1
|
Tsiplakova EG, Perraud JB, Chopard A, Guillet JP, Mounaix P, Petrov NV. Terahertz diffractive imaging with saturated data inpainting. OPTICS LETTERS 2023; 48:5463-5466. [PMID: 37910678 DOI: 10.1364/ol.499478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/11/2023] [Indexed: 11/03/2023]
Abstract
Multiplane iterative phase retrieval is a promising approach to diffraction imaging, which accurately determines the topographic and internal characteristics of various objects. Nevertheless, the detection systems used often have a limited dynamic range, resulting in overexposure of recorded intensity distributions. In this Letter, we present a novel, to the best of our knowledge, reconstruction algorithm that inpaints saturated areas on the measured intensity datasets and reliably retrieves wave complex amplitude. The proposed technique can be used in various spectral ranges, while we have tested it in the terahertz frequency range, where the problem of sources and detectors is most acute. We show that retrieved amplitude and phase distributions have a quality comparable to that of the images reconstructed from the reference high dynamic range technique. Herewith, the proposed approach seriously simplifies the process of data acquisition, what expands the possibilities in the design of measurement tools and studies of dynamic scenes.
Collapse
|
2
|
Moon Y, Lee H, Jung J, Han H. Direct visualization of carbon black aggregates in nitrile butadiene rubber by THz near-field microscope. Sci Rep 2023; 13:7846. [PMID: 37188716 DOI: 10.1038/s41598-023-34565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/03/2023] [Indexed: 05/17/2023] Open
Abstract
The use of filling agents for rubber reinforcement is beneficial in various industrial applications, and several experimental methods have been used to study the effect of fillers on rubber. However, due to the lack of a suitable imaging technique, filler dispersion and distribution in rubber cannot be easily displayed. Thus, we utilize the THz near-field microscope (THz-NFM) to directly visualize the distribution of carbon black (CB) aggregates in nitrile butadiene rubber (NBR). The THz time-domain spectroscopy (THz-TDS) was used to evaluate the optical properties of the NBR specimens. Results revealed significant indices contrast between CB and NBR at the THz regime, which was attributed to the variation in electrical conductivities. The micrographs of NBR in the THz-NFM revealed the distribution of CB aggregates. The area fraction (AF) of the CB aggregates was calculated using a binary thresholding algorithm to compare with the transmission electron microscope method. Both methods yielded comparable AF values, suggesting, for the first time, that CB can be detected in the NBR without preprocessing the specimens.
Collapse
Affiliation(s)
- Youngil Moon
- Department of Electrical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Haneol Lee
- Department of Electrical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Jaekap Jung
- Hydrogen Energy Materials Research Center, Korea Research Institute of Standards and Science, Daejeon, 34113, South Korea.
| | - Haewook Han
- Hydrogen Energy Materials Research Center, Korea Research Institute of Standards and Science, Daejeon, 34113, South Korea.
| |
Collapse
|
3
|
Bodrov S, Murzanev A, Korytin A, Stepanov A. Terahertz-field-induced optical luminescence from graphene for imaging and near-field visualization of a terahertz field. OPTICS LETTERS 2021; 46:5946-5949. [PMID: 34851930 DOI: 10.1364/ol.442904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Graphene-based terahertz (THz)-field-induced optical luminescence (GB-TFIOL) is proposed in this Letter as a novel, to the best of our knowledge, THz imaging technique. We experimentally show that two-dimensional distribution of the optical luminescence from a monolayer graphene traces the beam profile of the pump THz radiation. The atomic thickness of a graphene detector, as well as a strong nonlinear dependence of optical luminescence on THz field, make the GB-TFIOL technique a useful tool for near-field mapping. A proof-of-principle experiment of the visualization of local THz-field enhancement near a metal tip with a 2 µm radius curvature was performed.
Collapse
|
4
|
Ovchinnikov AV, Chefonov OV, Agranat MB, Kudryavtsev AV, Mishina ED, Yurkevich AA. Free-carrier generation dynamics induced by ultrashort intense terahertz pulses in silicon. OPTICS EXPRESS 2021; 29:26093-26102. [PMID: 34614922 DOI: 10.1364/oe.430752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
We report the results of experimental studies and numerical simulation of the dynamics of the electron-hole pairs formation in silicon under the action of a two-period terahertz pulse with a maximum electric field strength of up to 23 MV/cm. It is shown that an inhomogeneous distribution of the charge carrier concentration over the depth of the silicon sample is formed, which persists for several microseconds. This inhomogeneity is formed due to a sharp increase in the rate of filling the conduction band with free carriers in the subsurface input layer of the silicon wafer, which occurs at a field strength above 15 MV/cm.
Collapse
|
5
|
Qi L, Minkevičius L, Urbanowicz A, Švigelj A, Grigelionis I, Kašalynas I, Trontelj J, Valušis G. Antenna-Coupled Titanium Microbolometers: Application for Precise Control of Radiation Patterns in Terahertz Time-Domain Systems. SENSORS 2021; 21:s21103510. [PMID: 34070029 PMCID: PMC8158144 DOI: 10.3390/s21103510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022]
Abstract
An ability of lensless titanium-based antenna coupled microbolometers (Ti-μbolometers) operating at room temperature to monitor precisely radiation patterns in terahertz time-domain spectroscopy (THz-TDS) systems are demonstrated. To provide comprehensive picture, two different THz-TDS systems and Ti-μbolometers coupled with three different antennas-narrowband dipole antennas for 0.3 THz, 0.7 THz and a log-periodic antenna for wideband detection-were selected for experiments. Radiation patterns, spatial beam profiles and explicit beam evolution along the propagation axis are investigated; polarization-sensitive properties under various THz emitter power ranges are revealed. It was found that the studied Ti-μbolometers are convenient lensless sensors suitable to discriminate and control THz radiation pattern features in various wideband THz-TDS systems.
