1
|
Hassan M, Zhao Y, Zughaier SM. Recent Advances in Bacterial Detection Using Surface-Enhanced Raman Scattering. BIOSENSORS 2024; 14:375. [PMID: 39194603 DOI: 10.3390/bios14080375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
Rapid identification of microorganisms with a high sensitivity and selectivity is of great interest in many fields, primarily in clinical diagnosis, environmental monitoring, and the food industry. For over the past decades, a surface-enhanced Raman scattering (SERS)-based detection platform has been extensively used for bacterial detection, and the effort has been extended to clinical, environmental, and food samples. In contrast to other approaches, such as enzyme-linked immunosorbent assays and polymerase chain reaction, SERS exhibits outstanding advantages of rapid detection, being culture-free, low cost, high sensitivity, and lack of water interference. This review aims to cover the development of SERS-based methods for bacterial detection with an emphasis on the source of the signal, techniques used to improve the limit of detection and specificity, and the application of SERS in high-throughput settings and complex samples. The challenges and advancements with the implementation of artificial intelligence (AI) are also discussed.
Collapse
Affiliation(s)
- Manal Hassan
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Yiping Zhao
- Department of Physics and Astronomy, University of Georgia, Athens, GA 30602, USA
| | - Susu M Zughaier
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
2
|
Tahseen H, Ul Huda N, Nawaz H, Majeed MI, Alwadie N, Rashid N, Aslam MA, Zafar N, Asghar M, Anwar A, Ashraf A, Umer R. Surface-enhanced Raman spectroscopy for comparison of biochemical profile of bacteriophage sensitive and resistant methicillin-resistant Staphylococcus aureus (MRSA) strains. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123968. [PMID: 38330510 DOI: 10.1016/j.saa.2024.123968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is gram positive bacteria and leading cause of a wide variety of diseases. It is a common cause of hospitalized and community-acquired infections. Development of increasing antibiotic-resistance by methicillin-resistant S. aureus (MRSA) strains demand to develop alternate novel therapies. Bacteriophages are now widely used as antibacterial therapies against antibiotic-resistant gram-positive pathogens. So, there is an urgent need to find fast detection techniques to point out phage susceptible and resistant strains of methicillin-resistant S. aureus (MRSA) bacteria. Samples of two separate strains of bacteria, S. aureus, in form of pellets and supernatant, were used for this purpose. Strain-I was resistant to phage, while the other (strain-II) was sensitive. Surface Enhanced Raman Spectroscopy (SERS) has detected significant biochemical changes in these bacterial strains of pellets and supernatants in the form of SERS spectral features. The protein portion of these two types of strains of methicillin-resistant S. aureus (MRSA) in their relevant pellets and supernatants is major distinguishing biomolecule as shown by their representative SERS spectral features. In addition, multivariate data analysis techniques such as principal component analysis (PCA) and a partial least squares-discriminant analysis (PLS-DA) were found to be helpful in identifying and characterizing various strains of S. aureus which are sensitive and resistant to bacteriophage with 100% specificity, 100% accuracy, and 99.8% sensitivity in case of SERS spectral data sets of bacterial cell pellets. Moreover, in case of supernatant samples, the results of PLS-DA model including 95.5% specificity, 96% sensitivity, and 96.5% accuracy are obtained.
Collapse
Affiliation(s)
- Hira Tahseen
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Noor Ul Huda
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Najah Alwadie
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Nosheen Rashid
- Department of Chemistry, University of Education, Faisalabad Campus, Faisalabad 38000, Pakistan
| | - Muhammad Aamir Aslam
- Institute of Microbiology, Faculty of Veterinary, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Nishat Zafar
- Institute of Microbiology, Faculty of Veterinary, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Maria Asghar
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Ayesha Anwar
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Ayesha Ashraf
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Rabiea Umer
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
3
|
Tabussam T, Shehnaz H, Majeed MI, Nawaz H, Alghamdi AA, Iqbal MA, Shahid M, Shahid U, Umer R, Rehman MT, Farooq U, Hassan A, Imran M. Surface-enhanced Raman spectroscopy for studying the interaction of organometallic compound bis(1,3-dihexylimidazole-2-yl) silver(i) hexafluorophosphate (v) with the biofilm of Escherichia coli. RSC Adv 2024; 14:7112-7123. [PMID: 38419676 PMCID: PMC10899858 DOI: 10.1039/d3ra08667d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Escherichia coli biofilms are a major cause of gastrointestinal tract diseases, such as esophageal, stomach and intestinal diseases. Nowadays, these are the most commonly occurring diseases caused by consuming contaminated food. In this study, we evaluated the efficacy of probiotics in controlling multidrug-resistant E. coli and reducing its ability to form biofilms. Our results substantiate the effective use of probiotics as antimicrobial alternatives and to eradicate biofilms formed by multidrug-resistant E. coli. In this research, surface enhanced Raman spectroscopy (SERS) was utilized to identify and evaluate Escherichia coli biofilms and their response to the varying concentrations of the organometallic compound bis(1,3-dihexylimidazole-2-yl) silver(i) hexafluorophosphate (v). Given the escalating challenge of antibiotic resistance in bacteria that form biofilms, understanding the impact of potential antibiotic agents is crucial for the healthcare sector. The combination of SERS with principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) enabled the detection and characterization of the biofilm, providing insights into the biochemical changes induced by the antibiotic candidate. The identified SERS spectral features served as indicators for elucidating the mode of action of the potential drug on the biofilm. Through PCA and PLS-DA, metabolic variations allowing the differentiation and classification of unexposed biofilms and biofilms exposed to different concentrations of the synthesized antibiotic were successfully identified, with 95% specificity, 96% sensitivity, and a 0.75 area under the curve (AUC). This research underscores the efficiency of surface enhanced Raman spectroscopy in differentiating the impact of potential antibiotic agents on E. coli biofilms.
Collapse
Affiliation(s)
- Tania Tabussam
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Hina Shehnaz
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Abeer Ahmed Alghamdi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Muhammad Adnan Iqbal
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Urwa Shahid
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Rabiea Umer
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | | | - Umer Farooq
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Ahmad Hassan
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
4
|
Lyu JW, Zhang XD, Tang JW, Zhao YH, Liu SL, Zhao Y, Zhang N, Wang D, Ye L, Chen XL, Wang L, Gu B. Rapid Prediction of Multidrug-Resistant Klebsiella pneumoniae through Deep Learning Analysis of SERS Spectra. Microbiol Spectr 2023; 11:e0412622. [PMID: 36877048 PMCID: PMC10100812 DOI: 10.1128/spectrum.04126-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/20/2023] [Indexed: 03/07/2023] Open
Abstract
Klebsiella pneumoniae is listed by the WHO as a priority pathogen of extreme importance that can cause serious consequences in clinical settings. Due to its increasing multidrug resistance all over the world, K. pneumoniae has the potential to cause extremely difficult-to-treat infections. Therefore, rapid and accurate identification of multidrug-resistant K. pneumoniae in clinical diagnosis is important for its prevention and infection control. However, the limitations of conventional and molecular methods significantly hindered the timely diagnosis of the pathogen. As a label-free, noninvasive, and low-cost method, surface-enhanced Raman scattering (SERS) spectroscopy has been extensively studied for its application potentials in the diagnosis of microbial pathogens. In this study, we isolated and cultured 121 K. pneumoniae strains from clinical samples with different drug resistance profiles, which included polymyxin-resistant K. pneumoniae (PRKP; n = 21), carbapenem-resistant K. pneumoniae, (CRKP; n = 50), and carbapenem-sensitive K. pneumoniae (CSKP; n = 50). For each strain, a total of 64 SERS spectra were generated for the enhancement of data reproducibility, which were then computationally analyzed via the convolutional neural network (CNN). According to the results, the deep learning model CNN plus attention mechanism could achieve a prediction accuracy as high as 99.46%, with robustness score of 5-fold cross-validation at 98.87%. Taken together, our results confirmed the accuracy and robustness of SERS spectroscopy in the prediction of drug resistance of K. pneumoniae strains with the assistance of deep learning algorithms, which successfully discriminated and predicted PRKP, CRKP, and CSKP strains. IMPORTANCE This study focuses on the simultaneous discrimination and prediction of Klebsiella pneumoniae strains with carbapenem-sensitive, carbapenem-resistant, and polymyxin-resistant phenotypes. The implementation of CNN plus an attention mechanism makes the highest prediction accuracy at 99.46%, which confirms the diagnostic potential of the combination of SERS spectroscopy with the deep learning algorithm for antibacterial susceptibility testing in clinical settings.
