1
|
Johnson C, Guo M, Schneider MC, Su Y, Khuon S, Reiser N, Wu Y, La Riviere P, Shroff H. Phase diversity-based wavefront sensing for fluorescence microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.19.572369. [PMID: 38168170 PMCID: PMC10760184 DOI: 10.1101/2023.12.19.572369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Fluorescence microscopy is an invaluable tool in biology, yet its performance is compromised when the wavefront of light is distorted due to optical imperfections or the refractile nature of the sample. Such optical aberrations can dramatically lower the information content of images by degrading image contrast, resolution, and signal. Adaptive optics (AO) methods can sense and subsequently cancel the aberrated wavefront, but are too complex, inefficient, slow, or expensive for routine adoption by most labs. Here we introduce a rapid, sensitive, and robust wavefront sensing scheme based on phase diversity, a method successfully deployed in astronomy but underused in microscopy. Our method enables accurate wavefront sensing to less than λ/35 root mean square (RMS) error with few measurements, and AO with no additional hardware besides a corrective element. After validating the method with simulations, we demonstrate calibration of a deformable mirror > 100-fold faster than comparable methods (corresponding to wavefront sensing on the ~100 ms scale), and sensing and subsequent correction of severe aberrations (RMS wavefront distortion exceeding λ/2), restoring diffraction-limited imaging on extended biological samples.
Collapse
Affiliation(s)
- Courtney Johnson
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Min Guo
- Current address: State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Yijun Su
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Satya Khuon
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Nikolaj Reiser
- Department of Radiology, University of Chicago, Chicago, IL, USA
| | - Yicong Wu
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Patrick La Riviere
- Department of Radiology, University of Chicago, Chicago, IL, USA
- MBL Fellows Program, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Hari Shroff
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
- MBL Fellows Program, Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
2
|
Furieri T, Bassi A, Bonora S. Large field of view aberrations correction with deformable lenses and multi conjugate adaptive optics. JOURNAL OF BIOPHOTONICS 2023; 16:e202300104. [PMID: 37556187 DOI: 10.1002/jbio.202300104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/10/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023]
Abstract
Optical microscopes can have limited resolution due to aberrations caused by samples and sample holders. Using deformable mirrors and wavefront sensorless optimization algorithms can correct these aberrations, but the correction is limited to a small area of the field of view. This study presents an adaptive optics method that uses a series of plug-and-play deformable lenses for large field of view wavefront correction. A direct wavefront measurement method using the spinning sub-pupil aberration measurement technique is combined with correction based on the deformable lenses. Experimental results using fluorescence microscopy with a wide field and a light sheet fluorescence microscope show that the proposed method can achieve detection and correction over an extended field of view with a compact transmissive module placed in the detection path of the microscope. This method could improve the resolution and accuracy of imaging in a variety of fields, including biology and materials science.
Collapse
Affiliation(s)
- T Furieri
- Institute of Photonics and Nanotechnology, National Council of Research of Italy, Padova, Italy
- Department of Information Engineering, University of Padova, Padova, Italy
| | - A Bassi
- Department of Physics, Politecnico di Milano, Milan, Italy
| | - S Bonora
- Institute of Photonics and Nanotechnology, National Council of Research of Italy, Padova, Italy
| |
Collapse
|
3
|
Maddalena L, Keizers H, Pozzi P, Carroll E. Local aberration control to improve efficiency in multiphoton holographic projections. OPTICS EXPRESS 2022; 30:29128-29147. [PMID: 36299095 DOI: 10.1364/oe.463553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/29/2022] [Indexed: 06/16/2023]
Abstract
Optical aberrations affect the quality of light propagating through a turbid medium, where refractive index is spatially inhomogeneous. In multiphoton optical applications, such as two-photon excitation fluorescence imaging and optogenetics, aberrations non-linearly impair the efficiency of excitation. We demonstrate a sensorless adaptive optics technique to compensate aberrations in holograms projected into turbid media. We use a spatial light modulator to project custom three dimensional holographic patterns and to correct for local (anisoplanatic) distortions. The method is tested on both synthetic and biological samples to counteract aberrations arising respectively from misalignment of the optical system and from samples inhomogeneities. In both cases the anisoplanatic correction improves the intensity of the stimulation pattern at least two-fold.
