1
|
AbuGhanem M. Information processing at the speed of light. FRONTIERS OF OPTOELECTRONICS 2024; 17:33. [PMID: 39342550 PMCID: PMC11439970 DOI: 10.1007/s12200-024-00133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/05/2024] [Indexed: 10/01/2024]
Abstract
In recent years, quantum computing has made significant strides, particularly in light-based technology. The introduction of quantum photonic chips has ushered in an era marked by scalability, stability, and cost-effectiveness, paving the way for innovative possibilities within compact footprints. This article provides a comprehensive exploration of photonic quantum computing, covering key aspects such as encoding information in photons, the merits of photonic qubits, and essential photonic device components including light squeezers, quantum light sources, interferometers, photodetectors, and waveguides. The article also examines photonic quantum communication and internet, and its implications for secure systems, detailing implementations such as quantum key distribution and long-distance communication. Emerging trends in quantum communication and essential reconfigurable elements for advancing photonic quantum internet are discussed. The review further navigates the path towards establishing scalable and fault-tolerant photonic quantum computers, highlighting quantum computational advantages achieved using photons. Additionally, the discussion extends to programmable photonic circuits, integrated photonics and transformative applications. Lastly, the review addresses prospects, implications, and challenges in photonic quantum computing, offering valuable insights into current advancements and promising future directions in this technology.
Collapse
|
2
|
Luo W, Cao L, Shi Y, Wan L, Zhang H, Li S, Chen G, Li Y, Li S, Wang Y, Sun S, Karim MF, Cai H, Kwek LC, Liu AQ. Recent progress in quantum photonic chips for quantum communication and internet. LIGHT, SCIENCE & APPLICATIONS 2023; 12:175. [PMID: 37443095 DOI: 10.1038/s41377-023-01173-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 07/15/2023]
Abstract
Recent years have witnessed significant progress in quantum communication and quantum internet with the emerging quantum photonic chips, whose characteristics of scalability, stability, and low cost, flourish and open up new possibilities in miniaturized footprints. Here, we provide an overview of the advances in quantum photonic chips for quantum communication, beginning with a summary of the prevalent photonic integrated fabrication platforms and key components for integrated quantum communication systems. We then discuss a range of quantum communication applications, such as quantum key distribution and quantum teleportation. Finally, the review culminates with a perspective on challenges towards high-performance chip-based quantum communication, as well as a glimpse into future opportunities for integrated quantum networks.
Collapse
Affiliation(s)
- Wei Luo
- Quantum Science and Engineering Centre (QSec), Nanyang Technological University, Singapore, 639798, Singapore
| | - Lin Cao
- Quantum Science and Engineering Centre (QSec), Nanyang Technological University, Singapore, 639798, Singapore
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, 200092, Shanghai, China.
| | - Lingxiao Wan
- Quantum Science and Engineering Centre (QSec), Nanyang Technological University, Singapore, 639798, Singapore
| | - Hui Zhang
- Quantum Science and Engineering Centre (QSec), Nanyang Technological University, Singapore, 639798, Singapore
| | - Shuyi Li
- Quantum Science and Engineering Centre (QSec), Nanyang Technological University, Singapore, 639798, Singapore
| | - Guanyu Chen
- Quantum Science and Engineering Centre (QSec), Nanyang Technological University, Singapore, 639798, Singapore
| | - Yuan Li
- Quantum Science and Engineering Centre (QSec), Nanyang Technological University, Singapore, 639798, Singapore
| | - Sijin Li
- Quantum Science and Engineering Centre (QSec), Nanyang Technological University, Singapore, 639798, Singapore
| | - Yunxiang Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Shihai Sun
- School of Electronics and Communication Engineering, Sun Yat-Sen University, 518100, Shenzhen, Guangdong, China
| | - Muhammad Faeyz Karim
- Quantum Science and Engineering Centre (QSec), Nanyang Technological University, Singapore, 639798, Singapore.
| | - Hong Cai
- Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore, 138634, Singapore.
| | - Leong Chuan Kwek
- Quantum Science and Engineering Centre (QSec), Nanyang Technological University, Singapore, 639798, Singapore.
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore, 117543, Singapore.
