1
|
Rabih AAS, Sharma S, Pita J, Ménard M, Nabki F. Two-axis MEMS positioner for waveguide alignment in silicon nitride photonic integrated circuits. OPTICS EXPRESS 2023; 31:30797-30814. [PMID: 37710615 DOI: 10.1364/oe.500102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/19/2023] [Indexed: 09/16/2023]
Abstract
Alignment is critical for efficient integration of photonic integrated circuits (PICs), and microelectromechanical systems (MEMS) actuators have shown potential to tackle this issue. In this work, we report MEMS positioning actuators designed with the ultimate goal of aligning silicon nitride (SiN) waveguides either to different outputs within a SiN chip or to active chips, such as lasers and semiconductor optical amplifiers. For the proof-of-concept, suspended SiN waveguides implemented on a silicon-on-insulator wafer were displaced horizontally in the direction of light propagation to close an initial gap of 6.92 µm and couple the light to fixed output waveguides located on a static section of the chip. With the gap closed, the suspended waveguides showed ∼ 345 nm out-of-plane misalignment with respect to the fixed waveguides. The suspended waveguides can be displaced laterally by more than ±2 µm. When the waveguides are aligned and the gap closed, an average loss of -1.6 ± 0.06 dB was achieved, whereas when the gap is closed with a ± 2 µm lateral displacement, a maximum average loss of ∼ -19.00 ± 0.62 dB was obtained. The performance of this positioner does not only pave the way for active chip alignment, but it could also be considered for optical switching applications.
Collapse
|
2
|
Hansen SE, Arregui G, Babar AN, Albrechtsen M, Vosoughi Lahijani B, Christiansen RE, Stobbe S. Efficient low-reflection fully etched vertical free-space grating couplers for suspended silicon photonics. OPTICS EXPRESS 2023; 31:17424-17436. [PMID: 37381477 DOI: 10.1364/oe.485356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/27/2023] [Indexed: 06/30/2023]
Abstract
We design and fabricate a grating coupler for interfacing suspended silicon photonic membranes with free-space optics while being compatible with single-step lithography and etching in 220 nm silicon device layers. The grating coupler design simultaneously and explicitly targets both high transmission into a silicon waveguide and low reflection back into the waveguide by means of a combination of a two-dimensional shape-optimization step followed by a three-dimensional parameterized extrusion. The designed coupler has a transmission of -6.6 dB (21.8 %), a 3 dB bandwidth of 75 nm, and a reflection of -27 dB (0.2 %). We experimentally validate the design by fabricating and optically characterizing a set of devices that allow the subtraction of all other sources of transmission losses as well as the inference of back-reflections from Fabry-Pérot fringes, and we measure a transmission of 19 % ± 2 %, a bandwidth of 65 nm and a reflection of 1.0 % ± 0.8 %.
Collapse
|
3
|
Sharif Azadeh S, Mak JCC, Chen H, Luo X, Chen FD, Chua H, Weiss F, Alexiev C, Stalmashonak A, Jung Y, Straguzzi JN, Lo GQ, Sacher WD, Poon JKS. Microcantilever-integrated photonic circuits for broadband laser beam scanning. Nat Commun 2023; 14:2641. [PMID: 37156850 PMCID: PMC10167362 DOI: 10.1038/s41467-023-38260-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
Laser beam scanning is central to many applications, including displays, microscopy, three-dimensional mapping, and quantum information. Reducing the scanners to microchip form factors has spurred the development of very-large-scale photonic integrated circuits of optical phased arrays and focal plane switched arrays. An outstanding challenge remains to simultaneously achieve a compact footprint, broad wavelength operation, and low power consumption. Here, we introduce a laser beam scanner that meets these requirements. Using microcantilevers embedded with silicon nitride nanophotonic circuitry, we demonstrate broadband, one- and two-dimensional steering of light with wavelengths from 410 nm to 700 nm. The microcantilevers have ultracompact ~0.1 mm2 areas, consume ~31 to 46 mW of power, are simple to control, and emit a single light beam. The microcantilevers are monolithically integrated in an active photonic platform on 200-mm silicon wafers. The microcantilever-integrated photonic circuits miniaturize and simplify light projectors to enable versatile, power-efficient, and broadband laser scanner microchips.
