1
|
Hoghooghi N, Xing S, Chang P, Lesko D, Lind A, Rieker G, Diddams S. Broadband 1-GHz mid-infrared frequency comb. LIGHT, SCIENCE & APPLICATIONS 2022; 11:264. [PMID: 36071054 PMCID: PMC9452668 DOI: 10.1038/s41377-022-00947-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/18/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Mid-infrared (MIR) spectrometers are invaluable tools for molecular fingerprinting and hyper-spectral imaging. Among the available spectroscopic approaches, GHz MIR dual-comb absorption spectrometers have the potential to simultaneously combine the high-speed, high spectral resolution, and broad optical bandwidth needed to accurately study complex, transient events in chemistry, combustion, and microscopy. However, such a spectrometer has not yet been demonstrated due to the lack of GHz MIR frequency combs with broad and full spectral coverage. Here, we introduce the first broadband MIR frequency comb laser platform at 1 GHz repetition rate that achieves spectral coverage from 3 to 13 µm. This frequency comb is based on a commercially available 1.56 µm mode-locked laser, robust all-fiber Er amplifiers and intra-pulse difference frequency generation (IP-DFG) of few-cycle pulses in χ(2) nonlinear crystals. When used in a dual comb spectroscopy (DCS) configuration, this source will simultaneously enable measurements with μs time resolution, 1 GHz (0.03 cm-1) spectral point spacing and a full bandwidth of >5 THz (>166 cm-1) anywhere within the MIR atmospheric windows. This represents a unique spectroscopic resource for characterizing fast and non-repetitive events that are currently inaccessible with other sources.
Collapse
Affiliation(s)
- Nazanin Hoghooghi
- Precision Laser Diagnostics Laboratory, University of Colorado, Boulder, CO, 80309, USA.
| | - Sida Xing
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA
| | - Peter Chang
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA
| | - Daniel Lesko
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA
- Department of Chemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Alexander Lind
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA
| | - Greg Rieker
- Precision Laser Diagnostics Laboratory, University of Colorado, Boulder, CO, 80309, USA
| | - Scott Diddams
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA.
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA.
- Electrical Computer and Energy Engineering, University of Colorado, Boulder, CO, 80309, USA.
| |
Collapse
|
2
|
Nutt KJ, Hempler N, Maker GT, Malcolm GPA, Padgett MJ, Gibson GM. Developing a portable gas imaging camera using highly tunable active-illumination and computer vision. OPTICS EXPRESS 2020; 28:18566-18576. [PMID: 32672155 DOI: 10.1364/oe.389634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
We have developed a portable gas imaging camera for identifying methane leaks in real-time. The camera uses active illumination from distributed feedback InGaAs laser diodes tuned to the 1653 nm methane absorption band. An InGaAs focal plane sensor array images the active illumination. The lasers are driven off resonance every alternate frame so that computer vision can extract the gas data. A colour image is captured simultaneously and the data is superimposed to guide the operator. Image stabilisation has been employed to allow detection with a moving camera, successfully imaging leaks from mains pressure gas supplies at a range of up to 3 m and flow rates as low as 0.05 L min-1.
Collapse
|
3
|
Thomas JW, Polak A, Bonner GM, Logie D, Dunn MH, Matthews JCF, Stothard DJM. Widely-tunable mid-infrared ring cavity pump-enhanced OPO and application in photo-thermal interferometric trace ethane detection. OPTICS EXPRESS 2020; 28:4550-4562. [PMID: 32121689 DOI: 10.1364/oe.385603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
The development of a broadly and accurately tunable single-frequency mid-infrared laser source and its application to a sensitive laser absorption detection method are described. Photo-thermal interferometric spectroscopy is employed as a phase-sensitive method to detect the minute refractive index change caused by the heating of a gas under laser radiation. A separate probe beam allows for the spectrally-interesting mid-infrared region to be examined whilst utilizing low cost, high detectivity photodetectors in the visible/near-infrared region. We also describe the implementation of a Sagnac interferometer to minimize the effects of environmental perturbation and provide inherent passive stability. A continuous-wave ring-cavity pump-enhanced OPO has been developed to provide excitation light from 3-4 µm at 140 mW with the ability to mode-hop tune continuously over 90 cm-1 in 0.07 cm-1 steps. Complementary use of both detection apparatus and excitation source has allowed for presence of ethane to be detected down to 200 parts per billion.
