to seconds, from the UV to the IR regimes. The MMDS employs pulse-shaping methods to provide an easy-to-use instrument with an unprecedented spectral range that enables unique combination spectroscopies. We demonstrate the multispectral capabilities of the MMDS on several model systems.
Collapse
Affiliation(s)
- Yin Song
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Arkaprabha Konar
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Riley Sechrist
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Ved Prakash Roy
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, Michigan 48109, USA
| | - Rong Duan
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, Michigan 48109, USA
| | - Jared Dziurgot
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Veronica Policht
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Yassel Acosta Matutes
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Kevin J Kubarych
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, Michigan 48109, USA
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| |
Collapse
|
17
|
Gaynor JD, Petrone A, Li X, Khalil M. Mapping Vibronic Couplings in a Solar Cell Dye with Polarization-Selective Two-Dimensional Electronic-Vibrational Spectroscopy. J Phys Chem Lett 2018; 9:6289-6295. [PMID: 30339410 DOI: 10.1021/acs.jpclett.8b02752] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study uses polarization-selective two-dimensional electronic-vibrational (2D EV) spectroscopy to map intramolecular charge transfer in the well-known solar cell dye, [Ru(dcbpy)2(NCS)2]4- (N34-), dissolved in water. A static snapshot of the vibronic couplings present in aqueous N34- is reported. At least three different initially excited singlet metal-to-ligand charge-transfer (MLCT) states are observed to be coupled to vibrational modes probed in the lowest energy triplet MLCT state, emphasizing the role of vibronic coupling in intersystem crossing. Angles between electronic and vibrational transition dipole moments are extracted from spectrally isolated 2D EV peaks and compared with calculations to develop a microscopic description for how vibrations participate with 1MLCT states in charge transfer and intersystem crossing. These results suggest that 1MLCT states with significant electron density in the electron-donating plane formed by the Ru-(NCS)2 will participate strongly in charge transfer through these vibronically coupled degrees of freedom.
Collapse
Affiliation(s)
- James D Gaynor
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195 , United States
| | - Alessio Petrone
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195 , United States
| | - Xiaosong Li
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195 , United States
| | - Munira Khalil
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195 , United States
| |
Collapse
|
18
|
Kiefer LM, Kubarych KJ. Two-dimensional infrared spectroscopy of coordination complexes: From solvent dynamics to photocatalysis. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Konar A, Sechrist R, Song Y, Policht VR, Laible PD, Bocian DF, Holten D, Kirmaier C, Ogilvie JP. Electronic Interactions in the Bacterial Reaction Center Revealed by Two-Color 2D Electronic Spectroscopy. J Phys Chem Lett 2018; 9:5219-5225. [PMID: 30136848 DOI: 10.1021/acs.jpclett.8b02394] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The bacterial reaction center (BRC) serves as an important model system for understanding the charge separation processes in photosynthesis. Knowledge of the electronic structure of the BRC is critical for understanding its charge separation mechanism. While it is well-accepted that the "special pair" pigments are strongly coupled, the degree of coupling among other BRC pigments has been thought to be relatively weak. Here we study the W(M250)V mutant BRC by two-color two-dimensional electronic spectroscopy to correlate changes in the Q x region with excitation of the Q y transitions. The resulting Q y-Q x cross-peaks provide a sensitive measure of the electronic interactions throughout the BRC pigment network and complement one-color 2D studies in which such interactions are often obscured by energy transfer and excited-state absorption signals. Our observations should motivate the refinement of electronic structure models of the BRC to facilitate improved understanding of the charge separation mechanism.
