1
|
Safaei Z, Eiceman GA, Puton J, Stone JA, Nasirikheirabadi M, Anttalainen O, Sillanpää M. Differential Mobility Spectrometry of Ketones in Air at Extreme Levels of Moisture. Sci Rep 2019; 9:5593. [PMID: 30944342 PMCID: PMC6447537 DOI: 10.1038/s41598-019-41485-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/01/2019] [Indexed: 11/08/2022] Open
Abstract
The performance of a differential mobility spectrometer was characterized at ambient pressure and ten values of water vapor concentration, from 1.0 × 102 to 1.7 × 104 ppm using a homologous series of seven ketones from acetone to 2-dodecanone. Dispersion plots at 30 °C with separation fields from 35 to 123 Td exhibited increased alpha functions for the hydrated proton, protonated monomers, and proton bound dimers with increased moisture levels. Increases in the level of moisture were accompanied by decreased quantitative response with progressive suppression in the formation of the proton bound dimer first and then protonated monomer. Product ions for 2-octanone at 7 ppb were not observed above a moisture level of 4.0 × 103 ppm, establishing a limit for observation of analyte ion formation. The observation limit increased from 1.1 × 103 ppm for acetone to 5.7 × 103 ppm for 2-dodecanone. These findings demonstrate that ketones can be determined with a differential mobility spectrometry (DMS) analyzer near room temperature in the presence of elevated levels of moisture expected with the use of membrane inlets or headspace sampling of surface or ground waters. Moisture levels entering this DMS analyzer employed as an environmental monitor should be kept at 1.0 × 103 ppm or below and quantitative studies for individual ketones should be made at a fixed moisture level.
Collapse
Affiliation(s)
- Z Safaei
- Department of Green Chemistry, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - G A Eiceman
- Department of Chemistry and Biochemistry, 1175 North Horseshoe Drive, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - J Puton
- Institute of Chemistry, Military University of Technology, Kaliskiego 2, Warsaw, Poland
| | - J A Stone
- Department of Chemistry, Queens University, Kingston, Ont., K7L 4J1, Canada
| | - M Nasirikheirabadi
- Department of Green Chemistry, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - O Anttalainen
- Environics Oy, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - M Sillanpää
- Department of Green Chemistry, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| |
Collapse
|
2
|
Microscale differential ion mobility spectrometry for field deployable chemical analysis. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.10.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Schumann A, Lenth C, Hasener J, Steckel V. Detection of volatile organic compounds from wood-based panels by gas chromatography-field asymmetric ion mobility spectrometry (GC-FAIMS). ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s12127-012-0103-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Miniature Differential Mobility Spectrometry (DMS) Advances towards Portable Autonomous Health Diagnostic Systems. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-3-642-15687-8_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
|
5
|
Determination of volatile organic compounds by solid-phase microextraction—gas chromatography-differential mobility spectrometry. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s12127-009-0032-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Lu Y, Chen P, Harrington PB. Comparison of differential mobility spectrometry and mass spectrometry for gas chromatographic detection of ignitable liquids from fire debris using projected difference resolution. Anal Bioanal Chem 2009; 394:2061-7. [PMID: 19396432 DOI: 10.1007/s00216-009-2786-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/30/2009] [Accepted: 03/31/2009] [Indexed: 12/01/2022]
Abstract
The significance of forensic arson analysis accelerates the applications of new technologies in this area. Based on the previously reported application of differential mobility spectrometry (DMS) as a detection method for gas chromatography (GC) in arson analysis, the performances of DMS and mass spectrometry (MS) were compared using a novel chemometric tool, projected difference resolutions (PDRs). The PDR results show that one-way mass spectra data exhibit higher resolution than DMS data, while total ion chromatograms from GC-DMS show higher resolution than that from GC/MS for differentiating seven kinds of ignitable liquids. Combining the information from both chromatography and spectra, two-way data always have higher resolution than one-way data for these two detection methods, and GC/MS would exhibit better performance than GC-DMS according to the minimum resolution value. To verify the PDR results, a fuzzy rule-building expert system was applied for classifying these seven kinds of ignitable liquids from fire debris based on GC-DMS and GC/MS data, respectively. The prediction accuracies were consistent with PDR results, which proved that PDR is a powerful tool in comparing the performances of different analysis methods for pattern recognition.
