1
|
Miao Y, Wu L, Qiang J, Qi J, Li Y, Li R, Kong X, Zhang Q. The application of Raman spectroscopy for the diagnosis and monitoring of lung tumors. Front Bioeng Biotechnol 2024; 12:1385552. [PMID: 38699434 PMCID: PMC11063270 DOI: 10.3389/fbioe.2024.1385552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Raman spectroscopy is an optical technique that uses inelastic light scattering in response to vibrating molecules to produce chemical fingerprints of tissues, cells, and biofluids. Raman spectroscopy strategies produce high levels of chemical specificity without requiring extensive sample preparation, allowing for the use of advanced optical tools such as microscopes, fiber optics, and lasers that operate in the visible and near-infrared spectral range, making them increasingly suitable for a wide range of medical diagnostic applications. Metal nanoparticles and nonlinear optical effects can improve Raman signals, and optimized fiber optic Raman probes can make real-time, in vivo, single-point observations. Furthermore, diagnostic speed and spatial accuracy can be improved through the multimodal integration of Raman measurements and other technologies. Recent studies have significantly contributed to the improvement of diagnostic speed and accuracy, making them suitable for clinical application. Lung cancer is a prevalent type of respiratory malignancy. However, the use of computed tomography for detection and screening frequently reveals numerous smaller lung nodules, which makes the diagnostic process more challenging from a clinical perspective. While the majority of small nodules detected are benign, there are currently no direct methods for identifying which nodules represent very early-stage lung cancer. Positron emission tomography and other auxiliary diagnostic methods for non-surgical biopsy samples from these small nodules yield low detection rates, which might result in significant expenses and the possibility of complications for patients. While certain subsets of patients can undergo curative treatment, other individuals have a less favorable prognosis and need alternative therapeutic interventions. With the emergence of new methods for treating cancer, such as immunotherapies, which can potentially extend patient survival and even lead to a complete cure in certain instances, it is crucial to determine the most suitable biomarkers and metrics for assessing the effectiveness of these novel compounds. This will ensure that significant treatment outcomes are accurately measured. This review provides a comprehensive overview of the prospects of Raman spectroscopy and its applications in the diagnosis and analysis of lung tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| |
Collapse
|
2
|
Klufts M, Jiménez AM, Lotz S, Bashir MA, Pfeiffer T, Mlynek A, Wieser W, Chamorovskiy A, Bradu A, Podoleanu A, Huber R. 828 kHz retinal imaging with an 840 nm Fourier domain mode locked laser. BIOMEDICAL OPTICS EXPRESS 2023; 14:6493-6508. [PMID: 38420314 PMCID: PMC10898573 DOI: 10.1364/boe.504302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 03/02/2024]
Abstract
This paper presents a Fourier domain mode locked (FDML) laser centered around 840 nm. It features a bidirectional sweep repetition rate of 828 kHz and a spectral bandwidth of 40 nm. An axial resolution of ∼9.9 µm in water and a 1.4 cm sensitivity roll-off are achieved. Utilizing a complex master-slave (CMS) recalibration method and due to a sufficiently high sensitivity of 84.6 dB, retinal layers of the human eye in-vivo can be resolved during optical coherence tomography (OCT) examination. The developed FDML laser enables acquisition rates of 3D-volumes with a size of 200 × 100 × 256 voxels in under 100 milliseconds. Detailed information on the FDML implementation, its challenging design tasks, and OCT images obtained with the laser are presented in this paper.
Collapse
Affiliation(s)
- Marie Klufts
- Institute of Biomedical Optics, University of Lübeck, Lübeck 23562, Germany
| | | | - Simon Lotz
- Institute of Biomedical Optics, University of Lübeck, Lübeck 23562, Germany
| | | | | | | | | | | | - Adrian Bradu
- School of Physical Sciences, University of Kent, Canterbury CT2 7NH, United Kingdom
| | - Adrian Podoleanu
- School of Physical Sciences, University of Kent, Canterbury CT2 7NH, United Kingdom
| | - Robert Huber
- Institute of Biomedical Optics, University of Lübeck, Lübeck 23562, Germany
| |
Collapse
|
3
|
Lamminger P, Hakert H, Lotz S, Kolb JP, Kutscher T, Karpf S, Huber R. Four-wave mixing seeded by a rapid wavelength-sweeping FDML laser for nonlinear imaging at 900 nm and 1300 nm. OPTICS LETTERS 2023; 48:3713-3716. [PMID: 37450732 DOI: 10.1364/ol.488181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023]
Abstract
Four-wave mixing (FWM) enables the generation and amplification of light in spectral regions where suitable fiber gain media are unavailable. The 1300 nm and 900 nm regions are of especially high interest for time-encoded (TICO) stimulated Raman scattering microscopy and spectro-temporal laser imaging by diffracted excitation (SLIDE) two-photon microscopy. We present a new, to the best of our knowledge, FWM setup where we shift the power of a home-built fully fiber-based master oscillator power amplifier (MOPA) at 1064 nm to the 1300-nm region of a rapidly wavelength-sweeping Fourier domain mode-locked (FDML) laser in a photonic crystal fiber (PCF) creating pulses in the 900-nm region. The resulting 900-nm light can be wavelength swept over 54 nm and has up to 2.5 kW (0.2 µJ) peak power and a narrow instantaneous spectral linewidth of 70 pm. The arbitrary pulse patterns of the MOPA and the fast wavelength tuning of the FDML laser (419 kHz) allow it to rapidly tune the FWM light enabling new and faster TICO-Raman microscopy, SLIDE imaging, and other applications.
