1
|
Peng T, Ke Z, Wu H, He J, Sun Y, Zhang S, Gao Q, Shao M, Zhang S, Zhong Z, Lu F, Zhou J. Plug-and-play DPC-based quantitative phase microscope. BIOMEDICAL OPTICS EXPRESS 2024; 15:1785-1797. [PMID: 38495708 PMCID: PMC10942692 DOI: 10.1364/boe.514887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 03/19/2024]
Abstract
Point-of-care testing (POCT) plays an increasingly important role in biomedical research and health care. Quantitative phase microscopes (QPMs) with good contrast, no invasion, no labeling, high speed and automation could be effectively applied for POCT. However, most QPMs are fixed on the optical platform with bulky size, lack of timeliness, which remained challenging in POCT solutions. In this paper, we proposed a plug-and-play QPM with multimode imaging based on the quantitative differential phase contrast (qDPC) method. The system employs a programmable LED array as the light source and uses the GPU to accelerate the calculation, which can realize multi-contrast imaging with six modes. Accurate phase measurement and real-time phase imaging are implemented by the proposed qDPC algorithms for quantitative phase targets and biomedical samples. A 3D electric control platform is designed for mechanical control of field of view and focusing without manual operations. The experimental results verify the robustness and high performance of the setup. Even a rookie could finish the POCT scheme for biomedical applications at the scene using the QPM with a compact size of 140 × 165 × 250 mm3.
Collapse
Affiliation(s)
- Tao Peng
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Zeyu Ke
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Hao Wu
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Jun He
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Yue Sun
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Shuhe Zhang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Qian Gao
- College of Life Science, Anhui Medical University, Hefei 230032, China
| | - Meng Shao
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shengzhao Zhang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Zhensheng Zhong
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - FengYa Lu
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Jinhua Zhou
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
2
|
Kim J, Song S, Kim H, Kim B, Park M, Oh SJ, Kim D, Cense B, Huh YM, Lee JY, Joo C. Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor. Sci Rep 2023; 13:19263. [PMID: 37935759 PMCID: PMC10630341 DOI: 10.1038/s41598-023-46496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023] Open
Abstract
Birefringence, an inherent characteristic of optically anisotropic materials, is widely utilized in various imaging applications ranging from material characterizations to clinical diagnosis. Polarized light microscopy enables high-resolution, high-contrast imaging of optically anisotropic specimens, but it is associated with mechanical rotations of polarizer/analyzer and relatively complex optical designs. Here, we present a form of lens-less polarization-sensitive microscopy capable of complex and birefringence imaging of transparent objects without an optical lens and any moving parts. Our method exploits an optical mask-modulated polarization image sensor and single-input-state LED illumination design to obtain complex and birefringence images of the object via ptychographic phase retrieval. Using a camera with a pixel size of 3.45 μm, the method achieves birefringence imaging with a half-pitch resolution of 2.46 μm over a 59.74 mm2 field-of-view, which corresponds to a space-bandwidth product of 9.9 megapixels. We demonstrate the high-resolution, large-area, phase and birefringence imaging capability of our method by presenting the phase and birefringence images of various anisotropic objects, including a monosodium urate crystal, and excised mouse eye and heart tissues.
Collapse
Affiliation(s)
- Jeongsoo Kim
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seungri Song
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hongseong Kim
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Bora Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Mirae Park
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seung Jae Oh
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
- YUHS-KRIBB Medical Convergence Research Institute, Seoul, 03722, Republic of Korea
| | - Daesuk Kim
- Department of Mechanical System Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Barry Cense
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, WA, 6009, Australia
| | - Yong-Min Huh
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
- YUHS-KRIBB Medical Convergence Research Institute, Seoul, 03722, Republic of Korea
- Department of Biochemistry and Molecular Biology, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Joo Yong Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Chulmin Joo
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
3
|
Seong B, Kim I, Moon T, Ranathunga M, Kim D, Joo C. Untrained deep learning-based differential phase-contrast microscopy. OPTICS LETTERS 2023; 48:3607-3610. [PMID: 37390192 DOI: 10.1364/ol.493391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/31/2023] [Indexed: 07/02/2023]
Abstract
Quantitative differential phase-contrast (DPC) microscopy produces phase images of transparent objects based on a number of intensity images. To reconstruct the phase, in DPC microscopy, a linearized model for weakly scattering objects is considered; this limits the range of objects to be imaged, and requires additional measurements and complicated algorithms to correct for system aberrations. Here, we present a self-calibrated DPC microscope using an untrained neural network (UNN), which incorporates the nonlinear image formation model. Our method alleviates the restrictions on the object to be imaged and simultaneously reconstructs the complex object information and aberrations, without any training dataset. We demonstrate the viability of UNN-DPC microscopy through both numerical simulations and LED microscope-based experiments.
Collapse
|
4
|
Song S, Kim J, Moon T, Seong B, Kim W, Yoo CH, Choi JK, Joo C. Polarization-sensitive intensity diffraction tomography. LIGHT, SCIENCE & APPLICATIONS 2023; 12:124. [PMID: 37202421 PMCID: PMC10195819 DOI: 10.1038/s41377-023-01151-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023]
Abstract
Optical anisotropy, which is an intrinsic property of many materials, originates from the structural arrangement of molecular structures, and to date, various polarization-sensitive imaging (PSI) methods have been developed to investigate the nature of anisotropic materials. In particular, the recently developed tomographic PSI technologies enable the investigation of anisotropic materials through volumetric mappings of the anisotropy distribution of these materials. However, these reported methods mostly operate on a single scattering model, and are thus not suitable for three-dimensional (3D) PSI imaging of multiple scattering samples. Here, we present a novel reference-free 3D polarization-sensitive computational imaging technique-polarization-sensitive intensity diffraction tomography (PS-IDT)-that enables the reconstruction of 3D anisotropy distribution of both weakly and multiple scattering specimens from multiple intensity-only measurements. A 3D anisotropic object is illuminated by circularly polarized plane waves at various illumination angles to encode the isotropic and anisotropic structural information into 2D intensity information. These information are then recorded separately through two orthogonal analyzer states, and a 3D Jones matrix is iteratively reconstructed based on the vectorial multi-slice beam propagation model and gradient descent method. We demonstrate the 3D anisotropy imaging capabilities of PS-IDT by presenting 3D anisotropy maps of various samples, including potato starch granules and tardigrade.
Collapse
Affiliation(s)
- Seungri Song
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jeongsoo Kim
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Taegyun Moon
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Baekcheon Seong
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Woovin Kim
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Chang-Hyuk Yoo
- Small Machines Company, Ltd., Seoul, 04808, Republic of Korea
| | - Jun-Kyu Choi
- Small Machines Company, Ltd., Seoul, 04808, Republic of Korea
| | - Chulmin Joo
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|