1
|
Wang B, Wang S, Wang Z, Yang X. Improved measurement of the glue layer in composite material by using sparse deconvolution. OPTICS LETTERS 2023; 48:4605-4608. [PMID: 37656566 DOI: 10.1364/ol.494491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/04/2023] [Indexed: 09/03/2023]
Abstract
Due to its powerful penetration, and greater spatial resolution than microwaves and ultrasonic waves, the terahertz technique stands out as being particularly useful in identifying thin glue layers in multilayered materials. However, the arrival times of echoes are challenging to pinpoint from the experimental data because of the temporal form of the incident pulse and the system noise. Here, two terahertz signal sparse deconvolution algorithms are studied to more accurately identify the times of the echoes. Using the circulant structure of the convolution matrix, the method's computation time can be lowered to hundreds of milliseconds. In addition, a method based on group velocity dispersion is investigated to reduce the impact of time-varying pulses with minimal computational expense. The presented algorithms have the potential to be employed in real-time inspection in production lines due to their quick speed and high confidence.
Collapse
|
2
|
Dong J, Ribeiro A, Vacheret A, Locquet A, Citrin DS. Revealing inscriptions obscured by time on an early-modern lead funerary cross using terahertz multispectral imaging. Sci Rep 2022; 12:3429. [PMID: 35236894 PMCID: PMC8891279 DOI: 10.1038/s41598-022-06982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
The presence of a corrosion layer on lead art and archæological objects can severely impede the interpretation of inscriptions, thus hampering our overall understanding of the object and its context. While the oxidation of lead that dominates corrosion may be chemically reversible via reduction, potentially providing some access to inscriptions otherwise obscured by time, corrosion damage is overall neither entirely reversible nor is the reduction process in all cases easy or feasible to carry out. In this study, by taking advantage of the unique penetration ability of terahertz radiation and the abundant frequency bands covered by a single-cycle terahertz pulse, we perform nondestructive terahertz multispectral imaging to look under the corrosion on a sixteenth century lead funerary cross (croix d’absolution) from Remiremont in Lorraine, France. The multispectral images obtained from various terahertz frequency bands are fed into a judiciously designed post-processing chain for image restoration and enhancement, thus allowing us for the first time to read obscured inscriptions that might have otherwise been lost. Our approach, which brings together in a new way the THz properties of the constituent materials and advanced signal- and image-processing techniques, opens up new perspectives for multi-resolution analysis at terahertz frequencies as a technique in archæometry and will ultimately provide unprecedented information for digital acquisition and documentation, character extraction, classification, and recognition in archæological studies.
Collapse
Affiliation(s)
- Junliang Dong
- Georgia Tech-CNRS IRL 2958, Georgia Tech Lorraine, 2 Rue Marconi, Metz, 57070, France.,School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332-0250, USA.,Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada
| | - Ana Ribeiro
- Laboratoire d'Archéologie des Métaux, 1 Avenue du Général de Gaulle, 54140, Jarville-la-Malgrange, France
| | - Aurélien Vacheret
- Musée Charles de Bruyères, 70 rue Charles de Gaulle, 88200, Remiremont, France
| | - Alexandre Locquet
- Georgia Tech-CNRS IRL 2958, Georgia Tech Lorraine, 2 Rue Marconi, Metz, 57070, France.,School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332-0250, USA
| | - D S Citrin
- Georgia Tech-CNRS IRL 2958, Georgia Tech Lorraine, 2 Rue Marconi, Metz, 57070, France. .,School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332-0250, USA.