Collapse
|
4
|
Gibson GM, Sun B, Edgar MP, Phillips DB, Hempler N, Maker GT, Malcolm GPA, Padgett MJ. Real-time imaging of methane gas leaks using a single-pixel camera. OPTICS EXPRESS 2017; 25:2998-3005. [PMID: 28241517 DOI: 10.1364/oe.25.002998] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We demonstrate a camera which can image methane gas at video rates, using only a single-pixel detector and structured illumination. The light source is an infrared laser diode operating at 1.651μm tuned to an absorption line of methane gas. The light is structured using an addressable micromirror array to pattern the laser output with a sequence of Hadamard masks. The resulting backscattered light is recorded using a single-pixel InGaAs detector which provides a measure of the correlation between the projected patterns and the gas distribution in the scene. Knowledge of this correlation and the patterns allows an image to be reconstructed of the gas in the scene. For the application of locating gas leaks the frame rate of the camera is of primary importance, which in this case is inversely proportional to the square of the linear resolution. Here we demonstrate gas imaging at ~25 fps while using 256 mask patterns (corresponding to an image resolution of 16×16). To aid the task of locating the source of the gas emission, we overlay an upsampled and smoothed image of the low-resolution gas image onto a high-resolution color image of the scene, recorded using a standard CMOS camera. We demonstrate for an illumination of only 5mW across the field-of-view imaging of a methane gas leak of ~0.2 litres/minute from a distance of ~1 metre.
Collapse
|
5
|
Li C, Chen N, Wei X, Kang J, Li B, Tan S, Song L, Wong KKY. High-power widely tunable all-fiber thulium-assisted optical parametric oscillator at SWIR band. OPTICS LETTERS 2016; 41:5258-5261. [PMID: 27842107 DOI: 10.1364/ol.41.005258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel short-wave infrared (SWIR) all-fiber thulium-assisted optical parametric oscillator (TAOPO) that exploits jointly optical parametric conversion and thulium amplification in a highly nonlinear fiber (HNLF) and thulium-doped fiber (TDF) is demonstrated. This is implemented through constructing a joint fiber line by directly fusion splicing 50 m HNLF with 1.5 m TDF. Incorporating a bidirectional-pumping scheme, i.e., forward-pumped by a step-tuned C-band pulsed laser, and simultaneously backward-pumped by an L-band continuous-wave laser, this TAOPO produces a pulsed SWIR laser at output power higher than 200 mW, signal-to-noise ratio over 40 dB, and wavelength tuning range beyond 150 nm from 1815 to 1968 nm. Via separate characterization of the HNLF and TDF joint fiber line, the tunability of the current TAOPO to shorter wavelength is only limited by the employed fiber components, while higher power could be realized by increasing the backward pump power. This TAOPO could be a promising platform for the generation of a highly functional SWIR source that facilitates applications such as bond-selective imaging of deep tissue.
Collapse
|
6
|
Maidment L, Schunemann PG, Reid DT. Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator. OPTICS LETTERS 2016; 41:4261-4. [PMID: 27628372 DOI: 10.1364/ol.41.004261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We report a femtosecond optical parametric oscillator (OPO) based on the new semiconductor gain material orientation-patterned gallium phosphide (OP-GaP), which enables the production of high-repetition-rate femtosecond pulses spanning 5-12 μm with average powers in the few to tens of milliwatts range. This is the first example of a broadband OPO operating across the molecular fingerprint region, and we demonstrate its potential by conducting broadband Fourier-transform spectroscopy using water vapor and a polystyrene reference standard.
Collapse
|
7
|
Kehlet LM, Tidemand-Lichtenberg P, Dam JS, Pedersen C. Infrared upconversion hyperspectral imaging. OPTICS LETTERS 2015; 40:938-41. [PMID: 25768151 DOI: 10.1364/ol.40.000938] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this Letter, hyperspectral imaging in the mid-IR spectral region is demonstrated based on nonlinear frequency upconversion and subsequent imaging using a standard Si-based CCD camera. A series of upconverted images are acquired with different phase match conditions for the nonlinear frequency conversion process. From this, a sequence of monochromatic images in the 3.2-3.4 μm range is generated. The imaged object consists of a standard United States Air Force resolution target combined with a polystyrene film, resulting in the presence of both spatial and spectral information in the infrared image.
Collapse
|
8
|
Zhang Z, Clewes RJ, Howle CR, Reid DT. Active FTIR-based stand-off spectroscopy using a femtosecond optical parametric oscillator. OPTICS LETTERS 2014; 39:6005-8. [PMID: 25361141 DOI: 10.1364/ol.39.006005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We presented the first demonstration of stand-off Fourier transform infrared (FTIR) spectroscopy using a broadband mid-infrared optical parametric oscillator, with spectral coverage over 2700-3200 cm⁻¹. For vapor-phase water and nitromethane (NM), stand-off spectra was recorded using a concrete target at from 1-m to 2-m range and showed good agreement with reference spectra, and in NM a normalized detection sensitivity of 15 ppm·m·Hz(-1/2) was obtained. Spectra from 50-μL droplets of liquid thiodiglycol were detected at a stand-off distance of 2 m from aluminum, concrete and painted metal surfaces. Our results imply that OPO-based active FTIR stand-off spectroscopy is a promising new technique for the detection of industrial pollutants and the identification of chemical agents, explosives or other hazardous materials.