Collapse
Affiliation(s)
- Jing-Wen Lyu
- Department of Laboratory Medicine, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xue Di Zhang
- Department of Laboratory Medicine, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Laboratory Medicine, The Affiliated Xuzhou Infectious Diseases Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jia-Wei Tang
- Department of Intelligent Medical Engineering, School of Medical Informatics and Engineering, Xuzhou Medical University, Jiangsu Province, Xuzhou, China
| | - Yun-Hu Zhao
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Su-Ling Liu
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yue Zhao
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ni Zhang
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Dan Wang
- Laboratory Medicine, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Long Ye
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiao-Li Chen
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Bing Gu
- Department of Laboratory Medicine, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
5
|
Haq AU, Majeed MI, Nawaz H, Rashid N, Javed MR, Raza A, Shakeel M, Zahra ST, Meraj L, Perveen A, Murtaza S, Khaliq S. Surface-enhanced Raman spectroscopy for monitoring antibacterial activity of imidazole derivative (1-benzyl-3-(sec‑butyl)-1H-imidazole-3-ium bromide) against Bacillus subtilis and Escherichia coli. Photodiagnosis Photodyn Ther 2023; 42:103533. [DOI: 10.1016/j.pdpdt.2023.103533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/17/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
|
6
|
Ma ZW, Tang JW, Liu QH, Mou JY, Qiao R, Du Y, Wu CY, Tang DQ, Wang L. Identification of geographic origins of Morus alba Linn. through surfaced enhanced Raman spectrometry and machine learning algorithms. J Biomol Struct Dyn 2023; 41:14285-14298. [PMID: 36803175 DOI: 10.1080/07391102.2023.2180433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/08/2023] [Indexed: 02/22/2023]
Abstract
The leaves of Morus alba Linn., which is also known as white mulberry, have been commonly used in many of traditional systems of medicine for centuries. In traditional Chinese medicine (TCM), mulberry leaf is mainly used for anti-diabetic purpose due to its enrichment in bioactive compounds such as alkaloids, flavonoids and polysaccharides. However, these components are variable due to the different habitats of the mulberry plant. Therefore, geographic origin is an important feature because it is closely associated with bioactive ingredient composition that further influences medicinal qualities and effects. As a low-cost and non-invasive method, surface enhanced Raman spectrometry (SERS) is able to generate the overall fingerprints of chemical compounds in medicinal plants, which holds the potential for the rapid identification of their geographic origins. In this study, we collected mulberry leaves from five representative provinces in China, namely, Anhui, Guangdong, Hebei, Henan and Jiangsu. SERS spectrometry was applied to characterize the fingerprints of both ethanol and water extracts of mulberry leaves, respectively. Through the combination of SERS spectra and machine learning algorithms, mulberry leaves were well discriminated with high accuracies in terms of their geographic origins, among which the deep learning algorithm convolutional neural network (CNN) showed the best performance. Taken together, our study established a novel method for predicting the geographic origins of mulberry leaves through the combination of SERS spectra with machine learning algorithms, which strengthened the application potential of the method in the quality evaluation, control and assurance of mulberry leaves.
Collapse
Affiliation(s)
- Zhang-Wen Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jia-Wei Tang
- Department of Intelligent Medical Engineering, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, Jiangsu Province, China
| | - Qing-Hua Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China
| | - Jing-Yi Mou
- The First School of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Rui Qiao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Department of Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yan Du
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Chang-Yu Wu
- Department of Biomedical Engineering, School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Dao-Quan Tang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
7
|
Shakeel M, Majeed MI, Nawaz H, Rashid N, Ali A, Haque A, Akbar MU, Tahir M, Munir S, Ali Z, Shahbaz M, Saleem M. Surface-enhanced Raman spectroscopy for the characterization of pellets of biofilm forming bacterial strains of Staphylococcus epidermidis. Photodiagnosis Photodyn Ther 2022; 40:103145. [PMID: 36210039 DOI: 10.1016/j.pdpdt.2022.103145] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Surface-enhanced Raman spectroscopy (SERS) is an effective tool for identifying biofilm forming bacterial strains. Biofilm forming bacteria are considered a major issue in the health sector because they have strong resistance against antibiotics. Staphylococcus epidermidis is commonly present on intravascular devices and prosthetic joints, catheters and wounds. OBJECTIVES To identify and characterize biofilm forming and non-biofilm forming bacterial strains, surface- enhanced Raman spectroscopy with principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) were used. METHODS Surface-enhanced Raman spectroscopy (SERS) with silver nanoparticles were employed for the analysis and characterization of biofilm forming bacterial strains. SERS is used to differentiate between non biofilm forming (five samples), medium biofilm forming (five samples) and strong biofilm forming (five samples) bacterial strains by applying silver nanoparticles (AgNPs) as SERS substrate. Principal component analysis (PCA) and Partial least square discriminant analysis (PLS-DA) were used to discriminate between non, medium and strong biofilm ability of bacterial strains. RESULTS Principal component analysis (PCA) and Partial least square discriminant analysis (PLS-DA) have been used to identify the biochemical differences in the form of SERS features which can be used to differentiate between biofilm forming and non-biofilm forming bacterial strains. PLS-DA provides successful differentiation and classification of these different strains with 94.5% specificity, 96% sensitivity and 89% area under the curve (AUC). CONCLUSIONS Surface-enhanced Raman spectroscopy can be utilized to differentiate between non, medium and strong biofilm forming bacterial strains.
Collapse
Affiliation(s)
- Muhammad Shakeel
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Nosheen Rashid
- Department of Chemistry, University of Education, Faisalabad Campus, Faisalabad 38000, Pakistan.
| | - Aamir Ali
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Jhang Road, Faisalabad 38000, Pakistan
| | - Asma Haque
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Umair Akbar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Tahir
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Saania Munir
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Zain Ali
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Shahbaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Mudassar Saleem
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
8
|
Mushtaq A, Nawaz H, Irfan Majeed M, Rashid N, Tahir M, Zaman Nawaz M, Shahzad K, Dastgir G, Zaki Abdul Bari R, Ul Haq A, Saleem M, Akhtar F. Surface-enhanced Raman spectroscopy (SERS) for monitoring colistin-resistant and susceptible E. coli strains. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121315. [PMID: 35576839 DOI: 10.1016/j.saa.2022.121315] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/21/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
The emergence of drug-resistant bacteria is a precarious global health concern. In this study, surface-enhanced Raman spectroscopy (SERS) is used to characterize colistin-resistant and susceptible E. coli strains based on their distinguished SERS spectral features for the development of rapid and cost-effective detection and differentiation methods. For this purpose, three colistin-resistant and three colistin susceptible E. coli strains were analyzed by comparing their SERS spectral signatures. Moreover, multivariate data analysis techniques including Principal component analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) were used to examine the SERS spectral data of colistin-resistant and susceptible strains. PCA technique was employed for differentiating colistin susceptible and resistant E.coli strains due to alteration in biochemical compositions of the bacterial cell. PLS-DA is employed on SERS spectral data sets for discrimination of these resistant and susceptible E. coli strains with 100% specificity, 100% accuracy, 99.8% sensitivity, and 86% area under receiver operating characteristics (AUROC) curve.