Collapse
Affiliation(s)
- Arkaprabha Konar
- Department of Physics , University of Michigan , Ann Arbor , Michigan 49109-1040 , United States
| | - Riley Sechrist
- Department of Physics , University of Michigan , Ann Arbor , Michigan 49109-1040 , United States
| | - Yin Song
- Department of Physics , University of Michigan , Ann Arbor , Michigan 49109-1040 , United States
| | - Veronica R Policht
- Department of Physics , University of Michigan , Ann Arbor , Michigan 49109-1040 , United States
| | - Philip D Laible
- Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - David F Bocian
- Department of Chemistry , University of California , Riverside , California 92521 , United States
| | - Dewey Holten
- Department of Chemistry , Washington University , St. Louis , Missouri 63130 , United States
| | - Christine Kirmaier
- Department of Chemistry , Washington University , St. Louis , Missouri 63130 , United States
| | - Jennifer P Ogilvie
- Department of Physics , University of Michigan , Ann Arbor , Michigan 49109-1040 , United States
| |
Collapse
|
20
|
Gaynor JD, Khalil M. Signatures of vibronic coupling in two-dimensional electronic-vibrational and vibrational-electronic spectroscopies. J Chem Phys 2018; 147:094202. [PMID: 28886647 DOI: 10.1063/1.4991745] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Two-Dimensional Electronic-Vibrational (2D EV) spectroscopy and Two-Dimensional Vibrational-Electronic (2D VE) spectroscopy are new coherent four-wave mixing spectroscopies that utilize both electronically resonant and vibrationally resonant field-matter interactions to elucidate couplings between electronic and vibrational degrees of freedom. A system Hamiltonian is developed here to lay a foundation for interpreting the 2D EV and 2D VE signals that arise from a vibronically coupled molecular system in the condensed phase. A molecular system consisting of one anharmonic vibration and two electronic states is modeled. Equilibrium displacement of the vibrational coordinate and vibrational frequency shifts upon excitation to the first electronic excited state are included in our Hamiltonian through linear and quadratic vibronic coupling terms. We explicitly consider the nuclear dependence of the electronic transition dipole moment and demonstrate that these spectroscopies are sensitive to non-Condon effects. A series of simulations of 2D EV and 2D VE spectra obtained by varying parameters of the system, system-bath, and interaction Hamiltonians demonstrate that one of the following conditions must be met to observe signals: (1) non-zero linear and/or quadratic vibronic coupling in the electronic excited state, (2) vibrational-coordinate dependence of the electronic transition dipole moment, or (3) electronic-state-dependent vibrational dephasing dynamics. We explore how these vibronic interactions are manifested in the positions, amplitudes, and line shapes of the peaks in 2D EV and 2D VE spectroscopies.
Collapse
Affiliation(s)
- James D Gaynor
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, Washington 98195, USA
| | - Munira Khalil
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, Washington 98195, USA
| |
Collapse
|
21
|
Ross M, Andersen A, Fox ZW, Zhang Y, Hong K, Lee JH, Cordones A, March AM, Doumy G, Southworth SH, Marcus MA, Schoenlein RW, Mukamel S, Govind N, Khalil M. Comprehensive Experimental and Computational Spectroscopic Study of Hexacyanoferrate Complexes in Water: From Infrared to X-ray Wavelengths. J Phys Chem B 2018; 122:5075-5086. [PMID: 29613798 DOI: 10.1021/acs.jpcb.7b12532] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a joint experimental and computational study of the hexacyanoferrate aqueous complexes at equilibrium in the 250 meV to 7.15 keV regime. The experiments and the computations include the vibrational spectroscopy of the cyanide ligands, the valence electronic absorption spectra, and Fe 1s core hole spectra using element-specific-resonant X-ray absorption and emission techniques. Density functional theory-based quantum mechanics/molecular mechanics molecular dynamics simulations are performed to generate explicit solute-solvent configurations, which serve as inputs for the spectroscopy calculations of the experiments spanning the IR to X-ray wavelengths. The spectroscopy simulations are performed at the same level of theory across this large energy window, which allows for a systematic comparison of the effects of explicit solute-solvent interactions in the vibrational, valence electronic, and core-level spectra of hexacyanoferrate complexes in water. Although the spectroscopy of hexacyanoferrate complexes in solution has been the subject of several studies, most of the previous works have focused on a narrow energy window and have not accounted for explicit solute-solvent interactions in their spectroscopy simulations. In this work, we focus our analysis on identifying how the local solvation environment around the hexacyanoferrate complexes influences the intensity and line shape of specific spectroscopic features in the UV/vis, X-ray absorption, and valence-to-core X-ray emission spectra. The identification of these features and their relationship to solute-solvent interactions is important because hexacyanoferrate complexes serve as model systems for understanding the photochemistry and photophysics of a large class of Fe(II) and Fe(III) complexes in solution.
