1
|
Salimi M, Tabatabaei N, Villiger M. Artificial neural network for enhancing signal-to-noise ratio and contrast in photothermal optical coherence tomography. Sci Rep 2024; 14:10264. [PMID: 38704427 PMCID: PMC11069506 DOI: 10.1038/s41598-024-60682-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
Optical coherence tomography (OCT) is a medical imaging method that generates micron-resolution 3D volumetric images of tissues in-vivo. Photothermal (PT)-OCT is a functional extension of OCT with the potential to provide depth-resolved molecular information complementary to the OCT structural images. PT-OCT typically requires long acquisition times to measure small fluctuations in the OCT phase signal. Here, we use machine learning with a neural network to infer the amplitude of the photothermal phase modulation from a short signal trace, trained in a supervised fashion with the ground truth signal obtained by conventional reconstruction of the PT-OCT signal from a longer acquisition trace. Results from phantom and tissue studies show that the developed network improves signal to noise ratio (SNR) and contrast, enabling PT-OCT imaging with short acquisition times and without any hardware modification to the PT-OCT system. The developed network removes one of the key barriers in translation of PT-OCT (i.e., long acquisition time) to the clinic.
Collapse
Affiliation(s)
- Mohammadhossein Salimi
- Department of Mechanical Engineering, Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada
| | - Nima Tabatabaei
- Department of Mechanical Engineering, Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada.
- Center for Vision Research, York University, Toronto, ON, M3J 1P3, Canada.
| | - Martin Villiger
- Department of Mechanical Engineering, Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada.
- Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
2
|
Sun J, Fang T, Wang H, Wang S. Photothermal optical coherence tomography for 3D live cell detection and mapping. OPTICS CONTINUUM 2023; 2:2468-2483. [PMID: 38665863 PMCID: PMC11044816 DOI: 10.1364/optcon.503577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/27/2023] [Indexed: 04/28/2024]
Abstract
Imaging cells in their 3D environment with molecular specificity is important to cell biology study. Widely used microscopy techniques, such as confocal microscopy, have limited imaging depth when probing cells in optically scattering media. Optical coherence tomography (OCT) can provide millimeter-level depth for imaging of highly scattering media but lacks the contrast to distinguish cells from extracellular matrix or to distinguish between different types of cells. Photothermal OCT (PT-OCT) is a promising technique to obtain molecular contrast at the imaging scale of OCT. Here, we report PT-OCT imaging of live, nanoparticle-labeled cells in 3D. In particular, we demonstrate detection and mapping of single cell in 3D without causing call death, and show the feasibility of 3D cell mapping through optical scattering media. This work presents live cell detection and mapping at an imaging scale that complements the major microscopy techniques, which is potentially useful to study cells in their 3D native or culture environment.
Collapse
Affiliation(s)
- Jingyu Sun
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Tianqi Fang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| |
Collapse
|
3
|
Zong H, Yurdakul C, Zhao J, Wang Z, Chen F, Ünlü MS, Cheng JX. Bond-selective full-field optical coherence tomography. OPTICS EXPRESS 2023; 31:41202-41218. [PMID: 38087525 DOI: 10.1364/oe.503861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
Optical coherence tomography (OCT) is a label-free, non-invasive 3D imaging tool widely used in both biological research and clinical diagnosis. Conventional OCT modalities can only visualize specimen tomography without chemical information. Here, we report a bond-selective full-field OCT (BS-FF-OCT), in which a pulsed mid-infrared laser is used to modulate the OCT signal through the photothermal effect, achieving label-free bond-selective 3D sectioned imaging of highly scattering samples. We first demonstrate BS-FF-OCT imaging of 1 µm PMMA beads embedded in agarose gel. Next, we show 3D hyperspectral imaging of up to 75 µm of polypropylene fiber mattress from a standard surgical mask. We then demonstrate BS-FF-OCT imaging on biological samples, including cancer cell spheroids and C. elegans. Using an alternative pulse timing configuration, we finally demonstrate the capability of BS-FF-OCT on imaging a highly scattering myelinated axons region in a mouse brain tissue slice.
