1
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Durjava M, Kouba M, López‐Alonso M, Puente SL, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Villa RE, Woutersen R, Brantom P, Chesson A, Schlatter J, Westendorf J, Dirven Y, Manini P, Dusemund B. Safety and efficacy of a feed additive consisting of a tincture derived from the roots of Panax ginseng C.A.Mey. (ginseng tincture) for horses, dogs and cats (FEFANA asbl). EFSA J 2024; 22:e8730. [PMID: 38591023 PMCID: PMC11000137 DOI: 10.2903/j.efsa.2024.8730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of a tincture from the roots of Panax ginseng C.A.Mey. (ginseng tincture), when used as a sensory additive in feed for horses, dogs and cats. The product is a water/ethanol (40:60 v/v) solution, with a dry matter content of no more than 6% and a content of 0.01%-0.5% (w/w) for the sum of the two triterpene saponins ginsenoside Rb1 and ginsenoside Rg1. The Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) concluded that the tincture is safe for horses, dogs and cats at the maximum proposed use level of 48.6, 228.7 and 162 mg/kg complete feed, respectively. The Panel also concluded that the additive is considered safe for consumers when used at the proposed conditions of use in feed for horses. Ginseng tincture should be considered as an irritant to skin and eyes, and as a dermal and respiratory sensitiser. The use of the ginseng tincture as a flavour in feed for horses was not expected to pose a risk for the environment. Since the roots of P. ginseng and its preparations were recognised to flavour food and their function in feed would be essentially the same, no demonstration of efficacy was considered necessary.
Collapse
|
2
|
Kwak YB, Yoo HH, Yoon J. The impact of the administration of red ginseng ( Panax ginseng) on lipid metabolism and free fatty acid profiles in healthy horses using a molecular networking approach. Front Vet Sci 2024; 11:1285000. [PMID: 38332753 PMCID: PMC10851614 DOI: 10.3389/fvets.2024.1285000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024] Open
Abstract
This study investigated the potential benefits of the administration of red ginseng (RG) on lipid metabolism and the profiles of individual free fatty acids (FFAs) in healthy horses. Eight healthy horses, raised under similar conditions, were randomly divided into two groups, each comprising four horses. The experimental group received powdered RG (600 mg/kg/day) mixed with a carrier, and the control group received only the carrier. The parameters associated with lipid metabolism and probable adverse effects were evaluated in both groups after 3 weeks. The computational molecular networking (MN) approach was applied to analyze the FFA profiles. The results indicated that RG administration significantly reduced blood triglyceride levels in the experimental group. Analysis of the FFAs using MN revealed significant decreases in specific types of FFAs (C12:0, dodecanoic acid; C14:0, myristric acid; C18:1, oleic acid; C18:2, linoleic acid). RG consumption did not produce significant adverse effects on the renal, hepatic, and immune functions. Thus, RG was found to effectively modulate lipid metabolism and the levels of individual FFAs. The application of the MN for the analysis of FFAs represents a novel approach and can be considered for future research.