Collapse
Affiliation(s)
- Yao Lu
- Clippinger Laboratories, Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, OHIO University, Athens, OH 45701-2979, USA
| | | | | |
Collapse
|
7
|
Kanu AB, Hill HH. Ion mobility spectrometry detection for gas chromatography. J Chromatogr A 2008; 1177:12-27. [DOI: 10.1016/j.chroma.2007.10.110] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 10/18/2007] [Accepted: 10/26/2007] [Indexed: 11/25/2022]
|
8
|
Kanu AB, Wu C, Hill HH. Rapid preseparation of interferences for ion mobility spectrometry. Anal Chim Acta 2007; 610:125-34. [PMID: 18267149 DOI: 10.1016/j.aca.2007.08.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/10/2007] [Accepted: 08/15/2007] [Indexed: 10/22/2022]
Abstract
Two new approaches to reduce false positive interferences commonly observed with explosives and drugs detection in the field were reported for ion mobility spectrometry (IMS). One of the approaches involved the rapid preseparation of potential interferences prior to detection by IMS. Firstly, it was found that the introduction of a short column packed with adsorption packing material before an IMS could help to reduce the false positive rates. Secondly, the retention time at which the most intense response occurred over the analysis time period could be utilized to separate false positive responses from target analytes with the same drift times. Rapid preseparation of potential interferences provided a greater degree of confidence for the detection (in less than 30s) of drugs, explosives and chemical warfare agents (CWAs). Detection limits as low as 10 pg of TNT with a sensitivity of 12 A g(-1) were reported. Successful development of this technique may lead to the construction of a simple interface fitted with a short column of adsorption packing material to enhance either initial separation or to hold-back interferences mixed with explosive and drug responses in the field.
Collapse
Affiliation(s)
- Abu B Kanu
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA.
| | | | | |
Collapse
|
9
|
Lu Y, Harrington PB. Forensic application of gas chromatography-differential mobility spectrometry with two-way classification of ignitable liquids from fire debris. Anal Chem 2007; 79:6752-9. [PMID: 17683164 DOI: 10.1021/ac0707028] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With respect to the emerging role of forensic science for arson investigation, a low cost and promising onsite detection method for ignitable liquids is desirable. Gas chromatography-differential mobility spectrometry (GC-DMS) was investigated as a tool for analysis of ignitable liquids from fire debris. Headspace solid-phase microextraction (SPME) was applied as the preconcentration and sampling method. The combined information afforded by gas chromatography and differential mobility spectrometry provided unique two-way patterns for each sample of ignitable liquid. Two-way GC-DMS data were classified into one of seven ignitable liquids using a fuzzy rule-building expert system (FuRES). The performance of the classifier was validated using bootstrap Latin partitions (BLPs) and also compared to optimized partial least-squares (PLS) classifiers. Better prediction results can be obtained by using two-way GC-DMS data than only using one-way total ion chromatograms or integrated differential mobility spectra. FuRES models constructed with the neat ignitable liquids identified the spiked samples from simulated fire debris with 99.07 +/- 0.04% accuracy.
Collapse
Affiliation(s)
- Yao Lu
- Clippinger Laboratories, Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701-2979, USA
| | | |
Collapse
|
10
|
Kolakowski BM, Mester Z. Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS). Analyst 2007; 132:842-64. [PMID: 17710259 DOI: 10.1039/b706039d] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) and Differential Mobility Spectrometry (DMS) harness differences in ion mobility in low and high electric fields to achieve a gas-phase separation of ions at atmospheric pressure. This separation is orthogonal to either chromatographic or mass spectrometric separation, thereby increasing the selectivity and specificity of analysis. The orthogonality of separation, which in some cases may obviate chromatographic separation, can be used to differentiate isomers, to reduce background, to resolve isobaric species, and to improve signal-to-noise ratios by selective ion transmission. This review will focus on the applications of these techniques to the separation of various classes of analytes, including chemical weapons, explosives, biologically active molecules, pharmaceuticals and pollutants. These papers cover the period up to January 2007.