Collapse
Affiliation(s)
- Saeed Sharif Azadeh
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany.
| | - Jason C C Mak
- University of Toronto, Department of Electrical and Computer Engineering, 10 King's College Road, ON, M5S 3G4, Toronto, Canada
| | - Hong Chen
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Xianshu Luo
- Advanced Micro Foundry Pte. Ltd., 11 Science Park Road, Singapore Science Park II, Singapore, 117685, Singapore
| | - Fu-Der Chen
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- University of Toronto, Department of Electrical and Computer Engineering, 10 King's College Road, ON, M5S 3G4, Toronto, Canada
| | - Hongyao Chua
- Advanced Micro Foundry Pte. Ltd., 11 Science Park Road, Singapore Science Park II, Singapore, 117685, Singapore
| | - Frank Weiss
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Christopher Alexiev
- University of Toronto, Department of Electrical and Computer Engineering, 10 King's College Road, ON, M5S 3G4, Toronto, Canada
| | - Andrei Stalmashonak
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Youngho Jung
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - John N Straguzzi
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Guo-Qiang Lo
- Advanced Micro Foundry Pte. Ltd., 11 Science Park Road, Singapore Science Park II, Singapore, 117685, Singapore
| | - Wesley D Sacher
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Joyce K S Poon
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany.
- University of Toronto, Department of Electrical and Computer Engineering, 10 King's College Road, ON, M5S 3G4, Toronto, Canada.
| |
Collapse
|
4
|
Wang J, Zhang G, You Z. Improved sampling scheme for LiDAR in Lissajous scanning mode. MICROSYSTEMS & NANOENGINEERING 2022; 8:64. [PMID: 35721371 PMCID: PMC9198010 DOI: 10.1038/s41378-022-00397-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/23/2022] [Accepted: 03/02/2022] [Indexed: 06/15/2023]
Abstract
MEMS light detection and ranging (LiDAR) is becoming an indispensable sensor in vehicle environment sensing systems due to its low cost and high performance. The beam scanning trajectory, sampling scheme and gridding are the key technologies of MEMS LiDAR imaging. In Lissajous scanning mode, this paper improves the sampling scheme, through which a denser Cartesian grid of point cloud data at the same scanning frequency can be obtained. By summarizing the rules of the Cartesian grid, a general sampling scheme independent of the beam scanning trajectory patterns is proposed. Simulation and experiment results show that compared with the existing sampling scheme, the resolution and the number of points per frame are both increased by 2 times with the same hardware configuration and scanning frequencies for a MEMS scanning mirror (MEMS-SM). This is beneficial for improving the point cloud imaging performance of MEMS LiDAR.
Collapse
Affiliation(s)
- Junya Wang
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Gaofei Zhang
- Department of Precision Instrument, Tsinghua University, 10084 Beijing, China
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, 10084 Beijing, China
| | - Zheng You
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
- Department of Precision Instrument, Tsinghua University, 10084 Beijing, China
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, 10084 Beijing, China
| |
Collapse
|
5
|
Abstract
Integrated optical phased arrays can be used for beam shaping and steering with a small footprint, lightweight, high mechanical stability, low price, and high-yield, benefiting from the mature CMOS-compatible fabrication. This paper reviews the development of integrated optical phased arrays in recent years. The principles, building blocks, and configurations of integrated optical phased arrays for beam forming and steering are presented. Various material platforms can be used to build integrated optical phased arrays, e.g., silicon photonics platforms, III/V platforms, and III–V/silicon hybrid platforms. Integrated optical phased arrays can be implemented in the visible, near-infrared, and mid-infrared spectral ranges. The main performance parameters, such as field of view, beamwidth, sidelobe suppression, modulation speed, power consumption, scalability, and so on, are discussed in detail. Some of the typical applications of integrated optical phased arrays, such as free-space communication, light detection and ranging, imaging, and biological sensing, are shown, with future perspectives provided at the end.
Collapse
|
6
|
Li Z, Zang Z, Fu HY, Luo Y, Han Y. Virtually imaged phased-array-based 2D nonmechanical beam-steering device for FMCW LiDAR. APPLIED OPTICS 2021; 60:2177-2189. [PMID: 33690313 DOI: 10.1364/ao.414128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Nonmechanical beam-steering devices are of importance to achieve fast, compact, and reliable LiDAR. We propose a 2D nonmechanical beam-steering device based on a virtually imaged phased array (VIPA) for frequency-modulated continuous-wave (FMCW) LiDAR. In the design, 2D nonmechanical beam steering and high-resolution FMCW ranging can be achieved at the same time by wavelength tuning. The design formulas of the VIPA-based 2D disperser are greatly simplified by introducing appropriate approximation, and a feasible design procedure is proposed for the first time, to the best of our knowledge. Based on the proposed method, several design examples with different optimal properties are exhibited.