Collapse
Affiliation(s)
- Young Beom Kwak
- Racing Laboratory, Korea Racing Authority, Jeju, Republic of Korea
| | - Hye Hyun Yoo
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Republic of Korea
| | - Jungho Yoon
- Equine Referral Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju, Republic of Korea
| |
Collapse
|
3
|
UPLC-MS/MS Determination of Twelve Ginsenosides in Shenfu Tang and Dushen Tang. Int J Anal Chem 2019; 2019:6217125. [PMID: 31391851 PMCID: PMC6662505 DOI: 10.1155/2019/6217125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/28/2019] [Accepted: 06/17/2019] [Indexed: 01/03/2023] Open
Abstract
Shenfu Tang and Dushen Tang (one of the composite medicines for Shenfu Tang) are widely used Traditional Chinese herbal formulations and ginsenosides are their main bioactive components. However, there are rare studies about simultaneous analysis of ginsenosides in Shenfu Tang and Dushen Tang. In order to identify ginsenosides in Shenfu Tang and Dushen Tang and to explore law of compatibility of medicines in the decoction, a method for simultaneous determination of twelve ginsenosides in Shenfu Tang and Dushen Tang was developed by ultraresolution liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). The method showed satisfactory linearity (r > 0.9915), repeatability (RSD < 9.58%), intra- and interday precisions (RSD<11.90%), and high yields of recovery (92.26-113.20%) for twelve major constituents, namely, ginsenosides-Rb1, Rb2, Rb3, Rc, Rd, Rg1, Re, Rf, Rg2, Rg3, Rh1, and F2. Furthermore, the concentration of twelve ginsenosides in Dushen Tang and Shenfu Tang was also simultaneously analyzed. Most of ginsenosides except Rg1 and Rb1 showed higher contents in Shenfu Tang compared to Dushen Tang. The compatibility of the formula had the effect of promoting or inhibiting the dissolution of some major components. The present research provided a reliable evidence for the illustration of chemical basis and compatibility regularity of Shenfu Tang. This study demonstrated the utility of the developed method for assessment of the quantity of the major constituents in Dushen Tang and Shenfu Tang.
Collapse
|
4
|
Li ZY, Welbeck E, Wang RF, Liu Q, Yang YB, Chou GX, Bi KS, Wang ZT. A universal quantitative ¹H nuclear magnetic resonance (qNMR) method for assessing the purity of dammarane-type ginsenosides. PHYTOCHEMICAL ANALYSIS : PCA 2015; 26:8-14. [PMID: 24912845 DOI: 10.1002/pca.2527] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/16/2014] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
INTRODUCTION Quantitative (1)H-NMR (qNMR) is a well-established method for quantitative analysis and purity tests. Applications have been reported in many areas, such as natural products, foods and beverages, metabolites, pharmaceuticals and agriculture. The characteristics of quantitative estimation without relying on special target reference substances make qNMR especially suitable for purity tests of chemical compounds and natural products. Ginsenosides are a special group of natural products drawing broad attention, and are considered to be the main bioactive principles behind the claims of ginsengs efficacy. The purity of ginsenosides is usually determined by conventional chromatographic methods, although these may not be ideal due to the response of detectors to discriminate between analytes and impurities and the long run times involved. OBJECTIVE To establish a qNMR method for purity tests of six dammarane-type ginsenoside standards. METHODS Several experimental parameters were optimised for the quantification, including relaxation delay (D1), the transmitter frequency offset (O1P) and power level for pre-saturation (PL9). The method was validated and the purity of the six ginsenoside standards was tested. Also, the results of the qNMR method were further validated by comparison with those of high performance liquid chromatography. CONCLUSION The qNMR method was rapid, specific and accurate, thus providing a practical and reliable protocol for the purity analysis of ginsenoside standards.
Collapse
Affiliation(s)
- Ze Yun Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Han J, Li P, Cai W, Shao X. Fast determination of ginsenosides in ginseng by high-performance liquid chromatography with chemometric resolution. J Sep Sci 2014; 37:2126-30. [DOI: 10.1002/jssc.201400403] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/12/2014] [Accepted: 05/17/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Jing Han
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Medicinal Chemical Biology, and Research Center for Analytical Sciences, College of Chemistry; Nankai University; Tianjin China
| | - Pao Li
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Medicinal Chemical Biology, and Research Center for Analytical Sciences, College of Chemistry; Nankai University; Tianjin China
| | - Wensheng Cai
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Medicinal Chemical Biology, and Research Center for Analytical Sciences, College of Chemistry; Nankai University; Tianjin China
| | - Xueguang Shao
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Medicinal Chemical Biology, and Research Center for Analytical Sciences, College of Chemistry; Nankai University; Tianjin China
| |
Collapse
|
6
|
Xu XF, Nie LX, Pan LL, Hao B, Yuan SX, Lin RC, Bu HB, Wang D, Dong L, Li XR. Quantitative Analysis of Panax ginseng by FT-NIR Spectroscopy. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2014; 2014:741571. [PMID: 24883224 PMCID: PMC4026986 DOI: 10.1155/2014/741571] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/21/2014] [Accepted: 04/14/2014] [Indexed: 05/28/2023]
Abstract
Near-infrared spectroscopy (NIRS), a rapid and efficient tool, was used to determine the total amount of nine ginsenosides in Panax ginseng. In the study, the regression models were established using multivariate regression methods with the results from conventional chemical analytical methods as reference values. The multivariate regression methods, partial least squares regression (PLSR) and principal component regression (PCR), were discussed and the PLSR was more suitable. Multiplicative scatter correction (MSC), second derivative, and Savitzky-Golay smoothing were utilized together for the spectral preprocessing. When evaluating the final model, factors such as correlation coefficient (R (2)) and the root mean square error of prediction (RMSEP) were considered. The final optimal results of PLSR model showed that root mean square error of prediction (RMSEP) and correlation coefficients (R (2)) in the calibration set were 0.159 and 0.963, respectively. The results demonstrated that the NIRS as a new method can be applied to the quality control of Ginseng Radix et Rhizoma.