Collapse
|
4
|
Ravichandran NK, Hur H, Kim H, Hyun S, Bae JY, Kim DU, Kim IJ, Nam KH, Chang KS, Lee KS. Label-free photothermal optical coherence microscopy to locate desired regions of interest in multiphoton imaging of volumetric specimens. Sci Rep 2023; 13:3625. [PMID: 36869084 PMCID: PMC9984493 DOI: 10.1038/s41598-023-30524-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Biochip-based research is currently evolving into a three-dimensional and large-scale basis similar to the in vivo microenvironment. For the long-term live and high-resolution imaging in these specimens, nonlinear microscopy capable of label-free and multiscale imaging is becoming increasingly important. Combination with non-destructive contrast imaging will be useful for effectively locating regions of interest (ROI) in large specimens and consequently minimizing photodamage. In this study, a label-free photothermal optical coherence microscopy (OCM) serves as a new approach to locate the desired ROI within biological samples which are under investigation by multiphoton microscopy (MPM). The weak photothermal perturbation in sample by the MPM laser with reduced power was detected at the endogenous photothermal particles within the ROI using the highly sensitive phase-differentiated photothermal (PD-PT) OCM. By monitoring the temporal change of the photothermal response signal of the PD-PT OCM, the hotspot generated within the sample focused by the MPM laser was located on the ROI. Combined with automated sample movement in the x-y axis, the focal plane of MPM could be effectively navigated to the desired portion of a volumetric sample for high-resolution targeted MPM imaging. We demonstrated the feasibility of the proposed method in second harmonic generation microscopy using two phantom samples and a biological sample, a fixed insect on microscope slide, with dimensions of 4 mm wide, 4 mm long, and 1 mm thick.
Collapse
Affiliation(s)
- Naresh Kumar Ravichandran
- Center for Scientific Instrumentation, Korea Basic Science Institute, 169-148 Gwahak-ro Yuseong-gu, Daejeon, 34133, Republic of Korea
| | - Hwan Hur
- Center for Scientific Instrumentation, Korea Basic Science Institute, 169-148 Gwahak-ro Yuseong-gu, Daejeon, 34133, Republic of Korea
| | - Hyemi Kim
- Center for Scientific Instrumentation, Korea Basic Science Institute, 169-148 Gwahak-ro Yuseong-gu, Daejeon, 34133, Republic of Korea
| | - Sangwon Hyun
- Center for Scientific Instrumentation, Korea Basic Science Institute, 169-148 Gwahak-ro Yuseong-gu, Daejeon, 34133, Republic of Korea
| | - Ji Yong Bae
- Center for Scientific Instrumentation, Korea Basic Science Institute, 169-148 Gwahak-ro Yuseong-gu, Daejeon, 34133, Republic of Korea
| | - Dong Uk Kim
- Center for Scientific Instrumentation, Korea Basic Science Institute, 169-148 Gwahak-ro Yuseong-gu, Daejeon, 34133, Republic of Korea
| | - I Jong Kim
- Center for Scientific Instrumentation, Korea Basic Science Institute, 169-148 Gwahak-ro Yuseong-gu, Daejeon, 34133, Republic of Korea
| | - Ki-Hwan Nam
- Center for Scientific Instrumentation, Korea Basic Science Institute, 169-148 Gwahak-ro Yuseong-gu, Daejeon, 34133, Republic of Korea
| | - Ki Soo Chang
- Center for Scientific Instrumentation, Korea Basic Science Institute, 169-148 Gwahak-ro Yuseong-gu, Daejeon, 34133, Republic of Korea.
| | - Kye-Sung Lee
- Center for Scientific Instrumentation, Korea Basic Science Institute, 169-148 Gwahak-ro Yuseong-gu, Daejeon, 34133, Republic of Korea.
| |
Collapse
|
5
|
Salimi MH, Villiger M, Tabatabaei N. Three-dimensional opto-thermo-mechanical model for predicting photo-thermal optical coherence tomography responses in multilayer geometries. BIOMEDICAL OPTICS EXPRESS 2022; 13:3416-3433. [PMID: 35781956 PMCID: PMC9208589 DOI: 10.1364/boe.454491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Photothermal optical coherence tomography (PT-OCT) is a functional extension of OCT with the ability to generate qualitative maps of molecular absorptions co-registered with the micron-resolution structural tomograms of OCT. Obtaining refined insight into chemical information from PT-OCT images, however, requires solid understanding of the multifactorial physics behind generation of PT-OCT signals and their dependence on system and sample parameters. Such understanding is needed to decouple the various physical effects involved in the PT-OCT signal to obtain more accurate insight into sample composition. In this work, we propose an analytical model that considers the opto-thermo-mechanical properties of multi-layered samples in 3-D space, eliminating several assumptions that have been limiting previous PT-OCT models. In parametric studies, the model results are compared with experimental signals to investigate the effect of sample and system parameters on the acquired signals. The proposed model and the presented findings open the door for: 1) better understanding of the effects of system parameters and tissue opto-thermo-mechanical properties on experimental signals; 2) informed optimization of experimentation strategies based on sample and system parameters; 3) guidance of downstream signal processing for predicting tissue molecular composition.