Collapse
|
9
|
Sandsten J, Andersson M. Volume flow calculations on gas leaks imaged with infrared gas-correlation. OPTICS EXPRESS 2012; 20:20318-20329. [PMID: 23037083 DOI: 10.1364/oe.20.020318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Two methods for volume flow calculation from images of methane leakages to the atmosphere are presented. The images contain calibrated gas concentration × path length pixel information, and are processed with a block matching method and a theoretical velocity field method. Results from known methane flow in two laboratory setups and one unknown real leakage from a gas processing plant are compared with the image processing methods. The methods are generic and can be implemented in common infrared systems for gas visualization. This work provides a new tool for estimating and reporting volume flow emissions from gas processing plants to the authorities.
Collapse
Affiliation(s)
- Jonas Sandsten
- Department of Physics, Lund Institute of Technology, P.O. Box 18, SE-221 00 Lund, Sweden.
| | | |
Collapse
|
10
|
Dam JS, Pedersen C, Tidemand-Lichtenberg P. High-resolution two-dimensional image upconversion of incoherent light. OPTICS LETTERS 2010; 35:3796-3798. [PMID: 21082000 DOI: 10.1364/ol.35.003796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We consider a technique for high-resolution image upconversion of thermal light. Experimentally, we demonstrate cw upconversion with a resolution of more than 200 × 1000 pixels of thermally illuminated objects. This is the first demonstration (to our knowledge) of high-resolution cw image upconversion. The upconversion method promises an alternative route to high-quantum-efficiency all-optical imaging in the mid-IR wavelength region and beyond using standard CCD cameras. A particular advantage of CCD cameras compared to state-of-the-art thermal cameras is the possibility to tailor and tune the spectral response leading to functional spectral imaging.
Collapse
Affiliation(s)
- Jeppe Seidelin Dam
- DTU Fotonik, Technical University of Denmark, DK-4000 Roskilde, Denmark.
| | | | | |
Collapse
|
11
|
Pedersen C, Karamehmedović E, Dam JS, Tidemand-Lichtenberg P. Enhanced 2D-image upconversion using solid-state lasers. OPTICS EXPRESS 2009; 17:20885-90. [PMID: 19997325 DOI: 10.1364/oe.17.020885] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Based on enhanced upconversion, we demonstrate a highly efficient method for converting a full image from one part of the electromagnetic spectrum into a new desired wavelength region. By illuminating a metal transmission mask with a 765 nm Gaussian beam to create an image and subsequently focusing the image inside a nonlinear PPKTP crystal located in the high intra-cavity field of a 1342 nm solid-state Nd:YVO(4) laser, an upconverted image at 488 nm is generated. We have experimentally achieved an upconversion efficiency of 40% under CW conditions. The proposed technique can be further adapted for high efficiency mid-infrared image upconversion where direct and fast detection is difficult or impossible to perform with existing detector technologies.
Collapse
Affiliation(s)
- Christian Pedersen
- DTU Fotonik, Technical University of Denmark, DK-4000 Roskilde, Denmark.
| | | | | | | |
Collapse
|
12
|
Stothard DJM, Hopkins JM, Burns D, Dunn MH. Stable, continuous-wave, intracavity, optical parametric oscillator pumped by a semiconductor disk laser (VECSEL). OPTICS EXPRESS 2009; 17:10648-10658. [PMID: 19550461 DOI: 10.1364/oe.17.010648] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We report relaxation oscillation free, true continuous-wave operation of a singly-resonant, intracavity optical parametric oscillator (OPO) based upon periodically-poled, MgO-doped LiNbO3 and pumped internal to the cavity of a compact, optically-excited semiconductor disk laser (or VECSEL). The very short upper-laser-state lifetime of this laser gain medium, coupled with the enhancing effect of the high-finesse pump laser cavity in which the OPO is located, enables a low threshold, high efficiency intracavity device to be operated free of relaxation oscillations in continuous-wave mode. By optimizing for low-power operation, parametric threshold was achieved at a diode-laser power of only 1.4 W. At 8.5 W of diode-laser power, 205 mW of idler power was extracted, indicating a total down-converted power of 1.25 W, and hence a down-conversion efficiency of 83%.
Collapse
Affiliation(s)
- D J M Stothard
- School of Physics & Astronomy, University of St. Andrews, St. Andrews, Fife, UK.
| | | | | | | |
Collapse
|