1
|
Dolinina DA, Huyet G, Turaev D, Vladimirov AG. Desynchronization of temporal solitons in Kerr cavities with pulsed injection. OPTICS LETTERS 2024; 49:4050-4053. [PMID: 39008773 DOI: 10.1364/ol.529083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/15/2024] [Indexed: 07/17/2024]
Abstract
A numerical and analytical study was conducted to investigate the bifurcation mechanisms that cause desynchronization between the soliton repetition frequency and the frequency of external pulsed injection in a Kerr cavity described by the Lugiato-Lefever equation (LLE). The results suggest that desynchronization typically occurs through an Andronov-Hopf (AH) bifurcation. Additionally, a simple and intuitive criterion for this bifurcation to occur is proposed.
Collapse
|
2
|
Feng S, Yao Y, Shum PP, Xu G, Pan J, Xu C, Wu Z, Zhang J, Li X, Han L, Huang T. Cavity soliton in a cyclic polarization permutation fiber resonator. OPTICS EXPRESS 2022; 30:46900-46910. [PMID: 36558630 DOI: 10.1364/oe.476613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Cavity solitons are shape-preserving waveforms infinitely revolving around a cavity, which have numerous applications from spectroscopy to telecommunications. Although the cavity solitons have been widely studied for their special time-frequency characteristics over the past decade, the spectral flatness will be a large limitation in some applications without any extra filtering process. In this paper, we report on the generation of a distinct cavity soliton in a cyclic polarization permutation fiber resonator. With the simultaneous excitation of two orthogonal polarization modes with equally opposite dispersion, vectorial cavity solitons possessing broader and flatter spectra can be generated. In order to verify the concept, a numerical model of the polarization-maintaining fiber is proposed and the soliton with a flattened spectrum can be formed. The results enrich the soliton dynamics in the vectorial dissipation system.
Collapse
|
3
|
Chen Y, Liu T, Sun S, Guo H. Temporal dissipative structures in optical Kerr resonators with transient loss fluctuation. OPTICS EXPRESS 2021; 29:35776-35791. [PMID: 34809005 DOI: 10.1364/oe.439212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Dissipative structures are the result of spontaneous symmetry breaking in a dynamic open system, which is induced by either the nonlinear effect or loss fluctuations. While optical temporal dissipative solitons in nonlinear Kerr cavities has been widely studied, their operation is limited to the red-detuned regime. Here, we demonstrate an emergent dissipative soliton state in optical nonlinear cavities in the presence of loss fluctuations, which is accessible by self-evolution of the system on resonance. Based on a modified dissipative and Kerr-nonlinear cavity model, we numerically investigate the effect of the loss modulation on the intracavity field pattern, and in transmission observe a single and bright soliton pulse state at the zero detuning. The effect of the optical saturable absorption is also numerically investigated, which is recognized as an effective approach to the transient loss fluctuation in the cavity. The estimated power efficiency of the resonant bright soliton can be higher than that of the conventional dissipative Kerr soliton, which is determined by the loss modulation depth and the pump intensity. The self-starting soliton state on system's resonance is potentially of wide interest, which physically contributes to insights of the temporal structure formation in dissipative cavities. On application aspect, it may constitute a way to the generation of ultra-fast soliton pulse trains as well as the generation of soliton micro-combs.
Collapse
|
4
|
Nielsen AU, Xu Y, Todd C, Ferré M, Clerc MG, Coen S, Murdoch SG, Erkintalo M. Nonlinear Localization of Dissipative Modulation Instability. PHYSICAL REVIEW LETTERS 2021; 127:123901. [PMID: 34597105 DOI: 10.1103/physrevlett.127.123901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Modulation instability (MI) in the presence of noise typically leads to an irreversible and complete disintegration of a plane wave background. Here we report on experiments performed in a coherently driven nonlinear optical resonator that demonstrate nonlinear localization of dissipative MI: formation of persisting domains of MI-driven spatiotemporal chaos surrounded by a stable quasi-plane-wave background. The persisting localization ensues from a combination of bistability and complex spatiotemporal nonlinear dynamics that together permit a locally induced domain of MI to be pinned by a shallow modulation on the plane wave background. We further show that the localized domains of spatiotemporal chaos can be individually addressed-turned on and off at will-and we explore their transport behavior as the strength of the pinning is controlled. Our results reveal new fundamental dynamics at the interface of front dynamics and MI, and offer a route for tailored patterns of noiselike bursts of light.
Collapse
Affiliation(s)
- Alexander U Nielsen
- The Dodd-Walls Centre for Photonic and Quantum Technologies, New Zealand
- Physics Department, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Yiqing Xu
- The Dodd-Walls Centre for Photonic and Quantum Technologies, New Zealand
- Physics Department, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Caleb Todd
- The Dodd-Walls Centre for Photonic and Quantum Technologies, New Zealand
- Physics Department, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Michel Ferré
- Departamento de Física and Millenium Institute for Research in Optics, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago, Chile
| | - Marcel G Clerc
- Departamento de Física and Millenium Institute for Research in Optics, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago, Chile
| | - Stéphane Coen
- The Dodd-Walls Centre for Photonic and Quantum Technologies, New Zealand
- Physics Department, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Stuart G Murdoch
- The Dodd-Walls Centre for Photonic and Quantum Technologies, New Zealand
- Physics Department, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Miro Erkintalo
- The Dodd-Walls Centre for Photonic and Quantum Technologies, New Zealand
- Physics Department, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
5
|
Erkintalo M, Murdoch SG, Coen S. Phase and intensity control of dissipative Kerr cavity solitons. J R Soc N Z 2021. [DOI: 10.1080/03036758.2021.1900296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Miro Erkintalo
- Department of Physics, The University of Auckland, Auckland, New Zealand
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin, New Zealand
| | - Stuart G. Murdoch
- Department of Physics, The University of Auckland, Auckland, New Zealand
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin, New Zealand
| | - Stéphane Coen
- Department of Physics, The University of Auckland, Auckland, New Zealand
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin, New Zealand
| |
Collapse
|
6
|
Garbin B, Javaloyes J, Tissoni G, Barland S. Hopping and emergent dynamics of optical localized states in a trapping potential. CHAOS (WOODBURY, N.Y.) 2020; 30:093126. [PMID: 33003904 DOI: 10.1063/5.0006130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
The position and motion of localized states of light in propagative geometries can be controlled via an adequate parameter modulation. Here, we show theoretically and experimentally that this process can be accurately described as the phase locking of oscillators to an external forcing and that non-reciprocal interactions between light bits can drastically modify this picture. Interactions lead to the convective motion of defects and to an unlocking as a collective emerging phenomenon.
Collapse
Affiliation(s)
- B Garbin
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France
| | - J Javaloyes
- Departament de Física and IAC-3, Universitat de les Illes Balears, C/ Valldemossa km 7.5, 07122 Mallorca, Spain
| | - G Tissoni
- Institut de Physique de Nice, Université Côte d'Azur, CNRS, F-06560 Valbonne, France
| | - S Barland
- Institut de Physique de Nice, Université Côte d'Azur, CNRS, F-06560 Valbonne, France
| |
Collapse
|