- National Institute of Education, Nanyang Technological University, Singapore, 637616, Singapore.
| | - Ai Qun Liu
- Quantum Science and Engineering Centre (QSec), Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
3
|
Tavani G, Barri C, Mafakheri E, Franzò G, Celebrano M, Castriotta M, Di Giancamillo M, Ferrari G, Picciariello F, Foletto G, Agnesi C, Vallone G, Villoresi P, Sorianello V, Rotta D, Finazzi M, Bollani M, Prati E. Fully Integrated Silicon Photonic Erbium-Doped Nanodiode for Few Photon Emission at Telecom Wavelengths. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2344. [PMID: 36984223 PMCID: PMC10055106 DOI: 10.3390/ma16062344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Recent advancements in quantum key distribution (QKD) protocols opened the chance to exploit nonlaser sources for their implementation. A possible solution might consist in erbium-doped light emitting diodes (LEDs), which are able to produce photons in the third communication window, with a wavelength around 1550 nm. Here, we present silicon LEDs based on the electroluminescence of Er:O complexes in Si. Such sources are fabricated with a fully-compatible CMOS process on a 220 nm-thick silicon-on-insulator (SOI) wafer, the common standard in silicon photonics. The implantation depth is tuned to match the center of the silicon layer. The erbium and oxygen co-doping ratio is tuned to optimize the electroluminescence signal. We fabricate a batch of Er:O diodes with surface areas ranging from 1 µm × 1 µm to 50 µm × 50 µm emitting 1550 nm photons at room temperature. We demonstrate emission rates around 5 × 106 photons/s for a 1 µm × 1 µm device at room temperature using superconducting nanowire detectors cooled at 0.8 K. The demonstration of Er:O diodes integrated in the 220 nm SOI platform paves the way towards the creation of integrated silicon photon sources suitable for arbitrary-statistic-tolerant QKD protocols.
Collapse
Affiliation(s)
- Giulio Tavani
- L-NESS, Department of Physics, Politecnico di Milano, Via Francesco Anzani 42, I-22100 Como, Italy
| | - Chiara Barri
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
| | - Erfan Mafakheri
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
| | - Giorgia Franzò
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi (CNR-IMM), Via Santa Sofia 64, I-95123 Catania, Italy
| | - Michele Celebrano
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
| | - Michele Castriotta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
| | - Matteo Di Giancamillo
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
| | - Giorgio Ferrari
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
| | - Francesco Picciariello
- Department of Information Engineering, Università degli Studi di Padova, Via Gradenigo 6B, I-35131 Padua, Italy
| | - Giulio Foletto
- Department of Information Engineering, Università degli Studi di Padova, Via Gradenigo 6B, I-35131 Padua, Italy
| | - Costantino Agnesi
- Department of Information Engineering, Università degli Studi di Padova, Via Gradenigo 6B, I-35131 Padua, Italy
| | - Giuseppe Vallone
- Department of Information Engineering, Università degli Studi di Padova, Via Gradenigo 6B, I-35131 Padua, Italy
| | - Paolo Villoresi
- Department of Information Engineering, Università degli Studi di Padova, Via Gradenigo 6B, I-35131 Padua, Italy
| | - Vito Sorianello
- Photonic Networks and Technologies Lab., Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), I-56124 Pisa, Italy
| | - Davide Rotta
- CamGraPhIC Srl, Via G. Moruzzi 1, I-56124 Pisa, Italy
- TeCIP Institute, Scuola Superiore Sant’Anna, Via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Marco Finazzi
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
| | - Monica Bollani
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
| | - Enrico Prati
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
- Department of Physics “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, I-20133 Milan, Italy
| |
Collapse
|
4
|
Liu Q, Huang Y, Du Y, Zhao Z, Geng M, Zhang Z, Wei K. Advances in Chip-Based Quantum Key Distribution. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1334. [PMID: 37420354 PMCID: PMC9600573 DOI: 10.3390/e24101334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
Quantum key distribution (QKD), guaranteed by the principles of quantum mechanics, is one of the most promising solutions for the future of secure communication. Integrated quantum photonics provides a stable, compact, and robust platform for the implementation of complex photonic circuits amenable to mass manufacture, and also allows for the generation, detection, and processing of quantum states of light at a growing system's scale, functionality, and complexity. Integrated quantum photonics provides a compelling technology for the integration of QKD systems. In this review, we summarize the advances in integrated QKD systems, including integrated photon sources, detectors, and encoding and decoding components for QKD implements. Complete demonstrations of various QKD schemes based on integrated photonic chips are also discussed.
Collapse
Affiliation(s)
- Qiang Liu
- Guangxi Key Laboratory of Multimedia Communications and Network Technology, School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China
| | - Yinming Huang
- Guangxi Key Laboratory of Multimedia Communications and Network Technology, School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China
| | - Yongqiang Du
- Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhengeng Zhao
- Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Minming Geng
- Guangxi Key Laboratory of Multimedia Communications and Network Technology, School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China
| | - Zhenrong Zhang
- Guangxi Key Laboratory of Multimedia Communications and Network Technology, School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China
| | - Kejin Wei
- Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
5
|
Abstract
Multiphoton interference is an important phenomenon in modern quantum mechanics and experimental quantum optics, and it is fundamental for the development of quantum information science and technologies. Over the last three decades, several theoretical and experimental studies have been performed to understand the essential principles underlying such interference and to explore potential applications. Recently, the two-photon interference (TPI) of phase-randomized weak coherent states has played a key role in the realization of long-distance quantum communication based on the use of classical light sources. In this context, we investigated TPI experiments with weak coherent pulses at the single-photon level and quantitatively analyzed the results in terms of the single- and coincidence-counting rates and one- and two-photon interference-fringe shapes. We experimentally examined the Hong–Ou–Mandel-type TPI of phase-randomized weak coherent pulses to compare the TPI effect with that of correlated photons. Further experiments were also performed with two temporally- and spatially separated weak coherent pulses. Although the observed interference results, including the results of visibility and fringe shape, can be suitably explained by classical intensity correlation, the physics underlying the TPI effect needs to be interpreted as the interference between the two-photon states at the single-photon level within the utilized interferometer. The results of this study can provide a more comprehensive understanding of the TPI of coherent light at the single-photon level.