Collapse
Affiliation(s)
- Aqsa Mushtaq
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Nosheen Rashid
- Department of Chemistry, University of Education, Faisalabad Campus, Faisalabad 38000, Pakistan.
| | - Muhammad Tahir
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Zaman Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Kashif Shahzad
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Ghulam Dastgir
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Rana Zaki Abdul Bari
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Anwar Ul Haq
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Mudassar Saleem
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Farwa Akhtar
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
9
|
Vaitiekūnaitė D, Bružaitė I, Snitka V. Endophytes from blueberry (Vaccinium sp.) fruit: Characterization of yeast and bacteria via label-free surface-enhanced Raman spectroscopy (SERS). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121158. [PMID: 35334429 DOI: 10.1016/j.saa.2022.121158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Blueberries (Vaccinium sp.) are consumed all around the globe, however, their endophytic community has not been thoroughly researched, specifically their fruit endophytes. We aimed to isolate and analyze easily cultivable blueberry fruit endophytes to help in future research, concerning probiotic microorganisms. Twelve strains were isolated in this pilot study, genetically homologous with Staphylococcus hominis, Staphylococcus cohnii, Salmonella enterica, Leuconostoc mesenteroides, and [Candida] santamariae. To determine the molecular composition of these isolates we used label-free surface-enhanced Raman spectroscopy (SERS). To our knowledge, this is the first time that SERS spectra for L. mesenteroides and C. santamariae are presented, as well as the first report of Candida yeast, isolated specifically from blueberry fruits. Our findings suggest that the differences in tested yeast and bacteria SERS spectra and subsequent differentiation are facilitated by minor shifts in spectral peak positions as well as their intensities. Moreover, we used principal component and discriminant function analyses to differentiate chemotypes within our isolate group, proving the sensitivity of the technique and its usefulness to recognize different strains in plant-associated microbe samples, which will aid to streamline future studies in biofertilizers and biocontrol agents.
Collapse
Affiliation(s)
- Dorotėja Vaitiekūnaitė
- Lithuanian Research Centre for Agriculture and Forestry, Laboratory of Forest Plant Biotechnology, Institute of Forestry, Liepu st. 1, LT-53101 Girionys, Lithuania.
| | - Ingrida Bružaitė
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Sauletekio av. 11, LT-10223 Vilnius, Lithuania.
| | - Valentinas Snitka
- Research Center for Microsystems and Nanotechnology, Kaunas University of Technology, Studentu str. 65, LT-51369 Kaunas, Lithuania.
| |
Collapse
|
10
|
Assessing the effect of different pH maintenance situations on bacterial SERS spectra. Anal Bioanal Chem 2022; 414:4977-4985. [PMID: 35606451 DOI: 10.1007/s00216-022-04125-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/24/2022] [Accepted: 05/10/2022] [Indexed: 11/01/2022]
Abstract
Phenotyping of bacteria with vibrational spectroscopy has caught much attention in bacteria-related research. It is known that many factors could affect this process. Among them, solution pH maintenance is crucial, yet its impact on the bacterial SERS spectra is surprisingly neglected. In this work, we focused on two situations related to pH maintenance: the effect of the same buffer on the SERS spectra of bacteria under different pH values, and the influence of different buffers on the SERS spectra of bacteria under the same pH value. Specifically, Britton-Robison (BR) buffer was used to evaluate the effect of pH value on bacteria SERS spectra thanks to its wide pH range. Four different buffers, namely BR buffer, acetate buffer, phosphate buffer, and carbonate buffer, were used to illustrate the impact of buffer types on SERS spectra of bacteria. The results showed that the intensity and number of characteristic peaks of the SERS spectra of Gram-negative (G -) bacteria changed more significantly than Gram-positive (G +) bacteria with the change of pH value. Furthermore, compared with phosphate buffer and carbonate buffer, BR buffer could bring more characteristic SERS bands with better reproducibility, but slightly inferior to acetate buffer. In conclusion, the influence of the pH and types of the buffer on the SERS spectra of bacteria are worthy of further discussion.
Collapse
|
11
|
Zhu C, Liu W, Wang D, Gong Z, Fan M. Boosting bacteria differentiation efficiency with multidimensional surface-enhanced Raman scattering: the example of Bacillus cereus. LUMINESCENCE 2022; 37:1145-1151. [PMID: 35481694 DOI: 10.1002/bio.4268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful tool for constructing biomolecular fingerprints, which play a vital role in differentiation of bacteria. Due to the rather subtle differences in the SERS spectra among different bacteria, artificial intelligence is usually adopted and enormous amounts of spectral data are required to improve the differentiation efficiency. However, in many cases, large volume data acquisition on bacteria is not only technical difficult but labour intensive. It is known that surface modification of SERS nanomaterials can bring additional dimensionality (difference) of the SERS fingerprints. Here in this work, we show that the concept could be used to improve the bacteria differentiation efficiency. Ag NPs were modified with 11-mercaptoundecanoic acid, 11-mercapto-1-undecanol, and 1-dodecanethiol to provide additional dimensionality. The modified NPs then were mixed with cell lysate from different strains of Bacillus cereus (B. cereus). Even by applying a simple PCA process to the resulting SERS spectra data, all the three modified Ag NPs showed superior differentiation results compared with bare Ag NPs, which could only separate Staphylococcus aureus (S. aureus) and B. cereus. It is believed that the multidimensional SERS could find great potential in bacteria differentiation.
Collapse
Affiliation(s)
- Chengye Zhu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Wen Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Dongmei Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Meikun Fan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
12
|
Arslan AH, Ciloglu FU, Yilmaz U, Simsek E, Aydin O. Discrimination of waterborne pathogens, Cryptosporidium parvum oocysts and bacteria using surface-enhanced Raman spectroscopy coupled with principal component analysis and hierarchical clustering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120475. [PMID: 34653850 DOI: 10.1016/j.saa.2021.120475] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 05/24/2023]
Abstract
Waterborne pathogens (parasites, bacteria) are serious threats to human health. Cryptosporidium parvum is one of the protozoan parasites that can contaminate drinking water and lead to diarrhea in animals and humans. Rapid and reliable detection of these kinds of waterborne pathogens is highly essential. Yet, current detection techniques are limited for waterborne pathogens and time-consuming and have some major drawbacks. Therefore, rapid screening methods would play an important role in controlling the outbreaks of these pathogens. Here, we used label-free surface-enhanced Raman Spectroscopy (SERS) combined with multivariate analysis for the detection of C. parvum oocysts along with bacterial contaminants including, Escherichia coli, and Staphylococcus aureus. Silver nanoparticles (AgNPs) are used as SERS substrate and samples were prepared with simply mixed of concentrated AgNPs with microorganisms. Each species presented distinct SERS spectra. Principal component analysis (PCA) and hierarchical clustering were performed to discriminate C. parvum oocysts, E. coli, and S. aureus. PCA was used to visualize the dataset and extract significant spectral features. According to score plots in 3 dimensional PCA space, species formed distinct group. Furthermore, each species formed different clusters in hierarchical clustering. Our study indicates that SERS combined with multivariate analysis techniques can be utilized for the detection of C. parvum oocysts quickly.
Collapse
Affiliation(s)
- Afra Hacer Arslan
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
| | | | - Ummugulsum Yilmaz
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
| | - Emrah Simsek
- Preclinical Sciences, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Omer Aydin
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey; ERKAM-Clinical Engineering Research and Application Center, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
13
|
Vaitiekūnaitė D, Snitka V. Differentiation of Closely Related Oak-Associated Gram-Negative Bacteria by Label-Free Surface Enhanced Raman Spectroscopy (SERS). Microorganisms 2021; 9:1969. [PMID: 34576865 PMCID: PMC8466144 DOI: 10.3390/microorganisms9091969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 12/02/2022] Open
Abstract
Due to the harmful effects of chemical fertilizers and pesticides, the need for an eco-friendly solution to improve soil fertility has become a necessity, thus microbial biofertilizer research is on the rise. Plant endophytic bacteria inhabiting internal tissues represent a novel niche for research into new biofertilizer strains. However, the number of species and strains that need to be differentiated and identified to facilitate faster screening in future plant-bacteria interaction studies, is enormous. Surface enhanced Raman spectroscopy (SERS) may provide a platform for bacterial discrimination and identification, which, compared with the traditional methods, is relatively rapid, uncomplicated and ensures high specificity. In this study, we attempted to differentiate 18 bacterial isolates from two oaks via morphological, physiological, biochemical tests and SERS spectra analysis. Previous 16S rRNA gene fragment sequencing showed that three isolates belong to Paenibacillus, 3-to Pantoea and 12-to Pseudomonas genera. Additional tests were not able to further sort these bacteria into strain-specific groups. However, the obtained label-free SERS bacterial spectra along with the high-accuracy principal component (PCA) and discriminant function analyses (DFA) demonstrated the possibility to differentiate these bacteria into variant strains. Furthermore, we collected information about the biochemical characteristics of selected isolates. The results of this study suggest a promising application of SERS in combination with PCA/DFA as a rapid, non-expensive and sensitive method for the detection and identification of plant-associated bacteria.