Collapse
Affiliation(s)
- Beata M Kolakowski
- Institute for National Measurement Standards, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, Canada
| | | |
Collapse
|
11
|
Rearden P, Harrington PB, Karnes JJ, Bunker CE. Fuzzy Rule-Building Expert System Classification of Fuel Using Solid-Phase Microextraction Two-Way Gas Chromatography Differential Mobility Spectrometric Data. Anal Chem 2007; 79:1485-91. [PMID: 17297947 DOI: 10.1021/ac060527f] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gas chromatography/differential mobility spectrometry (GC/DMS) has been investigated for characterization of fuels. Neat fuel samples were sampled using solid-phase microextraction (SPME) and analyzed using a micromachined differential mobility spectrometer with a photoionization source interfaced to a gas chromatograph. The coupling of DMS to GC offers an additional order of information in that two-way data are obtained with respect to compensation voltages and retention time. A fuzzy rule-building expert system (FuRES) was used as a multivariate classifier for the two-way gas chromatograms of fuels, including rocket (RP-1, RG-1), diesel, and jet (JP-4, JP-5, JP-7, JP-TS, JetA-3639, Jet A-3688, Jet A-3690, Jet A-3694, and Jet A-generic) fuels. The GC-DMS with SPME was able to produce characteristic profiles of the fuels and a classification rate of 95 +/- 0.3% obtained with a FuRES model. The classification system also had perfect classification for each fuel sample when applied one month later.
Collapse
Affiliation(s)
- Preshious Rearden
- Clippinger Laboratories, Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701-2979, USA
| | | | | | | |
Collapse
|
12
|
Kanu AB, Thomas CLP. The presumptive detection of benzene in water in the presence of phenol with an active membrane-UV photo-ionisation differential mobility spectrometer. Analyst 2006; 131:990-9. [PMID: 17047798 DOI: 10.1039/b607077a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Studies with a new technique, active membrane-differential mobility spectrometry, with aqueous standards of benzene and phenol are described. The atmospheric pressure photo-ionisation chemistries of benzene and phenol in the presence of oxygen are similar in that benzene forms phenol radicals that subsequently react to yield diphenylether and 4-phenoxyphenol products. Further phenol sequesters charge from benzene ions leading to a significant loss of sensitivity. This is an important consideration in the development of screening techniques for the presence of benzene in environmental water samples. This challenge was addressed by including a pre-separation stage prior to photo-ionisation, and a 10 cm long polydimethylsiloxane active membrane inlet using nitrogen as a carrier gas was used to sample, concentrate and deliver low resolution separations to the 10.6 eV UV-ionisation region of a differential mobility spectrometer. Acetone was also proposed as a charge carrier for the UV photo-ionisation source; to promote phenol protonation and inhibit charge sequestration from benzene. The responses of the system to aqueous standards of benzene and phenol with and without acetone doping at 10.2 mg m(-3) were evaluated and four to five-fold increases in sensitivity were obtained with acetone doping. With a sampling time of 60 s and a total measurement cycle of 180 s it was possible to obtain quantitative responses to single standards over the concentration range 6 to 177 microg cm(-3) with linear correlations with R(2) values ranging from 0.97 to 0.99. The effects of the heating rate of the membrane and the dispersion field strength of the differential mobility spectrometer on sensitivity and the differentiation of benzene from phenol responses were optimised, leading to a configuration where a voltage heating programme of 4.75 V s(-1) was applied to a 124 microm stainless steel wire heating element within the active membrane, and a dispersion field strength of 22 kV cm(-1) was used to test a mixture of benzene (14 microg cm(-3)) and phenol (6 microg cm(-3)) in water. The presence of benzene was identified through the presence of a peak corresponding to a benzene response, V(C) = -9 V FWHM = 1 V, that followed the thermal desorption profile of benzene.
Collapse
Affiliation(s)
- Abu B Kanu
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, USA
| | | |
Collapse
|