Collapse
|
6
|
The Performance of Satellite-Based Links for Measurement-Device-Independent Quantum Key Distribution. ENTROPY 2021; 23:e23081010. [PMID: 34441150 PMCID: PMC8393344 DOI: 10.3390/e23081010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 11/16/2022]
Abstract
Measurement-device-independent quantum key distribution (MDI-QKD) protocol has high practical value. Satellite-based links are useful to build long-distance quantum communication network. The model of satellite-based links for MDI-QKD was proposed but it lacks practicality. This work further analyzes the performance of it. First, MDI-QKD and satellite-based links model are introduced. Then considering the operation of the satellite the performance of their combination is studied under different weather conditions. The results may provide important references for combination of optical-fiber-based links on the ground and satellite-based links in space, which is helpful for large-scale quantum communication network.
Collapse
|
7
|
Abstract
The celebrated Hong-Ou-Mandel effect is the paradigm of two-particle quantum interference. It has its roots in the symmetry of identical quantum particles, as dictated by the Pauli principle. Two identical bosons impinging on a beam splitter (of transmittance 1/2) cannot be detected in coincidence at both output ports, as confirmed in numerous experiments with light or even matter. Here, we establish that partial time reversal transforms the beam splitter linear coupling into amplification. We infer from this duality the existence of an unsuspected two-boson interferometric effect in a quantum amplifier (of gain 2) and identify the underlying mechanism as time-like indistinguishability. This fundamental mechanism is generic to any bosonic Bogoliubov transformation, so we anticipate wide implications in quantum physics.
Collapse
Affiliation(s)
- Nicolas J. Cerf
- Centre for Quantum Information and Communication, Ecole polytechnique de Bruxelles, Université libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Michael G. Jabbour
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
8
|
Unidimensional Continuous-Variable Quantum Key Distribution with Untrusted Detection under Realistic Conditions. ENTROPY 2019. [PMCID: PMC7514444 DOI: 10.3390/e21111100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A unidimensional continuous-variable quantum key distribution protocol with untrusted detection is proposed, where the two legitimate partners send unidimensional modulated or Gaussian-modulated coherent states to an untrusted third party, i.e., Charlie, to realize the measurement. Compared with the Gaussian-modulated coherent-state protocols, the unidimensional modulated protocols take the advantage of easy modulation, low cost, and only a small number of random numbers required. Security analysis shows that the proposed protocol cannot just defend all detectors side channels, but also achieve great performance under certain conditions. Specifically, three cases are discussed in detail, including using unidimensional modulated coherent states in Alice’s side, in Bob’s side, and in both sides under realistic conditions, respectively. Under the three conditions, we derive the expressions of the secret key rate and give the optimal gain parameters. It is found that the optimal performance of the protocol is achieved by using unidimensional modulated coherent states in both Alice’s and Bob’s side. The resulting protocol shows the potential for long-distance secure communication using the unidimensional quantum key distribution protocol with simple modulation method and untrusted detection under realistic conditions.
Collapse
|
9
|
Semenenko H, Sibson P, Thompson MG, Erven C. Interference between independent photonic integrated devices for quantum key distribution. OPTICS LETTERS 2019; 44:275-278. [PMID: 30644879 DOI: 10.1364/ol.44.000275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
Advances in quantum computing are a rapidly growing threat towards modern cryptography. Quantum key distribution (QKD) provides long-term security without assuming the computational power of an adversary. However, inconsistencies between theory and experiment have raised questions in terms of real-world security, while large and power-hungry commercial systems have slowed wide-scale adoption. Measurement-device-independent QKD (MDI-QKD) provides a method of sharing secret keys that removes all possible detector side-channel attacks which drastically improves security claims. In this Letter, we experimentally demonstrate a key step required to perform MDI-QKD with scalable integrated devices. We show Hong-Ou-Mandel interference between weak coherent states carved from two independent indium phosphide transmitters at 431 MHz with a visibility of 46.5±0.8%. This Letter demonstrates the feasibility of using integrated devices to lower a major barrier towards the adoption of QKD in metropolitan networks.
Collapse
|