Collapse
Affiliation(s)
- Dorotėja Vaitiekūnaitė
- Laboratory of Forest Plant Biotechnology, Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas, Lithuania
| | - Valentinas Snitka
- Research Center for Microsystems and Nanotechnology, Kaunas University of Technology, Studentu Str. 65, 51369 Kaunas, Lithuania;
| |
Collapse
|
14
|
Bashir S, Nawaz H, Irfan Majeed M, Mohsin M, Nawaz A, Rashid N, Batool F, Akbar S, Abubakar M, Ahmad S, Ali S, Kashif M. Surface-enhanced Raman spectroscopy for the identification of tigecycline-resistant E. coli strains. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119831. [PMID: 33957452 DOI: 10.1016/j.saa.2021.119831] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Tigecycline (TGC) is recognised as last resort of drugs against several antibiotic-resistant bacteria. Bacterial resistance to tigecycline due to presence of plasmid-mediated mobile TGC resistance genes (tet X3/X4) has broken another defense line. Therefore, rapid and reproducible detection of tigecycline-resistant E. coli (TREC) is required. The current study is designed for the identification and differentiation of TREC from tigecycline-sensitive E. coli (TSEC) by employing SERS by using Ag NPs as a SERS substrate. The SERS spectral fingerprints of E. coli strains associated directly or indirectly with the development of resistance against tigecycline have been distinguished by comparing SERS spectral data of TSEC strains with each TREC strain. Moreover, the statistical analysis including Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) were employed to check the diagnostic potential of SERS for the differentiation among TREC and TSEC strains. The qualitative identification and differentiation between resistant and sensitive strains and among individual strains have been efficiently done by performing both PCA and HCA. The successful discrimination among TREC and TSEC at the strain level is performed by PLS-DA with 98% area under ROC curve, 100% sensitivity, 98.7% specificity and 100% accuracy.
Collapse
Affiliation(s)
- Saba Bashir
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan.
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan.
| | - Ali Nawaz
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Nosheen Rashid
- Department of Chemistry, University of Central Punjab, Faisalabad Campus, Faisalabad, Pakistan
| | - Fatima Batool
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Saba Akbar
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Abubakar
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Shamsheer Ahmad
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Saqib Ali
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Kashif
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| |
Collapse
|
15
|
Zhang Y, Hu X, Wang Q. Review of microchip analytical methods for the determination of pathogenic Escherichia coli. Talanta 2021; 232:122410. [PMID: 34074400 DOI: 10.1016/j.talanta.2021.122410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/28/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Bacterial infections remain the principal cause of mortality worldwide, making the detection of pathogenic bacteria highly important, especially Escherichia coli (E. coli). Current E. coli detection methods are labour-intensive, time-consuming, or require expensive instrumentation, making it critical to develop new strategies that are sensitive and specific. Microchips are an automated analytical technique used to analyse food based on their separation efficiency and low analyte consumption, which make them the preferred method to detect pathogenic bacteria. This review presents an overview of microchip-based analytical methods for analysing E. coli, which were published in recent years. Specifically, this review focuses on current research based on microchips for the detection of E. coli and reviews the limitations of microchip-based methods and future perspectives for the analysis of pathogenic bacteria.
Collapse
Affiliation(s)
- Yan Zhang
- Faculty of Science, Kunming University of Science and Technology, Kunming, 650500, China; School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Xianzhi Hu
- Faculty of Science, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Qingjiang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China.
| |
Collapse
|
16
|
Bashir S, Nawaz H, Majeed MI, Mohsin M, Abdullah S, Ali S, Rashid N, Kashif M, Batool F, Abubakar M, Ahmad S, Abdulraheem A. Rapid and sensitive discrimination among carbapenem resistant and susceptible E. coli strains using Surface Enhanced Raman Spectroscopy combined with chemometric tools. Photodiagnosis Photodyn Ther 2021; 34:102280. [PMID: 33823284 DOI: 10.1016/j.pdpdt.2021.102280] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/08/2021] [Accepted: 03/29/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Raman spectroscopy is a powerful technique for the robust, reliable and rapid detection and discrimination of bacteria. OBJECTIVES To develop a rapid and sensitive technique based on surface-enhanced Raman spectroscopy (SERS) with multivariate data analysis tools for discrimination among carbapenem resistant and susceptible E. coli strains. METHODS SERS was employed to differentiate different strains of carbapenem resistant and susceptible E. coli by using silver nanoparticles (Ag NPs) as a SERS substrate. For this purpose, four strains of carbapenem resistant and three strains of carbapenem susceptible E. coli were analyzed by comparing their SERS spectral signatures. Furthermore, multivariate data analysis techniques including Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) were performed over the spectral range of 400-1800 cm-1 (fingerprint region) for the identification and differentiation of different E. coli strains. RESULTS The SERS spectral features associated with resistant development against carbapenem antibiotics were separated by comparing each spectrum of susceptible strains with each resistant strain. PCA and HCA were found effective for the qualitative differentiation of all the strains analysed. PLS-DA successfully discriminated the carbapenem resistant and susceptible E. coli pellets on the strain level with 99.8 % sensitivity, 100 % specificity, 100 % accuracy and 86 % area under receiver operating characteristic (AUROC) curve. CONCLUSION SERS can be employed for the rapid discrimination among carbapenem resistant and susceptible strains of E. coil.
Collapse
Affiliation(s)
- Saba Bashir
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Sabahat Abdullah
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Saqib Ali
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Nosheen Rashid
- Department of Chemistry, University of Central Punjab, Faisalabad Campus, Faisalabad, Pakistan
| | - Muhammad Kashif
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Fatima Batool
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Muhammad Abubakar
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Shamsheer Ahmad
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Aliza Abdulraheem
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| |
Collapse
|
17
|
Boschetto F, Adachi T, Horiguchi S, Marin E, Paccotti N, Asai T, Zhu W, McEntire BJ, Yamamoto T, Kanamura N, Mazda O, Ohgitani E, Pezzotti G. In situ molecular vibration insights into the antibacterial behavior of silicon nitride bioceramic versus gram-negative Escherichia coli. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117299. [PMID: 31277027 DOI: 10.1016/j.saa.2019.117299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/11/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
Gram-negative bacteria represent a substantial fraction of pathogens responsible for periprosthetic infections. Given the increasing resistance of such bacteria to antibiotics, significant efforts are nowadays paid in developing new biomaterial surfaces, which offer resistance against bacterial adhesion and/or possess inherent antibacterial effects. Non-oxide silicon nitride (Si3N4) bioceramic in its polycrystalline form is a biomaterial with inherent antibacterial properties. Building upon previous phenomenological findings, the present study focuses on vibrational analyses of the metabolic response of Escherichia coli at the molecular level. A time-lapse study is conducted upon exposing the bacteria in vitro to Si3N4 bioceramic surfaces. A comparison is carried out with the as-cultured bacterial strain and with bacteria exposed to other commercially available biomaterials, namely, Ti-alloy (Ti6Al4V-ELI) and zirconia-toughened alumina (ZTA) oxide bioceramic tested under exactly the same experimental conditions. The metabolic pathways before and after exposure to different substrates were monitored by means of Raman and FTIR spectroscopies. Results indicated the development of significant osmotic stress in the bacterial strain and constant concentration decreases of its cellular compounds markers over time upon exposure to Si3N4. This ultimately led to bacterial lysis (also confirmed by conventional fluorescence microscopy assays). The main antibacterial effect was of chemical origin and driven by the elution of nitrogen ions from the Si3N4 surface, successively converted into ammonia (NH3) or ammonium (NH4)+ in aqueous solution, depending on environmental pH. The presence of these nitrogen species created osmotic stress in the cytoplasmic space. In answer to the osmotic stress, metabolic rates changed rapidly, the bacterial membrane was damaged, and lysis occurred almost completely within 48 h exposure. The antibacterial behavior exerted by the Si3N4 substrate on E. coli was more effective than that observed on the biomedical Ti6Al4V alloy. Conversely, no lysis but bacterial proliferation was recorded for E. coli exposed to ZTA bioceramic oxide substrates.