Collapse
Affiliation(s)
- Matthew Ross
- Department of Chemistry , University of Washington , Seattle , Washington 98115 , United States
| | - Amity Andersen
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Zachary W Fox
- Department of Chemistry , University of Washington , Seattle , Washington 98115 , United States
| | - Yu Zhang
- Department of Chemistry, Physics and Astronomy , University of California , Irvine , California 92697 , United States
| | | | | | | | - Anne Marie March
- Chemical Sciences and Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Gilles Doumy
- Chemical Sciences and Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Stephen H Southworth
- Chemical Sciences and Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | | | | | - Shaul Mukamel
- Department of Chemistry, Physics and Astronomy , University of California , Irvine , California 92697 , United States
| | - Niranjan Govind
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Munira Khalil
- Department of Chemistry , University of Washington , Seattle , Washington 98115 , United States
| |
Collapse
|
22
|
Shirai H, Kumaki F, Nomura Y, Fuji T. High-harmonic generation in solids driven by subcycle midinfrared pulses from two-color filamentation. OPTICS LETTERS 2018; 43:2094-2097. [PMID: 29714754 DOI: 10.1364/ol.43.002094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Carrier-envelope-phase (CEP) controlled subcycle midinfrared pulses generated through two-color filamentation have been applied for high-harmonic (HH) generation in a crystalline silicon (Si) membrane. The HH spectrum reaches the ultraviolet region (<300 nm), beyond the direct band gap of Si. The shape of the HH spectrum strongly depends on the CEP. The complex CEP dependence can be explained with the interference between different orders of the harmonics. The complete waveform characterization of the subcycle driver pulse using frequency-resolved optical gating capable of CEP determination plays a crucial role for investigation of the subcycle dynamics.
Collapse
|
23
|
Zhang Z, Huerta-Viga A, Tan HS. Two-dimensional electronic-Raman spectroscopy. OPTICS LETTERS 2018; 43:939-942. [PMID: 29444032 DOI: 10.1364/ol.43.000939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
We present a new technique, two-dimensional electronic-Raman spectroscopy (2DER), which combines femtosecond stimulated Raman spectroscopy and a pulse-shaper-assisted 2D spectroscopic scheme for the actinic pump. The 2DER spectrum presents the initial actinic excitation wavelength with nanometer spectral resolution in the first axis and the detected stimulated Raman spectra in the second axis. We measured the correlation of the electronic and vibrational states in the photosynthetic accessory pigment β-carotene and reveal its photoexcited state manifold.
Collapse
|
24
|
Petti MK, Lomont JP, Maj M, Zanni MT. Two-Dimensional Spectroscopy Is Being Used to Address Core Scientific Questions in Biology and Materials Science. J Phys Chem B 2018; 122:1771-1780. [PMID: 29346730 DOI: 10.1021/acs.jpcb.7b11370] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two-dimensional spectroscopy is a powerful tool for extracting structural and dynamic information from a wide range of chemical systems. We provide a brief overview of the ways in which two-dimensional visible and infrared spectroscopies are being applied to elucidate fundamental details of important processes in biological and materials science. The topics covered include amyloid proteins, photosynthetic complexes, ion channels, photovoltaics, batteries, as well as a variety of promising new methods in two-dimensional spectroscopy.
Collapse
Affiliation(s)
- Megan K Petti
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Justin P Lomont
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Michał Maj
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
25
|
Oliver TAA. Recent advances in multidimensional ultrafast spectroscopy. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171425. [PMID: 29410844 PMCID: PMC5792921 DOI: 10.1098/rsos.171425] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/20/2017] [Indexed: 05/14/2023]
Abstract
Multidimensional ultrafast spectroscopies are one of the premier tools to investigate condensed phase dynamics of biological, chemical and functional nanomaterial systems. As they reach maturity, the variety of frequency domains that can be explored has vastly increased, with experimental techniques capable of correlating excitation and emission frequencies from the terahertz through to the ultraviolet. Some of the most recent innovations also include extreme cross-peak spectroscopies that directly correlate the dynamics of electronic and vibrational states. This review article summarizes the key technological advances that have permitted these recent advances, and the insights gained from new multidimensional spectroscopic probes.
