1
|
Wang X, Tang S, Ding L, Qiu X, Zhang Z, Xu L, Liang X, Huang X, Guo X. Contribution of plastic solid components to volatile organic compounds formation during plastics combustion. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135977. [PMID: 39342857 DOI: 10.1016/j.jhazmat.2024.135977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/31/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The combustion of plastic waste releases volatile organic compounds (VOCs) that are harmful to human health. However, information on the micro-mechanisms of VOC formation remains lacking. Here, the study hypothesized and verified the relationship between VOC formation and solid component degradation during plastics combustion. The VOCs released during plastics combustion exhibit characteristics such as low carbon content (nc< 10), volatility (9 μg m-3 < log10C0 < 11 μg m-3), and medium oxidation degree (-1.5 < OSC¯ < -0.5). The dominant VOCs ketones/aldehydes/acids (33-43 %) may be attributed to the depolymerization of the polymer structure of plastics, the oxidation of C-O/CO groups, and the secondary cleavage of gaseous oxygen-containing macromolecules. The VOCs released from the combustion of polyethylene terephthalate (PET) and poly(butyleneadipate-co-terephthalate) (PBAT) contained more aromatics than polyethylene (PE) and polypropylene (PP). And the temperature response of aromatics released from PET and PBAT lagged other VOCs compared that of PP and PE. However, compared to biomass thermal conversion, combustion of plastics releases fewer aromatics and nitrogenous compounds. Collectively, this work shows that the formation mechanisms of VOCs contributed by the solid components during plastic combustion are similar for PET and PBAT due to their similar chemical structures. The proposed mechanism in this paper will provide insight into the control of contaminants during plastic combustion.
Collapse
Affiliation(s)
- Xinglei Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Simeng Tang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Xinran Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zhenming Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xujun Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Xianfei Huang
- Guizhou Provincial Key Laboratory for Environment, Guizhou Normal University, Guiyang, Guizhou 550001, China.
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
2
|
Wang X, Wang X, Zhu W, Ding L, Liang X, Wu R, Jia H, Huang X, Guo X. Insight into interactions between microplastics and fulvic acid: Mechanisms affected by microplastics type. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169427. [PMID: 38135066 DOI: 10.1016/j.scitotenv.2023.169427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Microplastics (MPs) can interact with dissolved organic matter (DOM), a common component found in the environment. However, the effect of MPs type on its interaction with DOM has not been systematically studied. Therefore, the binding properties of different MPs with fulvic acid (FA) were explored in this study. The results showed that polypropylene (PP) and polyethylene (PE) had higher adsorption affinity for FA than polystyrene (PS) and polyvinyl chloride (PVC). The interaction between MPs and FA conformed to the pseudo-first-order model and Freundlich model (except PS). The interaction mechanisms between various MPs tested in this paper and FA are considered to be different. PP, PE and PS interacted with the aromatic structure of FA and were entrapped in the FA polymers by the carboxyl groups and CO bonds, resulting in a highly conjugated co-polymer, suggesting that oxygen-containing functional groups played a key role. However, it was assumed that the interaction between PVC and FA was more likely to be caused by hydrophobic interaction. This research will help to enhance our comprehension of the environmental behavior of MPs and their interaction with the DOM specifically.
Collapse
Affiliation(s)
- Xinglei Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoxiao Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weimin Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xujun Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Renren Wu
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China.
| | - Hongtao Jia
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xianfei Huang
- Guizhou Provincial Key Laboratory for Environment, Guizhou Normal University, Guiyang, Guizhou 550001, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Zhang H, Tan H, Wang H, Zhao B, Wei Y, Sun Z, Gao L, Zhong L, Dong Q, Zang H. Research on the secondary structure and hydration water around human serum albumin induced by ethanol with infrared and near-infrared spectroscopy. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
4
|
Ding Q, Han W, Li X, Jiang Y, Zhao C. New insights into the autofluorescence properties of cellulose/nanocellulose. Sci Rep 2020; 10:21387. [PMID: 33288829 PMCID: PMC7721895 DOI: 10.1038/s41598-020-78480-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/25/2020] [Indexed: 11/09/2022] Open
Abstract
This work explored the fluorescence properties of nano/cellulose isolated from bleached softwood kraft pulp by TEMPO oxidation. Fluorescence spectra showed that all samples exhibited a typical emission peak at 574 nm due to the probabilistic formation of unsaturated bonds by glycosidic bonds independent of lignin. Increasing the excitation wavelengths (510-530 nm) caused red shift of fluorescence emission peaks (570-585 nm) with unchanged fluorescence intensity. Conversely, changing acid/alkaline conditions led to an increase of fluorescence intensity with no shifting of fluorescence emission peak. This can be attributed to an increase in the polarity of the solution environment but does not cause interaction of functional groups within the system identified by generalized two-dimensional correlation fluorescence spectroscopy. This study provides new insight in applying nano/cellulose with special luminous characteristics in biomedicine area such as multi-color biological imaging and chemical sensing.