Collapse
Affiliation(s)
- Francesco Boschetto
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585 Kyoto, Japan; Department of Immunology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Satoshi Horiguchi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585 Kyoto, Japan; Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Niccolò Paccotti
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Tenma Asai
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585 Kyoto, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585 Kyoto, Japan
| | - Bryan J McEntire
- SINTX, Technologies, Co. 1885 West 2100 South, Salt Lake City, UT 84119, USA
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Osam Mazda
- Department of Immunology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Eriko Ohgitani
- Department of Immunology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585 Kyoto, Japan; Department of Immunology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, 160-0023 Tokyo, Japan; The Center for Advanced Medical Engineering and Informatics, Osaka University, Yamadaoka, Suita, 565-0871 Osaka, Japan.
| |
Collapse
|
18
|
Calado G, Behl I, Daniel A, Byrne HJ, Lyng FM. Raman spectroscopic analysis of saliva for the diagnosis of oral cancer: A systematic review. TRANSLATIONAL BIOPHOTONICS 2019. [DOI: 10.1002/tbio.201900001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Genecy Calado
- Radiation and Environmental Science CentreFOCAS Research Institute, Technological University Dublin, City Centre Campus Dublin Ireland
- School of Physics and Clinical and Optometric SciencesTechnological University Dublin, City Centre Campus Dublin Ireland
| | - Isha Behl
- Radiation and Environmental Science CentreFOCAS Research Institute, Technological University Dublin, City Centre Campus Dublin Ireland
- School of Physics and Clinical and Optometric SciencesTechnological University Dublin, City Centre Campus Dublin Ireland
| | - Amuthachelvi Daniel
- Radiation and Environmental Science CentreFOCAS Research Institute, Technological University Dublin, City Centre Campus Dublin Ireland
- School of Physics and Clinical and Optometric SciencesTechnological University Dublin, City Centre Campus Dublin Ireland
| | - Hugh J. Byrne
- FOCAS Research InstituteTechnological University Dublin, City Centre Campus Dublin Ireland
| | - Fiona M. Lyng
- Radiation and Environmental Science CentreFOCAS Research Institute, Technological University Dublin, City Centre Campus Dublin Ireland
- School of Physics and Clinical and Optometric SciencesTechnological University Dublin, City Centre Campus Dublin Ireland
| |
Collapse
|
19
|
Pezzotti G. Silicon Nitride: A Bioceramic with a Gift. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26619-26636. [PMID: 31251018 DOI: 10.1021/acsami.9b07997] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the closing decades of the 20th century, silicon nitride (Si3N4) was extensively developed for high-temperature gas turbine applications. Technologists attempted to take advantage of its superior thermal and mechanical properties to improve engine reliability and fuel economy. Yet, this promise was never realized in spite of the worldwide research, which was conducted at that time. Notwithstanding this disappointment, its use in medical applications in the early 21st century has been an unexpected gift. While retaining all of its engineered mechanical properties, it is now recognized for its peculiar surface chemistry. When immersed in an aqueous environment, the slow elution of silicon and nitrogen from its surface enhances healing of soft and osseous tissue, inhibits bacterial proliferation, and eradicates viruses. These benefits permit it to be used in a wide array of different disciplines inside and outside of the human body including orthopedics, dentistry, virology, agronomy, and environmental remediation. Given the global public health threat posed by mutating viruses and bacteria, silicon nitride offers a valid and straightforward alternative approach to fighting these pathogens. However, there is a conundrum behind these recent discoveries: How can this unique bioceramic be both friendly to mammalian cells while concurrently lysing invasive pathogens? This unparalleled characteristic can be explained by the pH-dependent kinetics of two ammonia species-NH4+ and NH3-both of which are leached from the wet Si3N4 surface.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory , Kyoto Institute of Technology , Sakyo-ku, Matsugasaki , Kyoto 606-8585 , Japan
- Department of Orthopedic Surgery , Tokyo Medical University , 6-7-1 Nishi-Shinjuku , Shinjuku-ku, Tokyo 160-0023 , Japan
- The Center for Advanced Medical Engineering and Informatics , Osaka University , 2-2 Yamadaoka , Suita 565-0854 , Osaka , Japan
- Department of Immunology, Graduate School of Medical Science , Kyoto Prefectural University of Medicine , Kamigyo-ku, 465 Kajii-cho , Kyoto 602-8566 , Japan
| |
Collapse
|
20
|
Weiss R, Palatinszky M, Wagner M, Niessner R, Elsner M, Seidel M, Ivleva NP. Surface-enhanced Raman spectroscopy of microorganisms: limitations and applicability on the single-cell level. Analyst 2019; 144:943-953. [PMID: 30574650 DOI: 10.1039/c8an02177e] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Detection and characterization of microorganisms is essential for both clinical diagnostics and environmental studies. An emerging technique to analyse microbes at single-cell resolution is surface-enhanced Raman spectroscopy (surface-enhanced Raman scattering: SERS). Optimised SERS procedures enable fast analytical read-outs with specific molecular information, providing insight into the chemical composition of microbiological samples. Knowledge about the origin of microbial SERS signals and parameter(s) affecting their occurrence, intensity and/or reproducibility is crucial for reliable SERS-based analyses. In this work, we explore the feasibility and limitations of the SERS approach for characterizing microbial cells and investigate the applicability of SERS for single-cell sorting as well as for three-dimensional visualization of microbial communities. Analyses of six different microbial species (an archaeon, two Gram-positive bacteria, three Gram-negative bacteria) showed that for several of these organisms distinct features in their SERS spectra were lacking. As additional confounding factor, the physiological conditions of the cells (as influenced by e.g., storage conditions or deuterium-labelling) were systematically addressed, for which we conclude that the respective SERS signal at the single-cell level is strongly influenced by the metabolic activity of the analysed cells. While this finding complicates the interpretation of SERS data, it may on the other hand enable probing of the metabolic state of individual cells within microbial populations of interest.
Collapse
Affiliation(s)
- Ruben Weiss
- Technical University of Munich, Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Marchioninistrasse 17, D-81377 Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Witkowska E, Korsak D, Kowalska A, Janeczek A, Kamińska A. Strain-level typing and identification of bacteria - a novel approach for SERS active plasmonic nanostructures. Anal Bioanal Chem 2018; 410:5019-5031. [PMID: 29907950 PMCID: PMC6061775 DOI: 10.1007/s00216-018-1153-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/16/2018] [Accepted: 05/18/2018] [Indexed: 10/24/2022]
Abstract
One of the potential applications of surface-enhanced Raman spectroscopy (SERS) is the detection of biological compounds and microorganisms. Here we demonstrate that SERS coupled with principal component analysis (PCA) serves as a perfect method for determining the taxonomic affiliation of bacteria at the strain level. We demonstrate for the first time that it is possible to distinguish different genoserogroups within a single species, Listeria monocytogenes, which is one of the most virulent foodborne pathogens and in some cases contact with which may be fatal. We also postulate that it is possible to detect additional proteins in the L. monocytogenes cell envelope, which provide resistance to benzalkonium chloride and cadmium. A better understanding of this infectious agent could help in selecting the appropriate pharmaceutical product for enhanced treatment. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Evelin Witkowska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Dorota Korsak
- Faculty of Biology, Institute of Microbiology, Department of Applied Microbiology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Aneta Kowalska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Anna Janeczek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Agnieszka Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
22
|
Kögler M, Ryabchikov YV, Uusitalo S, Popov A, Popov A, Tselikov G, Välimaa AL, Al-Kattan A, Hiltunen J, Laitinen R, Neubauer P, Meglinski I, Kabashin AV. Bare laser-synthesized Au-based nanoparticles as nondisturbing surface-enhanced Raman scattering probes for bacteria identification. JOURNAL OF BIOPHOTONICS 2018; 11:e201700225. [PMID: 29388744 DOI: 10.1002/jbio.201700225] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 06/07/2023]
Abstract
The ability of noble metal-based nanoparticles (NPs) (Au, Ag) to drastically enhance Raman scattering from molecules placed near metal surface, termed as surface-enhanced Raman scattering (SERS), is widely used for identification of trace amounts of biological materials in biomedical, food safety and security applications. However, conventional NPs synthesized by colloidal chemistry are typically contaminated by nonbiocompatible by-products (surfactants, anions), which can have negative impacts on many live objects under examination (cells, bacteria) and thus decrease the precision of bioidentification. In this article, we explore novel ultrapure laser-synthesized Au-based nanomaterials, including Au NPs and AuSi hybrid nanostructures, as mobile SERS probes in tasks of bacteria detection. We show that these Au-based nanomaterials can efficiently enhance Raman signals from model R6G molecules, while the enhancement factor depends on the content of Au in NP composition. Profiting from the observed enhancement and purity of laser-synthesized nanomaterials, we demonstrate successful identification of 2 types of bacteria (Listeria innocua and Escherichia coli). The obtained results promise less disturbing studies of biological systems based on good biocompatibility of contamination-free laser-synthesized nanomaterials.