Collapse
Affiliation(s)
- Mohammad Hossein Salimi
- York University, Lassonde School of Engineering, Department of Mechanical Engineering, Toronto, Canada
| | - Martin Villiger
- York University, Lassonde School of Engineering, Department of Mechanical Engineering, Toronto, Canada
- Harvard Medical School, Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts, USA
| | - Nima Tabatabaei
- York University, Lassonde School of Engineering, Department of Mechanical Engineering, Toronto, Canada
| |
Collapse
|
6
|
Wang A, Qi W, Gao T, Tang X. Molecular Contrast Optical Coherence Tomography and Its Applications in Medicine. Int J Mol Sci 2022; 23:ijms23063038. [PMID: 35328454 PMCID: PMC8949853 DOI: 10.3390/ijms23063038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/28/2022] Open
Abstract
The growing need to understand the molecular mechanisms of diseases has prompted the revolution in molecular imaging techniques along with nanomedicine development. Conventional optical coherence tomography (OCT) is a low-cost in vivo imaging modality that provides unique high spatial and temporal resolution anatomic images but little molecular information. However, given the widespread adoption of OCT in research and clinical practice, its robust molecular imaging extensions are strongly desired to combine with anatomical images. A range of relevant approaches has been reported already. In this article, we review the recent advances of molecular contrast OCT imaging techniques, the corresponding contrast agents, especially the nanoparticle-based ones, and their applications. We also summarize the properties, design criteria, merit, and demerit of those contrast agents. In the end, the prospects and challenges for further research and development in this field are outlined.
Collapse
|
7
|
Liu H, Mo L, Chen H, Chen C, Wu J, Tang Z, Guo Z, Hu C, Liu Z. Carbon Dots with Intrinsic Bioactivities for Photothermal Optical Coherence Tomography, Tumor-Specific Therapy and Postoperative Wound Management. Adv Healthc Mater 2022; 11:e2101448. [PMID: 34937144 DOI: 10.1002/adhm.202101448] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/13/2021] [Indexed: 12/26/2022]
Abstract
Carbon dots (CDs) are considered as promising candidates with superior biocompatibilities for multimodel cancer theranostics. However, incorporation of exogenous components, such as targeting molecules and chemo/photo therapeutic drugs, is often required to improve the therapeutic efficacy. Herein, an "all-in-one" CDs that exhibit intrinsic bioactivities for bioimaging, potent tumor therapy, and postoperative management is proposed. The multifunctional CDs derived from gallic acid and tyrosine (GT-CDs) consist of a graphitized carbon core and N, O-rich functional groups, which endow them with a high near-infrared (NIR) photothermal conversion efficiency of 33.9% and tumor-specific cytotoxicity, respectively. A new imaging modality, photothermal optical coherence tomography, is introduced using GT-CDs as the contrast agent, offering the micrometer-scale resolution 3D tissue morphology of tumor. For cancer therapy, GT-CDs initiate the intracellular generation of reactive oxygen species in tumor cells but not normal cells, further induce the mitochondrial collapse and subsequent tumor cellular apoptosis. Combined with NIR photothermal treatment, synergistic antitumor therapy is achieved in vitro and in vivo. GT-CDs also promote the healing process of bacteria-contaminated skin wound, demonstrating their potential to prevent postoperative infection. The integrated theranostic strategy based on versatile GT-CDs supplies an alternative easy-to-handle pattern for disease management.