Collapse
|
7
|
Frøvik N, Malekzai BA, Øvsthus K. Utilising LiDAR for fall detection. Healthc Technol Lett 2021; 8:11-17. [PMID: 33680479 PMCID: PMC7916984 DOI: 10.1049/htl2.12001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/29/2020] [Accepted: 11/25/2020] [Indexed: 11/21/2022] Open
Abstract
Autonomous driving generates several low‐cost technologies, such as light detection and ranging (LiDAR). Due to this, the LiDAR technology has experienced impressive performance improvements. Our ambition is to capitalise on this development, where LiDAR is considered as the enabling technology for a non‐invasive monitoring system for securing elder persons in their home. A motivation for technology‐based securing of elder persons is that many countries experience a demographic change. Traditional personal care by care worker or re‐location to special homes of elder persons does not scale due to the shrinking fraction of the working population. Technology can reduce some of the burden. This article proposes and assesses technology for securing a person's home. However, securing a person, based on monitoring, requires careful design because the technology should be non‐invasive, reliable and low cost. LiDAR technology offers several crucial qualities that meet these system requirements. This article provides a proof of concept for a low‐cost, non‐invasive LiDAR‐based monitoring system. Our proposed system can detect if a person has fallen, and it can trigger an alarm to the care services when required. We emphasise especially that our monitoring solution can operate in the bathroom and even in the shower.
Collapse
Affiliation(s)
- Nikolai Frøvik
- Department of Computer Science Electrical Engineering and Mathematical Sciences Western Norway University of Applied Sciences Bergen Norway
| | - Bashir A Malekzai
- Department of Computer Science Electrical Engineering and Mathematical Sciences Western Norway University of Applied Sciences Bergen Norway
| | - Knut Øvsthus
- Department of Computer Science Electrical Engineering and Mathematical Sciences Western Norway University of Applied Sciences Bergen Norway
| |
Collapse
|
8
|
Cao X, Qiu G, Wu K, Li C, Chen J. Lidar system based on lens assisted integrated beam steering. OPTICS LETTERS 2020; 45:5816-5819. [PMID: 33057292 DOI: 10.1364/ol.401486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
We present a demonstration of solid-state light detection and ranging (Lidar) at 1550 nm by applying integrated two-dimensional (2D) lens assisted beam-steering (LABS) technology. LABS has O(logN) power consumption for N antennas and allows a simple control complexity with digital signal input. A time-of-flight coaxial Lidar is demonstrated with this beam-steering technology. The integrated beam-steering chip and lens both transmit and receive the light. The Lidar has 16 scanning angles, 19.5 m ranging distance, and a 3 cm ranging error. This Letter proves the potential application of 2D LABS in Lidar and paves the way for a fully integrated Lidar system.
Collapse
|
9
|
Tsoukalas K, Vosoughi Lahijani B, Stobbe S. Impact of Transduction Scaling Laws on Nanoelectromechanical Systems. PHYSICAL REVIEW LETTERS 2020; 124:223902. [PMID: 32567909 DOI: 10.1103/physrevlett.124.223902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
We study the electromechanical transduction in nanoelectromechanical actuators and show that the differences in scaling laws for electrical and mechanical effects lead to an overall nontrivial miniaturization behavior. In particular, the previously neglected fringing fields considerably increase electrical forces and improve the stability of nanoscale actuators. This shows that electrostatics does not pose any limitations to the miniaturization of electromechanical systems; in fact, in several respects, nanosystems outperform their microscale counterparts. As a specific example, we consider in-plane actuation of ultrathin slabs and show that devices consisting of a few layers of graphene are feasible, implying that electromechanical resonators operating beyond 40 GHz are possible with currently available technology.
Collapse
Affiliation(s)
- Konstantinos Tsoukalas
- Department of Photonics Engineering, DTU Fotonik, Technical University of Denmark, Building 343, DK-2800 Kgs. Lyngby, Denmark
| | - Babak Vosoughi Lahijani
- Department of Photonics Engineering, DTU Fotonik, Technical University of Denmark, Building 343, DK-2800 Kgs. Lyngby, Denmark
| | - Søren Stobbe
- Department of Photonics Engineering, DTU Fotonik, Technical University of Denmark, Building 343, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
10
|
Li C, Cao X, Wu K, Li X, Chen J. Lens-based integrated 2D beam-steering device with defocusing approach and broadband pulse operation for Lidar application. OPTICS EXPRESS 2019; 27:32970-32983. [PMID: 31878372 DOI: 10.1364/oe.27.032970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/21/2019] [Indexed: 05/20/2023]
Abstract
We propose an integrated two-dimensional beam-steering device based on an on-chip silicon-nitride switch/emitter structure and off-chip lens for light detection and ranging (Lidar) application at 1550 nm. In this device, light is guided by a 1 × 16 switch to one grating emitter in a 4 × 4 grating-emitter array. The beam from the grating emitter is collimated and steered by a fixed lens. By changing the grating emitter that emits light, different beam-steering angle can be achieved. A divergence angle of 0.06° and a field of view of 2.07° × 4.12° in the far field are achieved. The device has O(log2N) power consumption for N emitters, allows digital control and achieves 18 dB background suppression. Blind-zone elimination and broadband operation are also achieved in our lens-based beam-steering device. Therefore, it is suitable for broadband solid-state Lidar application.
Collapse
|