| |
Collapse
|
3
|
Dong J, Breitenborn H, Piccoli R, Besteiro LV, You P, Caraffini D, Wang ZM, Govorov AO, Naccache R, Vetrone F, Razzari L, Morandotti R. Terahertz three-dimensional monitoring of nanoparticle-assisted laser tissue soldering. BIOMEDICAL OPTICS EXPRESS 2020; 11:2254-2267. [PMID: 32341881 PMCID: PMC7173899 DOI: 10.1364/boe.389561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 05/27/2023]
Abstract
In view of minimally-invasive clinical interventions, laser tissue soldering assisted by plasmonic nanoparticles is emerging as an appealing concept in surgical medicine, holding the promise of surgeries without sutures. Rigorous monitoring of the plasmonically-heated solder and the underlying tissue is crucial for optimizing the soldering bonding strength and minimizing the photothermal damage. To this end, we propose a non-invasive, non-contact, and non-ionizing modality for monitoring nanoparticle-assisted laser-tissue interaction and visualizing the localized photothermal damage, by taking advantage of the unique sensitivity of terahertz radiation to the hydration level of biological tissue. We demonstrate that terahertz radiation can be employed as a versatile tool to reveal the thermally-affected evolution in tissue, and to quantitatively characterize the photothermal damage induced by nanoparticle-assisted laser tissue soldering in three dimensions. Our approach can be easily extended and applied across a broad range of clinical applications involving laser-tissue interaction, such as laser ablation and photothermal therapies.
Collapse
Affiliation(s)
- Junliang Dong
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications (EMT), Varennes, QC J3X 1S2, Canada
| | - Holger Breitenborn
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications (EMT), Varennes, QC J3X 1S2, Canada
| | - Riccardo Piccoli
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications (EMT), Varennes, QC J3X 1S2, Canada
| | - Lucas V Besteiro
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications (EMT), Varennes, QC J3X 1S2, Canada
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Pei You
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications (EMT), Varennes, QC J3X 1S2, Canada
| | - Diego Caraffini
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications (EMT), Varennes, QC J3X 1S2, Canada
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Alexander O Govorov
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA
| | - Rafik Naccache
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada
- Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Fiorenzo Vetrone
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications (EMT), Varennes, QC J3X 1S2, Canada
| | - Luca Razzari
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications (EMT), Varennes, QC J3X 1S2, Canada
| | - Roberto Morandotti
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications (EMT), Varennes, QC J3X 1S2, Canada
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| |
Collapse
|
4
|
Spurious Absorption Frequency Appearance Due to Frequency Conversion Processes in Pulsed THz TDS Problems. SENSORS 2020; 20:s20071859. [PMID: 32230860 PMCID: PMC7181264 DOI: 10.3390/s20071859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/05/2020] [Accepted: 03/24/2020] [Indexed: 01/19/2023]
Abstract
The appearance of the spurious absorption frequencies caused by the frequency conversion process at the broadband THz pulse propagation in a medium is theoretically and experimentally discussed. The spurious absorption frequencies appear due to both the frequency doubling and generation of waves with sum or difference frequency. Such generation might occur because of the nonlinear response of a medium or its non-instantaneous response. This phenomenon is confirmed by the results of a few physical experiments provided with the THz CW signals and broadband THz pulses that are transmitted through the ordinary or dangerous substances. A high correlation between the time-dependent spectral intensities for the basic frequency and generated frequencies is demonstrated while using the computer simulation results. This feature of the frequency conversion might be used for the detection and identification of a substance.
Collapse
|
5
|
Guo Y, Ling F, Li H, Zhou S, Ji J, Yao J. Super-resolution reconstruction for terahertz imaging based on sub-pixel gradient field transform. APPLIED OPTICS 2019; 58:6244-6250. [PMID: 31503766 DOI: 10.1364/ao.58.006244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
This paper presents the gradient-guided image super-resolution reconstruction for terahertz imaging to improve the image quality, taking advantage of super-resolution reconstruction based on adaptive super-pixel gradient field transform. Moreover, spatial entropy-based enhancement and a bilateral filter are introduced to ensure better performance of the reconstruction. Furthermore, we compare the performance of reconstruction operated on terahertz images with frequencies of 0.1 THz, 0.3 THz, 0.5 THz, and 0.7 THz. Experimental results demonstrate that this method successfully improves the image quality and reconstruct high-resolution images from low-resolution images with the peak signal-to-noise ratio and structural similarity index improved. In addition, the signal frequency and intensity are demonstrated to affect the performance of reconstruction.