Collapse
Affiliation(s)
- Liang Qi
- Center for Physical Sciences and Technology (FTMC), Department of Optoelectronics, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania; (L.Q.); (L.M.); (A.U.); (I.G.); (I.K.)
| | - Linas Minkevičius
- Center for Physical Sciences and Technology (FTMC), Department of Optoelectronics, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania; (L.Q.); (L.M.); (A.U.); (I.G.); (I.K.)
| | - Andrzej Urbanowicz
- Center for Physical Sciences and Technology (FTMC), Department of Optoelectronics, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania; (L.Q.); (L.M.); (A.U.); (I.G.); (I.K.)
| | - Andrej Švigelj
- Laboratory for Microelectronics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia; (A.Š.); (J.T.)
| | - Ignas Grigelionis
- Center for Physical Sciences and Technology (FTMC), Department of Optoelectronics, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania; (L.Q.); (L.M.); (A.U.); (I.G.); (I.K.)
| | - Irmantas Kašalynas
- Center for Physical Sciences and Technology (FTMC), Department of Optoelectronics, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania; (L.Q.); (L.M.); (A.U.); (I.G.); (I.K.)
- Luvitera Ltd., Savanorių Ave. 235, LT-02300 Vilnius, Lithuania
| | - Janez Trontelj
- Laboratory for Microelectronics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia; (A.Š.); (J.T.)
| | - Gintaras Valušis
- Center for Physical Sciences and Technology (FTMC), Department of Optoelectronics, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania; (L.Q.); (L.M.); (A.U.); (I.G.); (I.K.)
- Correspondence:
| |
Collapse
|
6
|
Wang L, Xiao R, Yang S, Qiu H, Shen Z, Lv P, Zhang C, Hu W, Nakajima M, Jin B, Lu Y. 3D porous graphene-assisted capsulized cholesteric liquid crystals for terahertz power visualization. OPTICS LETTERS 2020; 45:5892-5895. [PMID: 33057312 DOI: 10.1364/ol.405695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
We demonstrate a high-efficiency visualized terahertz (THz) power meter based on the THz-photothermochromism of capsulized cholesteric liquid crystals (CCLCs) embedded in three-dimensional porous graphene (3DPG). The graphene is a broadband perfect absorber for THz radiation and transfers heat efficiently, and its black background is beneficial for color measurement. Quantitative visualization of THz intensity up to 2.8×102mW/cm2 is presented. The minimal detectable THz power is 0.009 mW. With multi-microcapsule analysis, the relationship between THz power and the average hue value of CCLCs achieves linearity. The device can convert THz radiation to visible light and is lightweight, cheap, and easy to use.
Collapse
|
7
|
Novelli F, Guchhait B, Havenith M. Towards Intense THz Spectroscopy on Water: Characterization of Optical Rectification by GaP, OH1, and DSTMS at OPA Wavelengths. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1311. [PMID: 32183131 PMCID: PMC7143731 DOI: 10.3390/ma13061311] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/02/2022]
Abstract
Water is the most prominent solvent. The unique properties of water are rooted in the dynamical hydrogen-bonded network. While TeraHertz (THz) radiation can probe directly the collective molecular network, several open issues remain about the interpretation of these highly anharmonic, coupled bands. In order to address this problem, we need intense THz radiation able to drive the liquid into the nonlinear response regime. Firstly, in this study, we summarize the available brilliant THz sources and compare their emission properties. Secondly, we characterize the THz emission by Gallium Phosphide (GaP), 2-{3-(4-hydroxystyryl)-5,5-dimethylcyclohex-2-enylidene}malononitrile (OH1), and 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate (DSTMS) crystals pumped by an amplified near-infrared (NIR) laser with tunable wavelength. We found that both OH1 as well as DSTMS could convert NIR laser radiation between 1200 and 2500 nm into THz radiation with high efficiency (> 2 × 10-4), resulting in THz peak fields exceeding 0.1 MV/cm for modest pump excitation (~ mJ/cm2). DSTMS emits the broadest spectrum, covering the entire bandwidth of our detector from ca. 0.5 to ~7 THz, also at a laser wavelength of 2100 nm. Future improvements will require handling the photothermal damage of these delicate organic crystals, and increasing the THz frequency.
Collapse
Affiliation(s)
- Fabio Novelli
- Department of Physical Chemistry II, Ruhr University Bochum, 44801 Bochum, Germany;
| | - Biswajit Guchhait
- Department of Physical Chemistry II, Ruhr University Bochum, 44801 Bochum, Germany;
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh 201314, India
| | - Martina Havenith
- Department of Physical Chemistry II, Ruhr University Bochum, 44801 Bochum, Germany;
| |
Collapse
|