Collapse
Affiliation(s)
- Martin Kögler
- Drug Research Program, Division of Pharmaceutical Biosciences, Centre for Drug Research, University of Helsinki, Helsinki, Finland
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Yury V Ryabchikov
- Aix-Marseille Univ, CNRS, Marseille, France
- P.N. Lebedev Physical Institute of Russian Academy of Sciences, Moscow, Russia
| | - Sanna Uusitalo
- VTT - Technical Research Centre of Finland, Oulu, Finland
| | - Alexey Popov
- Optoelectronics and Measurement Techniques, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland
- ITMO University, St. Petersburg, Russia
| | | | | | - Anna-Liisa Välimaa
- National Resources Institute Finland (LUKE), Bio-based Business and Industry, University of Oulu, Oulu, Finland
| | | | - Jussi Hiltunen
- VTT - Technical Research Centre of Finland, Oulu, Finland
| | - Riitta Laitinen
- Natural Research Institute Finland (LUKE), Bio-based Business and Industry, Turku, Finland
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Igor Meglinski
- Optoelectronics and Measurement Techniques, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland
- ITMO University, St. Petersburg, Russia
- National Research Nuclear University "MEPhI", Institute of Engineering Physics for Biomedicine (PhysBio), Moscow, Russia
| | - Andrei V Kabashin
- Aix-Marseille Univ, CNRS, Marseille, France
- National Research Nuclear University "MEPhI", Institute of Engineering Physics for Biomedicine (PhysBio), Moscow, Russia
| |
Collapse
|
23
|
Cozar IB, Colniţă A, Szöke-Nagy T, Gherman AMR, Dina NE. Label-Free Detection of Bacteria Using Surface-Enhanced Raman Scattering and Principal Component Analysis. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1445747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ionuţ Bogdan Cozar
- Department of Molecular and Biomolecular Physics, National Institute of Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Alia Colniţă
- Department of Molecular and Biomolecular Physics, National Institute of Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Tiberiu Szöke-Nagy
- Department of Molecular and Biomolecular Physics, National Institute of Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
- Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
- Institute of Biological Research Cluj-Napoca, Branch of the National Institute of Research and Development for Biological Sciences Bucharest, Cluj-Napoca, Romania
| | - Ana Maria Raluca Gherman
- Department of Molecular and Biomolecular Physics, National Institute of Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
- Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Nicoleta Elena Dina
- Department of Molecular and Biomolecular Physics, National Institute of Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| |
Collapse
|
24
|
Bozkurt AG, Buyukgoz GG, Soforoglu M, Tamer U, Suludere Z, Boyaci IH. Alkaline phosphatase labeled SERS active sandwich immunoassay for detection of Escherichia coli. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 194:8-13. [PMID: 29306060 DOI: 10.1016/j.saa.2017.12.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/09/2017] [Accepted: 12/20/2017] [Indexed: 05/18/2023]
Abstract
In this study, a sandwich immunoassay method utilizing enzymatic activity of alkaline phosphatase (ALP) on 5-bromo-4-chloro-3-indolyl phosphate (BCIP) for Escherichia coli (E. coli) detection was developed using surface enhanced Raman spectroscopy (SERS). For this purpose, spherical magnetic gold coated core-shell nanoparticles (MNPs-Au) and rod shape gold nanoparticles (Au-NRs) were synthesized and modified for immunomagnetic separation (IMS) of E. coli from the solution. In order to specify the developed method to ALP activity, Au-NRs were labeled with this enzyme. After successful construction of the immunoassay, BCIP substrate was added to produce the SERS-active product; 5-bromo-4-chloro-3-indole (BCI). A good linearity (R2=0.992) was established between the specific SERS intensity of BCI at 600cm-1 and logarithmic E. coli concentration in the range of 1.7×101-1.7×106cfumL-1. LOD and LOQ values were also calculated and found to be 10cfumL-1 and 30cfumL-1, respectively.
Collapse
Affiliation(s)
- Akif Goktug Bozkurt
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe, 06800 Ankara, Turkey
| | - Guluzar Gorkem Buyukgoz
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe, 06800 Ankara, Turkey
| | - Mehmet Soforoglu
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe, 06800 Ankara, Turkey
| | - Ugur Tamer
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Zekiye Suludere
- Department of Biology, Science Faculty, Gazi University, 06500 Ankara, Turkey
| | - Ismail Hakki Boyaci
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe, 06800 Ankara, Turkey.
| |
Collapse
|
25
|
Arnob MMP, Shih WC. 3-Dimensional Plasmonic Substrates Based on Chicken Eggshell Bio-Templates for SERS-Based Bio-Sensing. MICROMACHINES 2017. [PMCID: PMC6190012 DOI: 10.3390/mi8060196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Md Masud Parvez Arnob
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, USA;
| | - Wei-Chuan Shih
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, USA;
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
- Program of Materials Science and Engineering, University of Houston, Houston, TX 77204, USA
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
- Correspondence: ; Tel.: +1-713-743-4454
| |
Collapse
|
26
|
Premasiri WR, Lee JC, Sauer-Budge A, Théberge R, Costello CE, Ziegler LD. The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS. Anal Bioanal Chem 2016; 408:4631-47. [PMID: 27100230 PMCID: PMC4911336 DOI: 10.1007/s00216-016-9540-x] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/22/2016] [Accepted: 04/01/2016] [Indexed: 10/21/2022]
Abstract
The dominant molecular species contributing to the surface-enhanced Raman spectroscopy (SERS) spectra of bacteria excited at 785 nm are the metabolites of purine degradation: adenine, hypoxanthine, xanthine, guanine, uric acid, and adenosine monophosphate. These molecules result from the starvation response of the bacterial cells in pure water washes following enrichment from nutrient-rich environments. Vibrational shifts due to isotopic labeling, bacterial SERS spectral fitting, SERS and mass spectrometry analysis of bacterial supernatant, SERS spectra of defined bacterial mutants, and the enzymatic substrate dependence of SERS spectra are used to identify these molecular components. The absence or presence of different degradation/salvage enzymes in the known purine metabolism pathways of these organisms plays a central role in determining the bacterial specificity of these purine-base SERS signatures. These results provide the biochemical basis for the development of SERS as a rapid bacterial diagnostic and illustrate how SERS can be applied more generally for metabolic profiling as a probe of cellular activity. Graphical Abstract Bacterial typing by metabolites released under stress.
Collapse
Affiliation(s)
- W Ranjith Premasiri
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA, 02215, USA.
- The Photonics Center, Boston University, 8 Saint Mary's St., Boston, MA, 02215, USA.
| | - Jean C Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Ave., Boston, MA, 02115, USA
| | - Alexis Sauer-Budge
- The Photonics Center, Boston University, 8 Saint Mary's St., Boston, MA, 02215, USA
- Fraunhofer Center for Manufacturing Innovation, 15 Saint Mary's St., Brookline, MA, 02446, USA
- Department of Biomedical Engineering, Boston University, 44 Cummington St., Boston, MA, 02215, USA
| | - Roger Théberge
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Lawrence D Ziegler
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA, 02215, USA.