Collapse
|
6
|
Wu D, Li R, Liu Y, Yu Z, Yu L, Chen L, Liu C, Ma R, Ye H. Ultra-narrow Band Perfect Absorber and Its Application as Plasmonic Sensor in the Visible Region. NANOSCALE RESEARCH LETTERS 2017; 12:427. [PMID: 28655219 PMCID: PMC5484657 DOI: 10.1186/s11671-017-2203-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/18/2017] [Indexed: 05/25/2023]
Abstract
We propose and numerically investigate a perfect ultra-narrowband absorber with an absorption bandwidth of only 1.82 nm and an absorption efficiency exceeding 95% in the visible region. We demonstrate that the perfect ultra-narrowband absorption is ascribed to the coupling effect induced by localized surface plasmon resonance. The influence of structural dimensions on the optical performance is also investigated, and the optimal structure is obtained with the extremely low reflectivity (0.001) of the resonance dip. The perfect absorber can be operated as a refractive index sensor with a sensitivity of around 425 nm/RIU and the figure of merit (FOM) reaching 233.5, which greatly improves the accuracy of the plasmonic sensors in visible region. Moreover, the corresponding figure of merit (FOM*) for this sensor is also calculated to describe the performance of the intensity change detection at a fixed frequency, which can be up to 1.4 × 105. Due to the high sensing performance, the metamaterial structure has great potential in the biological binding, integrated photodetectors, chemical applications and so on.
Collapse
Affiliation(s)
- Dong Wu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Ruifang Li
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Yumin Liu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Zhongyuan Yu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Li Yu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
- School of Science, Beijing University of Post and Telecommunication, Beijing, 100876 China
| | - Lei Chen
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Chang Liu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Rui Ma
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Han Ye
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| |
Collapse
|
7
|
Dong J, Locquet A, Melis M, Citrin DS. Global mapping of stratigraphy of an old-master painting using sparsity-based terahertz reflectometry. Sci Rep 2017; 7:15098. [PMID: 29118333 PMCID: PMC5678175 DOI: 10.1038/s41598-017-15069-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/09/2017] [Indexed: 12/02/2022] Open
Abstract
The process by which art paintings are produced typically involves the successive applications of preparatory and paint layers to a canvas or other support; however, there is an absence of nondestructive modalities to provide a global mapping of the stratigraphy, information that is crucial for evaluation of its authenticity and attribution, for insights into historical or artist-specific techniques, as well as for conservation. We demonstrate sparsity-based terahertz reflectometry can be applied to extract a detailed 3D mapping of the layer structure of the 17th century easel painting Madonna in Preghiera by the workshop of Giovanni Battista Salvi da Sassoferrato, in which the structure of the canvas support, the ground, imprimatura, underpainting, pictorial, and varnish layers are identified quantitatively. In addition, a hitherto unidentified restoration of the varnish has been found. Our approach unlocks the full promise of terahertz reflectometry to provide a global and detailed account of an easel painting’s stratigraphy by exploiting the sparse deconvolution, without which terahertz reflectometry in the past has only provided a meager tool for the characterization of paintings with paint-layer thicknesses smaller than 50 μm. The proposed modality can also be employed across a broad range of applications in nondestructive testing and biomedical imaging.
Collapse
Affiliation(s)
- Junliang Dong
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0250, USA. .,UMI 2958 Georgia Tech-CNRS, Georgia Tech Lorraine, 2 Rue Marconi, Metz, 57070, France.
| | - Alexandre Locquet
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0250, USA.,UMI 2958 Georgia Tech-CNRS, Georgia Tech Lorraine, 2 Rue Marconi, Metz, 57070, France
| | | | - D S Citrin
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0250, USA. .,UMI 2958 Georgia Tech-CNRS, Georgia Tech Lorraine, 2 Rue Marconi, Metz, 57070, France.
| |
Collapse
|