Collapse
Affiliation(s)
- Xin-fang Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6 Wangjing Zhonghuannan Road, Beijing 100102, China
| | - Li-xing Nie
- National Institutes for Food and Drug Control, State Food and Drug Administration, No. 2 Tiantan Xili, Beijing 100050, China
| | - Li-li Pan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6 Wangjing Zhonghuannan Road, Beijing 100102, China
| | - Bian Hao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6 Wangjing Zhonghuannan Road, Beijing 100102, China
| | - Shao-xiong Yuan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6 Wangjing Zhonghuannan Road, Beijing 100102, China
| | - Rui-chao Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6 Wangjing Zhonghuannan Road, Beijing 100102, China
| | - Hai-bo Bu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6 Wangjing Zhonghuannan Road, Beijing 100102, China
| | - Dan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6 Wangjing Zhonghuannan Road, Beijing 100102, China
| | - Ling Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6 Wangjing Zhonghuannan Road, Beijing 100102, China
| | - Xiang-ri Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6 Wangjing Zhonghuannan Road, Beijing 100102, China
| |
Collapse
|
7
|
Gu X, Yao C, Zhang Z, Wan X, Ning J, Shao W. GC–ECD Method for Determination of Glucosidically Bound Aroma Precursors in Fresh Tea Leaves. Chromatographia 2011. [DOI: 10.1007/s10337-010-1816-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Steinmann D, Ganzera M. Recent advances on HPLC/MS in medicinal plant analysis. J Pharm Biomed Anal 2010; 55:744-57. [PMID: 21131153 DOI: 10.1016/j.jpba.2010.11.015] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/10/2010] [Accepted: 11/11/2010] [Indexed: 01/12/2023]
Abstract
With gaining popularity of herbal remedies worldwide, the need of assuring safety and efficacy of these products increases as well. By nature they are complex matrices, comprising a multitude of compounds, which are prone to variation due to environmental factors and manufacturing conditions. Furthermore, many traditional preparations compose of multiple herbs, so that only highly selective, sensitive and versatile analytical techniques will be suitable for quality control purposes. By hyphenating high performance liquid chromatography and mass spectrometry (LC-MS) these high demands are fulfilled, providing the user with a multitude of technical options and applications. This review intends to reflect the impact of LC-MS for medicinal plant analysis focusing on most relevant reports published within the last five years. Commenced by introductory remarks to the different MS approaches most commonly used (e.g. ion trap and time of flight mass analyzers, fragmentation and ionization modes), respective LC-MS applications on the analysis of natural products in medicinal plants, commercial products and biological samples are presented. Methodological aspects like stationary and mobile phase selection or MS settings are discussed, and advantages or limitations of the described techniques are highlighted.
Collapse
Affiliation(s)
- Dirk Steinmann
- Institute of Pharmacy, Pharmacognosy, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
| | | |
Collapse
|
9
|
Current awareness in drug testing and analysis. Drug Test Anal 2010; 1:596-611. [PMID: 20361432 DOI: 10.1002/dta.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|