- The Photonics Center, Boston University, 8 Saint Mary's St., Boston, MA, 02215, USA.
| |
Collapse
|
27
|
Kubryk P, Niessner R, Ivleva NP. The origin of the band at around 730 cm−1 in the SERS spectra of bacteria: a stable isotope approach. Analyst 2016; 141:2874-8. [DOI: 10.1039/c6an00306k] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A stable isotope approach combined with SERS analysis of bacteria allows clarification of the origin of a pronounced band at 730 cm−1.
Collapse
Affiliation(s)
- Patrick Kubryk
- Technical University of Munich
- Institute of Hydrochemistry
- Chair of Analytical Chemistry
- 81377 Munich
- Germany
| | - Reinhard Niessner
- Technical University of Munich
- Institute of Hydrochemistry
- Chair of Analytical Chemistry
- 81377 Munich
- Germany
| | - Natalia P. Ivleva
- Technical University of Munich
- Institute of Hydrochemistry
- Chair of Analytical Chemistry
- 81377 Munich
- Germany
| |
Collapse
|
28
|
Uusitalo S, Kögler M, Välimaa AL, Popov A, Ryabchikov Y, Kontturi V, Siitonen S, Petäjä J, Virtanen T, Laitinen R, Kinnunen M, Meglinski I, Kabashin A, Bunker A, Viitala T, Hiltunen J. Detection of Listeria innocua on roll-to-roll produced SERS substrates with gold nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra08313g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rapid and accurate detection of food pathogens plays a critical role in the early prevention of foodborne epidemics. Combination of low cost sensing platforms and SERS detection can offer a solution for the pathogen detection.
Collapse
|
29
|
Prikhozhdenko ES, Atkin VS, Parakhonskiy BV, Rybkin IA, Lapanje A, Sukhorukov GB, Gorin DA, Yashchenok AM. New post-processing method of preparing nanofibrous SERS substrates with a high density of silver nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra18636j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The protocol to control density of AgNP on surfaces of nanofibers, and thus electromagnetic hotspots by variation of Tollens' reagent is established. Nanofiber films enable SERS either of solutes or macromolecular structures such as bacterial cells.
Collapse
Affiliation(s)
- E. S. Prikhozhdenko
- Remote Controlled Theranostic Systems Lab
- Educational Research Institute of Nanostructures and Biosystem
- Saratov State University
- Saratov
- Russia
| | - V. S. Atkin
- Educational Research Institute of Nanostructures and Biosystem
- Saratov State University
- Saratov
- Russia
| | - B. V. Parakhonskiy
- Remote Controlled Theranostic Systems Lab
- Educational Research Institute of Nanostructures and Biosystem
- Saratov State University
- Saratov
- Russia
| | - I. A. Rybkin
- Remote Controlled Theranostic Systems Lab
- Educational Research Institute of Nanostructures and Biosystem
- Saratov State University
- Saratov
- Russia
| | - A. Lapanje
- Remote Controlled Theranostic Systems Lab
- Educational Research Institute of Nanostructures and Biosystem
- Saratov State University
- Saratov
- Russia
| | - G. B. Sukhorukov
- School of Engineering and Materials Science
- Queen Mary University of London
- London
- UK
- RASA Center in St. Petersburg
| | - D. A. Gorin
- Remote Controlled Theranostic Systems Lab
- Educational Research Institute of Nanostructures and Biosystem
- Saratov State University
- Saratov
- Russia
| | - A. M. Yashchenok
- Remote Controlled Theranostic Systems Lab
- Educational Research Institute of Nanostructures and Biosystem
- Saratov State University
- Saratov
- Russia
| |
Collapse
|
30
|
Kubryk P, Kölschbach JS, Marozava S, Lueders T, Meckenstock RU, Niessner R, Ivleva NP. Exploring the Potential of Stable Isotope (Resonance) Raman Microspectroscopy and Surface-Enhanced Raman Scattering for the Analysis of Microorganisms at Single Cell Level. Anal Chem 2015; 87:6622-30. [DOI: 10.1021/acs.analchem.5b00673] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Patrick Kubryk
- Technische Universität München, Institute
of Hydrochemistry, Chair for Analytical Chemistry, Marchioninistr. 17, 81377 Munich, Germany
| | - Janina S. Kölschbach
- Helmholtz Zentrum München, Institute of Groundwater
Ecology, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Sviatlana Marozava
- Helmholtz Zentrum München, Institute of Groundwater
Ecology, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Tillmann Lueders
- Helmholtz Zentrum München, Institute of Groundwater
Ecology, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Rainer U. Meckenstock
- Helmholtz Zentrum München, Institute of Groundwater
Ecology, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Reinhard Niessner
- Technische Universität München, Institute
of Hydrochemistry, Chair for Analytical Chemistry, Marchioninistr. 17, 81377 Munich, Germany
| | - Natalia P. Ivleva
- Technische Universität München, Institute
of Hydrochemistry, Chair for Analytical Chemistry, Marchioninistr. 17, 81377 Munich, Germany
| |
Collapse
|
31
|
Wu X, Huang YW, Park B, Tripp RA, Zhao Y. Differentiation and classification of bacteria using vancomycin functionalized silver nanorods array based surface-enhanced Raman spectroscopy and chemometric analysis. Talanta 2015; 139:96-103. [PMID: 25882413 DOI: 10.1016/j.talanta.2015.02.045] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
Abstract
Twenty seven different bacteria isolates from 12 species were analyzed using intrinsic surface-enhanced Raman scattering (SERS) spectra with recently developed vancomycin coated silver nanorod (VAN AgNR) substrates. The VAN AgNR substrates could generate reproducible SERS spectra of the bacteria with little to no interference from the environment or bacterial by-products as compared to the pristine substrates. By taking advantage of the structural composition of the cellular wall which varies from species to species, the differentiation of bacterial species is demonstrated by using chemometric analyses on those spectra. A second chemometric analysis step within the species cluster is able to differentiate serotypes and strains. The spectral features used for serotype differentiation arises from the surface proteins, while Raman peaks from adenine dominate the differentiation of strains. In addition, due to the intrinsic structural differences in the cell walls, the SERS spectra can distinguish Gram-positive from Gram-negative bacteria with high sensitivity and specificity, as well as 100% accuracy on predicting test samples. Our results provide important insights for using SERS as a bacterial diagnostic tool and further guide the design of a SERS-based detection platform.
Collapse
Affiliation(s)
- Xiaomeng Wu
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, United States; Nanoscale Science and Engineering Center, University of Georgia, Athens, GA 30602, United States
| | - Yao-Wen Huang
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, United States
| | - Bosoon Park
- USDA Agricultural Research Service, Russell Research Center, Athens, GA 30605, United States
| | - Ralph A Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, United States
| | - Yiping Zhao
- Nanoscale Science and Engineering Center, University of Georgia, Athens, GA 30602, United States; Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
32
|
Fargašová A, Prucek R, Ranc V, Panáček A, Kvítek L, Zbořil R. Influence of various chloride ion concentrations on silver nanoparticle transformations and effectiveness in surface enhanced Raman scattering for different excitation wavelengths. RSC Adv 2015. [DOI: 10.1039/c4ra13881c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study reports the effect of six various concentrations of chlorides on the surface enhanced Raman scattering activity of silver nanoparticles.