Collapse
Affiliation(s)
- Thomas A. A. Oliver
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
26
|
Kowalewski M, Fingerhut BP, Dorfman KE, Bennett K, Mukamel S. Simulating Coherent Multidimensional Spectroscopy of Nonadiabatic Molecular Processes: From the Infrared to the X-ray Regime. Chem Rev 2017; 117:12165-12226. [DOI: 10.1021/acs.chemrev.7b00081] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Markus Kowalewski
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Benjamin P. Fingerhut
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| | - Konstantin E. Dorfman
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Kochise Bennett
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
27
|
Zhu W, Wang R, Zhang C, Wang G, Liu Y, Zhao W, Dai X, Wang X, Cerullo G, Cundiff S, Xiao M. Broadband two-dimensional electronic spectroscopy in an actively phase stabilized pump-probe configuration. OPTICS EXPRESS 2017; 25:21115-21126. [PMID: 29041519 DOI: 10.1364/oe.25.021115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/15/2017] [Indexed: 05/27/2023]
Abstract
We introduce a novel configuration for two-dimensional electronic spectroscopy (2DES) that combines the partially collinear pump-probe geometry with active phase locking. We demonstrate the method on a solution sample of CdSe/ZnS nanocrystals by employing two non-collinear optical parametric amplifiers as the pump and probe sources. The two collinear pump pulse replicas are created using a Mach-Zehnder interferometer phase stabilized by active feedback electronics. Taking the advantage of separated paths of the two pump pulses in the interferometer, we improve the signal-to-noise ratio with double modulation of the individual pump beams. In addition, a quartz wedge pair manipulates the phase difference between the two pump pulses, enabling the recovery of the rephasing and non-rephasing signals. Our setup integrates many advantages of available 2DES techniques with robust phase stabilization, ultrafast time resolution, two-color operation, long delay scan, individual polarization manipulation and the ease of implementation.
Collapse
|
28
|
Development and Application of Sub-Cycle Mid-Infrared Source Based on Laser Filamentation. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7080857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper is a perspective article which summarizes the development and application of sub-cycle mid-infrared (MIR) pulses generated through a laser filament. The generation scheme was published in Applied Sciences in 2013. The spectrum of the MIR pulse spreads from 2 to 50 μ m, corresponding to multiple octaves, and the pulse duration is 6.9 fs, namely, 0.63 times the period of the carrier wavelength, 3.3 μ m. The extremely broadband and highly coherent light source has potential for various applications. The light source has been applied for advanced ultrafast pump–probe spectroscopy by several research groups. As another application example, single-shot detection of absorption spectra in the entire MIR range by the use of chirped-pulse upconversion with a gas medium has been demonstrated. Although the measurement of the field oscillation of the sub-cycle MIR pulse was not trivial, the waveform of the sub-cycle pulse has been completely characterized with a newly developed method, frequency-resolved optical gating capable of carrier-envelope phase determination. A particular behavior of the spectral phase of the sub-cycle pulse has been revealed through the waveform characterization.
Collapse
|
29
|
Wang J. Ultrafast two-dimensional infrared spectroscopy for molecular structures and dynamics with expanding wavelength range and increasing sensitivities: from experimental and computational perspectives. INT REV PHYS CHEM 2017. [DOI: 10.1080/0144235x.2017.1321856] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, P.R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
30
|
Petrone A, Williams-Young DB, Lingerfelt DB, Li X. Ab Initio Excited-State Transient Raman Analysis. J Phys Chem A 2017; 121:3958-3965. [DOI: 10.1021/acs.jpca.7b02905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alessio Petrone
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | - David B. Lingerfelt
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
31
|
Petrone A, Lingerfelt DB, Williams-Young DB, Li X. Ab Initio Transient Vibrational Spectral Analysis. J Phys Chem Lett 2016; 7:4501-4508. [PMID: 27788583 DOI: 10.1021/acs.jpclett.6b02292] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Pump probe spectroscopy techniques have enabled the direct observation of a variety of transient molecular species in both ground and excited electronic states. Time-resolved vibrational spectroscopy is becoming an indispensable tool for investigating photoinduced nuclear dynamics of chemical systems of all kinds. On the other hand, a complete picture of the chemical dynamics encoded in these spectra cannot be achieved without a full temporal description of the structural relaxation, including the explicit time-dependence of vibrational coordinates that are substantially displaced from equilibrium by electronic excitation. Here we present a transient vibrational analysis protocol combining ab initio direct molecular dynamics and time-integrated normal modes introduced in this work, relying on the recent development of analytic time-dependent density functional theory (TDDFT) second derivatives for excited states. Prototypical molecules will be used as test cases, showing the evolution of the vibrational signatures that follow electronic excitation. This protocol provides a direct route to assigning the vibrations implicated in the (photo)dynamics of several (photoactive) systems.
Collapse
Affiliation(s)
- Alessio Petrone
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - David B Lingerfelt
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - David B Williams-Young
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| |
Collapse
|