1
|
Ashraf S, Hussain T, Bajwa SZ, Mujahid A, Afzal A. Portable smartphone-enabled dydrogesterone sensors based on biomimetic polymers for personalized gynecological care. J Mater Chem B 2024; 12:6905-6916. [PMID: 38919127 DOI: 10.1039/d4tb00657g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Dydrogesterone, a frequently prescribed synthetic hormone integral to the treatment of diverse gynecological conditions, necessitates precise quantification in complex human plasma. In this study, the development of a portable, smartphone-based electrochemical sensor employing screen-printed gold electrodes (SPAuEs) modified with a biomimetic, molecularly imprinted poly(methacrylic acid-co-methyl methacrylate) (MIP) is presented for dydrogesterone detection in human plasma. FTIR spectroscopy illustrates the transformation of a pre-polymer mixture into a polymerized matrix, while SEM reveals a uniform MIP/SPAuE surface morphology. The sensor fabrication protocol, encompassing MIP/SPAuE composition, polymerization solvent, incubation time, and scan rate, is optimized to achieve enhanced sensitivity. The MIP/SPAuEs sensor exhibits a linear sensor response to dydrogesterone within the concentration range of 1-500 nM, as evidenced by cyclic and differential pulse voltammetry. The MIP/SPAuE sensor demonstrates exceptional sensitivity, recording 8.2 × 10-3 μA nM-1, with a sub-nanomolar limit of detection (LOD = 370 pM), and low limit of quantification (LOQ = 1.12 nM), along with appreciable selectivity over common interferents. In real-world clinical applications, the designed sensor is effectively employed for the rapid and precise determination of dydrogesterone in human blood plasma, achieving a remarkable recovery of 81%. Furthermore, MIP/SPAuE coatings possess suitable stability over 15 days, indicating the robustness of the sensor material for multiple rounds of analysis. The developed sensor provides a sensitive, selective, and cost-effective solution for monitoring dydrogesterone in plasma during various gynecological disorders, allowing for personalized healthcare applications.
Collapse
Affiliation(s)
- Sobia Ashraf
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan.
| | - Tajamal Hussain
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan.
| | - Sadia Zafar Bajwa
- National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, 44000, Pakistan
| | - Adnan Mujahid
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan.
| | - Adeel Afzal
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
2
|
Wehrli L, Galdadas I, Voirol L, Smieško M, Cambet Y, Jaquet V, Guerrier S, Gervasio FL, Nef S, Rahban R. The action of physiological and synthetic steroids on the calcium channel CatSper in human sperm. Front Cell Dev Biol 2023; 11:1221578. [PMID: 37547474 PMCID: PMC10397409 DOI: 10.3389/fcell.2023.1221578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
The sperm-specific channel CatSper (cation channel of sperm) controls the intracellular Ca2+ concentration ([Ca2+]i) and plays an essential role in sperm function. It is mainly activated by the steroid progesterone (P4) but is also promiscuously activated by a wide range of synthetic and physiological compounds. These compounds include diverse steroids whose action on the channel is so far still controversial. To investigate the effect of these compounds on CatSper and sperm function, we developed a high-throughput screening (HTS) assay to measure changes in [Ca2+]i in human sperm and screened 1,280 approved and off-patent drugs including 90 steroids from the Prestwick chemical library. More than half of the steroids tested (53%) induced an increase in [Ca2+]i and reduced the P4-induced Ca2+ influx in human sperm in a dose-dependent manner. Ten of the most potent steroids (activating and P4-inhibiting) were selected for a detailed analysis of their action on CatSper and their ability to act on sperm acrosome reaction (AR) and penetration in viscous media. We found that these steroids show an inhibitory effect on P4 but not on prostaglandin E1-induced CatSper activation, suggesting that they compete for the same binding site as P4. Pregnenolone, dydrogesterone, epiandrosterone, nandrolone, and dehydroepiandrosterone acetate (DHEA) were found to activate CatSper at physiologically relevant concentrations within the nanomolar range. Like P4, most tested steroids did not significantly affect the AR while stanozolol and estropipate slightly increased sperm penetration into viscous medium. Furthermore, using a hybrid approach integrating pharmacophore analysis and statistical modelling, we were able to screen in silico for steroids that can activate the channel and define the physicochemical and structural properties required for a steroid to exhibit agonist activity against CatSper. Overall, our results indicate that not only physiological but also synthetic steroids can modulate the activity of CatSper with varying potency and if bound to CatSper prior to P4, could impair the timely CatSper activation necessary for proper fertilization to occur.