Collapse
Affiliation(s)
- Hao Liu
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 China
| | - Luoqi Mo
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 China
- College of Materials and Energy South China Agricultural University Guangzhou 510642 China
| | - Haolin Chen
- Department of Hematology The Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen 518107 China
| | - Chao Chen
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 China
| | - Jiayi Wu
- School of Physics and Telecommunication Engineering South China Normal University Guangzhou 510006 China
| | - Zhilie Tang
- School of Physics and Telecommunication Engineering South China Normal University Guangzhou 510006 China
| | - Zhouyi Guo
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 China
| | - Chaofan Hu
- College of Materials and Energy South China Agricultural University Guangzhou 510642 China
| | - Zhiming Liu
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes College of Biophotonics South China Normal University Guangzhou 510631 China
| |
Collapse
|
8
|
Leitgeb R, Placzek F, Rank E, Krainz L, Haindl R, Li Q, Liu M, Andreana M, Unterhuber A, Schmoll T, Drexler W. Enhanced medical diagnosis for dOCTors: a perspective of optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210150-PER. [PMID: 34672145 PMCID: PMC8528212 DOI: 10.1117/1.jbo.26.10.100601] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/23/2021] [Indexed: 05/17/2023]
Abstract
SIGNIFICANCE After three decades, more than 75,000 publications, tens of companies being involved in its commercialization, and a global market perspective of about USD 1.5 billion in 2023, optical coherence tomography (OCT) has become one of the fastest successfully translated imaging techniques with substantial clinical and economic impacts and acceptance. AIM Our perspective focuses on disruptive forward-looking innovations and key technologies to further boost OCT performance and therefore enable significantly enhanced medical diagnosis. APPROACH A comprehensive review of state-of-the-art accomplishments in OCT has been performed. RESULTS The most disruptive future OCT innovations include imaging resolution and speed (single-beam raster scanning versus parallelization) improvement, new implementations for dual modality or even multimodality systems, and using endogenous or exogenous contrast in these hybrid OCT systems targeting molecular and metabolic imaging. Aside from OCT angiography, no other functional or contrast enhancing OCT extension has accomplished comparable clinical and commercial impacts. Some more recently developed extensions, e.g., optical coherence elastography, dynamic contrast OCT, optoretinography, and artificial intelligence enhanced OCT are also considered with high potential for the future. In addition, OCT miniaturization for portable, compact, handheld, and/or cost-effective capsule-based OCT applications, home-OCT, and self-OCT systems based on micro-optic assemblies or photonic integrated circuits will revolutionize new applications and availability in the near future. Finally, clinical translation of OCT including medical device regulatory challenges will continue to be absolutely essential. CONCLUSIONS With its exquisite non-invasive, micrometer resolution depth sectioning capability, OCT has especially revolutionized ophthalmic diagnosis and hence is the fastest adopted imaging technology in the history of ophthalmology. Nonetheless, OCT has not been completely exploited and has substantial growth potential-in academics as well as in industry. This applies not only to the ophthalmic application field, but also especially to the original motivation of OCT to enable optical biopsy, i.e., the in situ imaging of tissue microstructure with a resolution approaching that of histology but without the need for tissue excision.
Collapse
Affiliation(s)
- Rainer Leitgeb
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Medical University of Vienna, Christian Doppler Laboratory OPTRAMED, Vienna, Austria
| | - Fabian Placzek
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Elisabet Rank
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Lisa Krainz
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Richard Haindl
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Qian Li
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Mengyang Liu
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Marco Andreana
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Angelika Unterhuber
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Tilman Schmoll
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Carl Zeiss Meditec, Inc., Dublin, California, United States
| | - Wolfgang Drexler
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Address all correspondence to Wolfgang Drexler,
| |
Collapse
|
9
|
Ringel MJ, Tang EM, Tao YK. Advances in multimodal imaging in ophthalmology. Ther Adv Ophthalmol 2021; 13:25158414211002400. [PMID: 35187398 PMCID: PMC8855415 DOI: 10.1177/25158414211002400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Multimodality ophthalmic imaging systems aim to enhance the contrast, resolution, and functionality of existing technologies to improve disease diagnostics and therapeutic guidance. These systems include advanced acquisition and post-processing methods using optical coherence tomography (OCT), combined scanning laser ophthalmoscopy and OCT systems, adaptive optics, surgical guidance, and photoacoustic technologies. Here, we provide an overview of these ophthalmic imaging systems and their clinical and basic science applications.
Collapse
Affiliation(s)
- Morgan J. Ringel
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Eric M. Tang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Yuankai K. Tao
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
10
|
Salimi M, Villiger M, Tabatabaei N. Effects of lipid composition on photothermal optical coherence tomography signals. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200283LR. [PMID: 33369310 PMCID: PMC7757902 DOI: 10.1117/1.jbo.25.12.120501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/01/2020] [Indexed: 05/02/2023]
Abstract
SIGNIFICANCE Photothermal optical coherence tomography (PT-OCT) has the promise to offer structural images coregistered with chemical composition information, which can offer a significant impact in early detection of diseases such as atherosclerosis. AIM We take the first step in understanding the relation between PT-OCT signals and the endogenous tissue composition by considering the interplay between the opto-thermo-physical properties of tissue as a function of its lipid composition and the ensuing effects on the PT-OCT signals. APPROACH Multiparameter theoretical estimates for PT-OCT signal as a function of composition in a two-component lipid-water model are derived and discussed. Experimental data from various concentrations of lipid in the form of droplets and injections under bovine cardiac muscle align with theoretical predictions. RESULTS Theoretical and experimental results suggest that the variations of heat capacity and mass density with tissue composition significantly contribute to the amount of optical path length difference measured by OCT phase. CONCLUSION PT-OCT has the potential to offer key insights into the chemical composition of the subsurface lipid pools in tissue; however, the interpretation of results needs to be carried out by keeping the nonlinear interplay between the tissue of opto-thermo-physical properties and PT-OCT signals in mind.