Collapse
|
4
|
Gottschall T, Meyer-Zedler T, Eibl M, Pfeiffer T, Hakert H, Schmitt M, Huber R, Tünnermann A, Limpert J, Popp J. Ultrafast Spectral Tuning of a Fiber Laser for Time-Encoded Multiplex Coherent Raman Scattering Microscopy. J Phys Chem B 2023; 127:2375-2380. [PMID: 36917762 DOI: 10.1021/acs.jpcb.2c09115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Coherent Raman scattering microscopy utilizing bioorthogonal tagging approaches like isotope or alkyne labeling allows for a targeted monitoring of spatial distribution and dynamics of small molecules of interest in cells, tissues, and other complex biological matrices. To fully exploit this approach in terms of real-time monitoring of several Raman tags, e.g., to study drug uptake dynamics, extremely fast tunable lasers are needed. Here, we present a laser concept without moving parts and fully electronically controlled for the quasi-simultaneous acquisition of coherent anti-Stokes Raman scattering images at multiple Raman resonances. The laser concept is based on the combination of a low noise and spectrally narrow Fourier domain mode-locked laser seeding a compact four wave mixing-based high-power fiber-based optical parametric amplifier.
Collapse
Affiliation(s)
- Thomas Gottschall
- Friedrich-Schiller-Universität Jena, Institute of Applied Physics and Abbe Center of Photonics, Albert-Einstein-Str. 6, 07745 Jena, Germany
| | - Tobias Meyer-Zedler
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Matthias Eibl
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Tom Pfeiffer
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Hubertus Hakert
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Robert Huber
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Andreas Tünnermann
- Friedrich-Schiller-Universität Jena, Institute of Applied Physics and Abbe Center of Photonics, Albert-Einstein-Str. 6, 07745 Jena, Germany
- Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Str. 7, 07745 Jena, Germany
| | - Jens Limpert
- Friedrich-Schiller-Universität Jena, Institute of Applied Physics and Abbe Center of Photonics, Albert-Einstein-Str. 6, 07745 Jena, Germany
- Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Str. 7, 07745 Jena, Germany
| | - Juergen Popp
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
| |
Collapse
|
5
|
Fitzgerald C, Dogan S, Bou-Nassif R, Mclean T, Woods R, Cracchiolo JR, Ganly I, Tabar V, Cohen MA. Stimulated Raman Histology for Rapid Intra-Operative Diagnosis of Sinonasal and Skull Base Tumors. Laryngoscope 2022; 132:2142-2147. [PMID: 35634892 PMCID: PMC10291728 DOI: 10.1002/lary.30233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/07/2022] [Accepted: 05/06/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Intra-operative stimulated Raman histology (SRH) is a novel technology that uses laser spectroscopy and color-matching algorithms to create images similar to the formalin-fixed paraffin-embedded (FFPE) section. We aim to assess the accuracy of SRH in a novel range of sinonasal and skull base tumors. METHODS Select patients undergoing sinonasal and skull base surgery using the Invenio Imaging™ Nio™ Laser Imaging SRH system between June 2020 and September 2021 were assessed. The SRH images were reviewed for pathologic features similar to frozen section (FS) and FFPE. Time taken for results and diagnostic concordance was assessed. RESULTS Sixty-seven SRH images from 7 tumor types in 12 patients were assessed. Pathologies included squamous cell carcinoma, rhabdomyosarcoma, inverted papilloma, adenoid cystic carcinoma, SMARCB1-deficient sinonasal carcinoma, mucosal melanoma, metastatic colonic adenocarcinoma, and meningioma. Tumor was identified in 100% of lesional specimens, with characteristic diagnostic features readily appreciable on SRH. Median time for diagnosis was significantly faster for SRH (4.3 min) versus FS (44.5 min; p = <.0001). Where SRH sample site matched precisely to FS (n = 32/67, 47.8%), the same diagnosis was confirmed in 93.8%. Sensitivity, specificity, precision, and overall accuracy of SRH were 93.3%, 94.1%, 93.8%, and 93.3%, respectively. Near-perfect concordance was seen between SRH and FS (Cohen's kappa [κ] = 0.89). CONCLUSION Stimulated Raman histology can rapidly produce images similar to FFPE H&E in sinonasal and skull base tumors. This technology has the potential to act as an adjunct or alternative to standard FS. LEVEL OF EVIDENCE 4 Laryngoscope, 132:2142-2147, 2022.
Collapse
Affiliation(s)
- Conall Fitzgerald
- Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Snjezana Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rabih Bou-Nassif
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tim Mclean
- Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robbie Woods
- Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jennifer R. Cracchiolo
- Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ian Ganly
- Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc A. Cohen
- Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
6
|
Huang D, Shi Y, Li F, Wai PKA. Fourier Domain Mode Locked Laser and Its Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:3145. [PMID: 35590839 PMCID: PMC9105910 DOI: 10.3390/s22093145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
The sweep rate of conventional short-cavity lasers with an intracavity-swept filter is limited by the buildup time of laser signals from spontaneous emissions. The Fourier domain mode-locked (FDML) laser was proposed to overcome the limitations of buildup time by inserting a long fiber delay in the cavity to store the whole swept signal and has attracted much interest in both theoretical and experimental studies. In this review, the theoretical models to understand the dynamics of the FDML laser and the experimental techniques to realize high speed, wide sweep range, long coherence length, high output power and highly stable swept signals in FDML lasers will be discussed. We will then discuss the applications of FDML lasers in optical coherence tomography (OCT), fiber sensing, precision measurement, microwave generation and nonlinear microscopy.
Collapse
Affiliation(s)
- Dongmei Huang
- Photonics Research Institute, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (D.H.); (Y.S.)
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China;
| | - Yihuan Shi
- Photonics Research Institute, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (D.H.); (Y.S.)
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China;
| | - Feng Li
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China;
- Photonics Research Institute, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - P. K. A. Wai
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China;
- Photonics Research Institute, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Physics, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|