Collapse
Affiliation(s)
- Lydia Wehrli
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Ioannis Galdadas
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Lionel Voirol
- Research Center for Statistics, Geneva School of Economics and Management, University of Geneva, Geneva, Switzerland
| | - Martin Smieško
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Yves Cambet
- Readers, Assay Development and Screening Unit (READS Unit), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vincent Jaquet
- Readers, Assay Development and Screening Unit (READS Unit), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stéphane Guerrier
- Research Center for Statistics, Geneva School of Economics and Management, University of Geneva, Geneva, Switzerland
- Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Francesco Luigi Gervasio
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Department of Chemistry, University College London, London, United Kingdom
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Rita Rahban
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| |
Collapse
|
3
|
Do early luteal serum progesterone levels predict the reproductive outcomes in IVF with oral dydrogesterone for luteal phase support? PLoS One 2019; 14:e0220450. [PMID: 31361764 PMCID: PMC6667136 DOI: 10.1371/journal.pone.0220450] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/16/2019] [Indexed: 12/20/2022] Open
Abstract
Objective We sought to determine whether the early luteal serum progesterone (P4) level predicts the success of IVF treatment with oral dydrogesterone for luteal support. Method This retrospective monocentric cohort study included 242 women who underwent IVF treatment with fresh embryo transfer (ET) between July 2017 and June 2018. The population was unselected, and women were treated according to our unit’s usual stimulation protocols. For the luteal phase support (LPS), all women were supplemented with a 10 mg three-times-daily dose of oral dydrogesterone beginning on the day of oocyte pick-up (OPU). Blood sampling was performed on the day of ET (Day 2–3 after OPU) to determine the early luteal serum progesterone level. Results ROC curve analysis allowed us to determine two thresholds for the prediction of live birth using the early P4 level. Women who had early luteal P4 levels greater than 252 nmol/l had a significantly higher live birth rate (27.1%) than women with early luteal P4 between 115 and 252 nmol/l (17.2%) and women with early luteal P4 below 115 nmol/l (6.0%; p = 0.011). After a multiple regression analysis, an early luteal P4 level greater than 252 nmol/l was still associated with a higher chance of a live birth than a P4 between 115 and 252 nmol/l (OR = 0.40 [0.18–0.91]; p = 0.028) or a P4 below 115 nmol/l (OR = 0.10 [0.01–0.52]; p = 0.006). Conclusions Our study suggests a positive association between early P4 levels and reproductive outcomes in IVF using oral dydrogesterone for luteal support. The inconsistencies between our results and those of other studies suggest that extrapolation is impractical. Further larger prospective cohort studies should be conducted to determine reliable thresholds that could be used to personalize luteal phase support.
Collapse
|
4
|
Dydrogesterone: pharmacological profile and mechanism of action as luteal phase support in assisted reproduction. Reprod Biomed Online 2018; 38:249-259. [PMID: 30595525 DOI: 10.1016/j.rbmo.2018.11.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/15/2018] [Accepted: 11/07/2018] [Indexed: 12/29/2022]
Abstract
The pharmacological and physiological profiles of progestogens used for luteal phase support during assisted reproductive technology are likely to be important in guiding clinical choice towards the most appropriate treatment option. Various micronized progesterone formulations with differing pharmacological profiles have been investigated for several purposes. Dydrogesterone, a stereoisomer of progesterone, is available in an oral form with high oral bioavailability; it has been used to treat a variety of conditions related to progesterone deficiency since the 1960s and has recently been approved for luteal phase support as part of an assisted reproductive technology treatment. The primary objective of this review is to critically analyse the clinical implications of the pharmacological and physiological properties of dydrogesterone for its uses in luteal phase support and in early pregnancy.
Collapse
|
5
|
Khataei MM, Yamini Y, Nazaripour A, Karimi M. Novel generation of deep eutectic solvent as an acceptor phase in three-phase hollow fiber liquid phase microextraction for extraction and preconcentration of steroidal hormones from biological fluids. Talanta 2017; 178:473-480. [PMID: 29136850 DOI: 10.1016/j.talanta.2017.09.068] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
In this study, a novel generation of deep eutectic solvents (DESs) was used as an acceptor phase in three-phase hollow fiber liquid phase microextraction (HF-LPME) based on two immiscible organic phases. It was compared with other common DESs for extraction and preconcentration of dydrogesterone (DYD) and cyproterone acetate (CPA) from urine and plasma samples. The extracted analytes were analyzed by high performance liquid chromatography with UV-vis detector (HPLC-UV). This phosphonium based DES due to low volatility, low price and multifunctionality introduced itself as worthy next generation of acceptor phase in HF-LPME. The factors affected on extraction efficiency of the analytes were investigated and optimized. The performance of the proposed method was studied in terms of linear ranges (LRs from 1 to 500µgL-1 with R2 ≥ 0.9946), precision (RSD% ≤ 6.3) and limits of detection (LODs in the range of 0.5-2µgL-1). Under the optimized conditions, preconcentration factors in the range of 187-428 were obtained. Finally, the method was applied to the analysis of DYD and CPA in human urine and plasma samples and desirable results were obtained.
Collapse
Affiliation(s)
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| | - Ali Nazaripour
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Meghdad Karimi
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| |
Collapse
|
10
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:689-700. [PMID: 17474104 DOI: 10.1002/jms.1074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|