Collapse
Affiliation(s)
- Ariana Fargašová
- Regional Centre of Advanced Technologies and Materials
- Department of Physical Chemistry
- Faculty of Science
- Palacky University Olomouc
- 783 71 Olomouc
| | - Robert Prucek
- Regional Centre of Advanced Technologies and Materials
- Department of Physical Chemistry
- Faculty of Science
- Palacky University Olomouc
- 783 71 Olomouc
| | - Václav Ranc
- Regional Centre of Advanced Technologies and Materials
- Department of Physical Chemistry
- Faculty of Science
- Palacky University Olomouc
- 783 71 Olomouc
| | - Aleš Panáček
- Regional Centre of Advanced Technologies and Materials
- Department of Physical Chemistry
- Faculty of Science
- Palacky University Olomouc
- 783 71 Olomouc
| | - Libor Kvítek
- Regional Centre of Advanced Technologies and Materials
- Department of Physical Chemistry
- Faculty of Science
- Palacky University Olomouc
- 783 71 Olomouc
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials
- Department of Physical Chemistry
- Faculty of Science
- Palacky University Olomouc
- 783 71 Olomouc
| |
Collapse
|
33
|
Lu X, Samuelson DR, Xu Y, Zhang H, Wang S, Rasco BA, Xu J, Konkel ME. Detecting and tracking nosocomial methicillin-resistant Staphylococcus aureus using a microfluidic SERS biosensor. Anal Chem 2013; 85:2320-7. [PMID: 23327644 DOI: 10.1021/ac303279u] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Rapid detection and differentiation of methicillin-resistant Staphylococcus aureus (MRSA) are critical for the early diagnosis of difficult-to-treat nosocomial and community acquired clinical infections and improved epidemiological surveillance. We developed a microfluidics chip coupled with surface enhanced Raman scattering (SERS) spectroscopy (532 nm) "lab-on-a-chip" system to rapidly detect and differentiate methicillin-sensitive S. aureus (MSSA) and MRSA using clinical isolates from China and the United States. A total of 21 MSSA isolates and 37 MRSA isolates recovered from infected humans were first analyzed by using polymerase chain reaction (PCR) and multilocus sequence typing (MLST). The mecA gene, which refers resistant to methicillin, was detected in all the MRSA isolates, and different allelic profiles were identified assigning isolates as either previously identified or novel clones. A total of 17 400 SERS spectra of the 58 S. aureus isolates were collected within 3.5 h using this optofluidic platform. Intra- and interlaboratory spectral reproducibility yielded a differentiation index value of 3.43-4.06 and demonstrated the feasibility of using this optofluidic system at different laboratories for bacterial identification. A global SERS-based dendrogram model for MRSA and MSSA identification and differentiation to the strain level was established and cross-validated (Simpson index of diversity of 0.989) and had an average recognition rate of 95% for S. aureus isolates associated with a recent outbreak in China. SERS typing correlated well with MLST indicating that it has high sensitivity and selectivity and would be suitable for determining the origin and possible spread of MRSA. A SERS-based partial least-squares regression model could quantify the actual concentration of a specific MRSA isolate in a bacterial mixture at levels from 5% to 100% (regression coefficient, >0.98; residual prediction deviation, >10.05). This optofluidic platform has advantages over traditional genotyping for ultrafast, automated, and reliable detection and epidemiological surveillance of bacterial infections.
Collapse
Affiliation(s)
- Xiaonan Lu
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164-7520, United States
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Prucek R, Ranc V, Kvítek L, Panáček A, Zbořil R, Kolář M. Reproducible discrimination between Gram-positive and Gram-negative bacteria using surface enhanced Raman spectroscopy with infrared excitation. Analyst 2012; 137:2866-70. [DOI: 10.1039/c2an16310a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Yan B, Boriskina SV, Reinhard BM. Design and Implementation of Noble Metal Nanoparticle Cluster Arrays for Plasmon Enhanced Biosensing. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2011; 115:24437-24453. [PMID: 22299057 PMCID: PMC3268044 DOI: 10.1021/jp207821t] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanoparticle Cluster Arrays (NCAs) are a class of electromagnetic materials that comprise chemically defined nanoparticles assembled into clusters of defined size in an extended deterministic arrangement. NCAs are fabricated through integration of chemically synthesized building blocks into predefined patterns using a hybrid top-down/bottom-up fabrication approach that overcomes some of the limitations of conventional top-down fabrication methods with regard to minimum available feature size and structural complexity. NCAs can sustain near-field interactions between nanoparticles within individual clusters as well as between entire neighboring clusters. The availability of near-field interactions on multiple length scales - together with the ability to further enhance the coupled plasmon modes through photonic modes in carefully designed array morphologies - leads to a multiscale cascade electromagnetic field enhancement throughout the array. This feature article introduces the design and fabrication fundamentals of NCAs and characterizes the electromagnetic coupling mechanisms in the arrays. Furthermore, it reviews how the optical properties of NCAs can be tuned through the size and shape of the nanoparticle building blocks and the geometry, size, and separation of the assembled clusters. NCAs have potential applications in many different areas; this feature article focuses on plasmon enhanced biosensing and surface enhanced Raman spectroscopy (SERS), in particular.
Collapse
Affiliation(s)
- Bo Yan
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215
| | - Svetlana V. Boriskina
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215
| | - Björn M. Reinhard
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215
| |
Collapse
|
36
|
Walter A, März A, Schumacher W, Rösch P, Popp J. Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device. LAB ON A CHIP 2011; 11:1013-21. [PMID: 21283864 DOI: 10.1039/c0lc00536c] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The interest in a fast, high specific and reliable detection method for bacteria identification is increasing. We will show that the application of vibrational spectroscopy is feasible for the validation of bacteria in microfluidic devices. For this purpose, reproducible and specific spectral pattern as well as the establishment of large databases are essential for statistical analysis. Therefore, short recording times are beneficial concerning the time aspect of fast identification. We will demonstrate that the requirements can be fulfilled by measuring ultrasonic busted bacteria by means of microfluidic lab-on-a-chip based SERS. With the applied sample preparation, high specificity and reproducibility of the spectra are achieved. Taking advantage of the SERS enhancement, the spectral recording time is reduced to 1 s and a database of 11,200 spectra is established for a model system E. coli including nine different strains. The validation of the bacteria on strain level is achieved accomplishing SVM accuracies of 92%. Within this contribution the potential of our approach of bacterial identification for future application is discussed, focusing on the time-benefit and the combination with other microfluidic applications.
Collapse
Affiliation(s)
- Angela Walter
- Institut für Physikalische Chemie, Friedrich-Schiller-Universität Jena, Jena, Germany
| | | | | | | | | |
Collapse
|
37
|
Marotta NE, Bottomley LA. Surface-enhanced Raman scattering of bacterial cell culture growth media. APPLIED SPECTROSCOPY 2010; 64:601-606. [PMID: 20537227 DOI: 10.1366/000370210791414326] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The application of surface-enhanced Raman spectroscopy (SERS) to characterizing bacteria is an active area of investigation. Micro- and nano-structured SERS substrates have enabled detection of pathogens present in biofluids. Several publications have focused on determining the spectral bands characteristic of bacteria from different species and cell lines. In this report, the spectra of fifteen commonly used bacterial growth media are presented. In many instances, these spectra are similar to published spectra purportedly characteristic of specific bacterial species. The findings presented herein suggest that bacterial fingerprinting by SERS requires further examination.
Collapse
Affiliation(s)
- Nicole E Marotta
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | | |
Collapse
|
38
|
Temur E, Boyacı İH, Tamer U, Unsal H, Aydogan N. A highly sensitive detection platform based on surface-enhanced Raman scattering for Escherichia coli enumeration. Anal Bioanal Chem 2010; 397:1595-604. [DOI: 10.1007/s00216-010-3676-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 03/22/2010] [Accepted: 03/22/2010] [Indexed: 11/29/2022]
|
39
|
Harz M, Rösch P, Popp J. Vibrational spectroscopy--a powerful tool for the rapid identification of microbial cells at the single-cell level. Cytometry A 2009; 75:104-13. [PMID: 19156822 DOI: 10.1002/cyto.a.20682] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rapid microbial detection and identification with a high grade of sensitivity and selectivity is a great and challenging issue in many fields, primarily in clinical diagnosis, pharmaceutical, or food processing technology. The tedious and time-consuming processes of current microbiological approaches call for faster ideally on-line identification techniques. The vibrational spectroscopic techniques IR absorption and Raman spectroscopy are noninvasive methods yielding molecular fingerprint information; thus, allowing for a fast and reliable analysis of complex biological systems such as bacterial or yeast cells. In this short review, we discuss recent vibrational spectroscopic advances in microbial identification of yeast and bacterial cells for bulk environment and single-cell analysis. IR absorption spectroscopy enables a bulk analysis whereas micro-Raman-spectroscopy with excitation in the near infrared or visible range has the potential for the analysis of single bacterial and yeast cells. The inherently weak Raman signal can be increased up to several orders of magnitude by applying Raman signal enhancement methods such as UV-resonance Raman spectroscopy with excitation in the deep UV region, surface enhanced Raman scattering, or tip-enhanced Raman scattering.
Collapse
Affiliation(s)
- M Harz
- Institute of Physical Chemistry, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, Jena 07743, Germany
| | | | | |
Collapse
|
40
|
|