Collapse
|
4
|
Toader B, Boulanger J, Korolev Y, Lenz MO, Manton J, Schönlieb CB, Mureşan L. Image Reconstruction in Light-Sheet Microscopy: Spatially Varying Deconvolution and Mixed Noise. JOURNAL OF MATHEMATICAL IMAGING AND VISION 2022; 64:968-992. [PMID: 36329880 PMCID: PMC7613773 DOI: 10.1007/s10851-022-01100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 04/23/2022] [Indexed: 06/16/2023]
Abstract
We study the problem of deconvolution for light-sheet microscopy, where the data is corrupted by spatially varying blur and a combination of Poisson and Gaussian noise. The spatial variation of the point spread function of a light-sheet microscope is determined by the interaction between the excitation sheet and the detection objective PSF. We introduce a model of the image formation process that incorporates this interaction and we formulate a variational model that accounts for the combination of Poisson and Gaussian noise through a data fidelity term consisting of the infimal convolution of the single noise fidelities, first introduced in L. Calatroni et al. (SIAM J Imaging Sci 10(3):1196-1233, 2017). We establish convergence rates and a discrepancy principle for the infimal convolution fidelity and the inverse problem is solved by applying the primal-dual hybrid gradient (PDHG) algorithm in a novel way. Numerical experiments performed on simulated and real data show superior reconstruction results in comparison with other methods.
Collapse
Affiliation(s)
- Bogdan Toader
- Cambridge Advanced Imaging Centre, University of Cambridge, Anatomy School, Downing Street, Cambridge, CB2 3DY UK
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY UK
| | - Jérôme Boulanger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH UK
| | - Yury Korolev
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA UK
| | - Martin O. Lenz
- Cambridge Advanced Imaging Centre, University of Cambridge, Anatomy School, Downing Street, Cambridge, CB2 3DY UK
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR UK
| | - James Manton
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH UK
| | - Carola-Bibiane Schönlieb
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA UK
| | - Leila Mureşan
- Cambridge Advanced Imaging Centre, University of Cambridge, Anatomy School, Downing Street, Cambridge, CB2 3DY UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY UK
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR UK
| |
Collapse
|
5
|
Calisesi G, Ancora D, Tacconi C, Fantin A, Perin P, Pizzala R, Valentini G, Farina A, Bassi A. Enlarged Field of View in Spatially Modulated Selective Volume Illumination Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-10. [PMID: 35698867 DOI: 10.1017/s1431927622012077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Three-dimensional fluorescence microscopy is a key technology for inspecting biological samples, ranging from single cells to entire organisms. We recently proposed a novel approach called spatially modulated Selective Volume Illumination Microscopy (smSVIM) to suppress illumination artifacts and to reduce the required number of measurements using an LED source. Here, we discuss a new strategy based on smSVIM for imaging large transparent specimens or voluminous chemically cleared tissues. The strategy permits steady mounting of the sample, achieving uniform resolution over a large field of view thanks to the synchronized motion of the illumination lens and the camera rolling shutter. Aided by a tailored deconvolution method for image reconstruction, we demonstrate significant improvement of the resolution at different magnification using samples of varying sizes and spatial features.
Collapse
Affiliation(s)
| | - Daniele Ancora
- Department of Physics, Politecnico di Milano, 20133Milano, Italy
| | - Carlotta Tacconi
- Department of Biosciences, University of Milano, 20133Milano, Italy
| | | | - Paola Perin
- Department of Brain and Behaviour Science, University of Pavia, 27100Pavia, Italy
| | - Roberto Pizzala
- Department of Molecular Medicine, University of Pavia, 27100Pavia, Italy
| | - Gianluca Valentini
- Department of Physics, Politecnico di Milano, 20133Milano, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle ricerche, 20133Milano, Italy
| | - Andrea Farina
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle ricerche, 20133Milano, Italy
| | - Andrea Bassi
- Department of Physics, Politecnico di Milano, 20133Milano, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle ricerche, 20133Milano, Italy
| |
Collapse
|
6
|
Talone B, Pozzi P, Cavagnini M, Polli D, Pozzi G, Mapelli J. Experimental determination of shift-less aberration bases for sensorless adaptive optics in nonlinear microscopy. OPTICS EXPRESS 2021; 29:37617-37627. [PMID: 34808830 DOI: 10.1364/oe.435262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Adaptive optics can improve the performance of optical systems and devices by correcting phase aberrations. While in most applications wavefront sensing is employed to drive the adaptive optics correction, some microscopy methods may require sensorless optimization of the wavefront. In these cases, the correction is performed by describing the aberration as a linear combination of a base of influence functions, optimizing an image quality metric as a function of the coefficients. The influence functions base is generally chosen to either efficiently represent the adaptive device used or to describe generic wavefronts in an orthogonal fashion. A rarely discussed problem is that most correction bases have elements which introduce, together with a correction of the aberration, a shift of the imaging field of view in three dimensions. While simple methods to solve the problem are available for linear microscopy methods, nonlinear microscopy techniques such as multiphoton or second harmonic generation microscopy require non-trivial base determination. In this paper, we discuss the problem, and we present a method for calibrating a shift-less base on a spatial light modulator for two-photon microscopy.
Collapse
|