Collapse
Affiliation(s)
- Mohammadhossein Salimi
- York University, Lassonde School of Engineering, Department of Mechanical Engineering, Toronto, Canada
| | - Martin Villiger
- York University, Lassonde School of Engineering, Department of Mechanical Engineering, Toronto, Canada
- Harvard Medical School, Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts, United States
| | - Nima Tabatabaei
- York University, Lassonde School of Engineering, Department of Mechanical Engineering, Toronto, Canada
| |
Collapse
|
11
|
Kubelick KP, Snider EJ, Ethier CR, Emelianov S. Photoacoustic properties of anterior ocular tissues. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 31115200 PMCID: PMC6992976 DOI: 10.1117/1.jbo.24.5.056004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 04/19/2019] [Indexed: 05/21/2023]
Abstract
Clinical imaging techniques for the anterior segment of the eye provide excellent anatomical information, but molecular imaging techniques are lacking. Molecular photoacoustic imaging is one option to address this need, but implementation requires use of contrast agents to distinguish molecular targets from background photoacoustic signals. Contrast agents are typically selected based on a priori knowledge of photoacoustic properties of tissues. However, photoacoustic properties of anterior ocular tissues have not been studied yet. Herein, anterior segment anatomy and corresponding photoacoustic signals were analyzed in brown and blue porcine eyes ex vivo. Measured photoacoustic spectra were compared to known optical absorption spectra of endogenous chromophores. In general, experimentally measured photoacoustic spectra matched expectations based on absorption spectra of endogenous chromophores reported in the literature, and similar photoacoustic spectra were observed in blue and brown porcine eyes. However, unique light-tissue interactions at the iris modified photoacoustic signals from melanin. Finally, we demonstrated how the measured PA spectra established herein can be used for one application of molecular PA imaging, detecting photoacoustically labeled stem cells in the anterior segment for glaucoma treatment.
Collapse
Affiliation(s)
- Kelsey P. Kubelick
- Georgia Institute of Technology and Emory University School of Medicine, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Eric J. Snider
- Georgia Institute of Technology and Emory University School of Medicine, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - C. Ross Ethier
- Georgia Institute of Technology and Emory University School of Medicine, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Stanislav Emelianov
- Georgia Institute of Technology and Emory University School of Medicine, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, Georgia, United States
| |
Collapse
|
12
|
Lapierre-Landry M, Carroll J, Skala MC. Imaging retinal melanin: a review of current technologies. J Biol Eng 2018; 12:29. [PMID: 30534199 PMCID: PMC6280494 DOI: 10.1186/s13036-018-0124-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/22/2018] [Indexed: 11/10/2022] Open
Abstract
The retinal pigment epithelium (RPE) is essential to the health of the retina and the proper functioning of the photoreceptors. The RPE is rich in melanosomes, which contain the pigment melanin. Changes in RPE pigmentation are seen with normal aging and in diseases such as albinism and age-related macular degeneration. However, most techniques used to this day to detect and quantify ocular melanin are performed ex vivo and are destructive to the tissue. There is a need for in vivo imaging of melanin both at the clinical and pre-clinical level to study how pigmentation changes can inform disease progression. In this manuscript, we review in vivo imaging techniques such as fundus photography, fundus reflectometry, near-infrared autofluorescence imaging, photoacoustic imaging, and functional optical coherence tomography that specifically detect melanin in the retina. These methods use different contrast mechanisms to detect melanin and provide images with different resolutions and field-of-views, making them complementary to each other.
Collapse
Affiliation(s)
- Maryse Lapierre-Landry
- 1Morgridge Institute for Research, Madison, WI USA.,2Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA.,6Department of Pediatrics, Case Western Reserve University, Cleveland, OH USA
| | - Joseph Carroll
- 3Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI USA.,4Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI USA
| | - Melissa C Skala
- 1Morgridge Institute for Research, Madison, WI USA.,5Department of Biomedical Engineering, University of Wisconsin Madison, Madison, WI USA
| |
Collapse
|