Collapse
Affiliation(s)
- Qijun Ding
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Wenjia Han
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Xia Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Yifei Jiang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Chuanshan Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| |
Collapse
|
5
|
Zhang Y, Guo R, Li GX, Ling XF, Noda I, Xu Y. Investigation on the interaction between theophylline and alkaline substances using the DAOSD approach. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Bao YN, Zeng YW, Guo R, Ablikim M, Shi HF, Yang LM, Yang ZL, Xu YZ, Noda I, Wu JG. Two-dimensional correlation spectroscopic studies on coordination between organic ligands and Ni 2+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 197:126-132. [PMID: 29449087 DOI: 10.1016/j.saa.2017.12.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/27/2017] [Accepted: 12/05/2017] [Indexed: 06/08/2023]
Abstract
3A2g→3T1g(P) transition band of Ni2+ is used to probe the coordination of Ni2+. Two-dimensional asynchronous spectra (2DCOS) are generated using the Double Asynchronous Orthogonal Sample Design (DAOSD), Asynchronous Spectrum with Auxiliary Peaks (ASAP) and Two-Trace Two-Dimensional (2T2D) approaches. Cross peaks relevant to the 3A2g→3T1g(P) transition band of Ni2+ are utilized to probe coordination between Ni2+ and various ligands. We studied the spectral behavior of the 3A2g→3T1g(P) transition band when Ni2+ is coordinated with ethylenediaminetetraacetic acid disodium salt (EDTA). The pattern of cross peaks in 2D asynchronous spectrum demonstrates that coordination brings about significant blue shift of the band. In addition, the absorptivity of the band increases remarkably. The interaction between Ni2+ and galactitol is also investigated. Although no clearly observable change is found on the 3A2g→3T1g(P) transition band when galactitol is introduced, the appearance of cross peak in 2D asynchronous spectrum demonstrates that coordination indeed occurs between Ni2+ and galactitol. Furthermore, the pattern of cross peak indicates that peak position, bandwidth and absorptivity of the 3A2g→3T1g(P) transition band of Ni(galactitol)x2+ is considerably different from those of Ni(H2O)62+. Thus, 2DCOS is helpful to reveal subtle spectral variation, which might be helpful in shedding light on the physical-chemical nature of coordination.
Collapse
Affiliation(s)
- Ya-Nan Bao
- School of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, PR China
| | - Yi-Wei Zeng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Ran Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Mesude Ablikim
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Hai-Fang Shi
- School of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, PR China.
| | - Li-Min Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, PR China
| | - Zhan-Lan Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Yi-Zhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States
| | - Jin-Guang Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
7
|
He A, Zeng Y, Kang X, Morita S, Xu Y, Noda I, Ozaki Y, Wu J. Novel Method of Constructing Two-Dimensional Correlation Spectroscopy without Subtracting a Reference Spectrum. J Phys Chem A 2018; 122:788-797. [DOI: 10.1021/acs.jpca.7b10710] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anqi He
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Ninhai Doubly Advanced Material Company, Ltd., Ninhai, 315602, China
- Department
of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Yiwei Zeng
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xiaoyan Kang
- Institute
of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Shigeaki Morita
- Department
of Engineering Science, Osaka Electro-Communication University, Osaka, 572-8530, Japan
| | - Yizhuang Xu
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Ninhai Doubly Advanced Material Company, Ltd., Ninhai, 315602, China
| | - Isao Noda
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Department
of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Yukihiro Ozaki
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Institute
of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Jinguang Wu
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
8
|
He A, Kang X, Xu Y, Noda I, Ozaki Y, Wu J. Investigation on intermolecular interaction between berberine and β-cyclodextrin by 2D UV-Vis asynchronous spectra. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 185:343-348. [PMID: 28601038 DOI: 10.1016/j.saa.2017.05.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/27/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
The interaction between berberine chloride and β-cyclodextrin (β-CyD) is investigated via 2D asynchronous UV-Vis spectrum. The occurrence of cross peaks around (420nm, 420nm) in 2D asynchronous spectrum reveals that specific intermolecular interaction indeed exists between berberine chloride and β-CyD. In spite of the difficulty caused by overlapping of cross peaks, we manage to confirm that the 420nm band of berberine undergoes a red-shift, and its bandwidth decreases under the interaction with β-CyD. The red-shift of the 420nm band that can be assigned to n-π* transition indicates the environment of berberine becomes more hydrophobic. The above spectral behavior is helpful in understanding why the solubility of berberine is enhanced by β-CyD.
Collapse
Affiliation(s)
- Anqi He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Ninghai Doubly Advanced Material Co, Ltd., Ninghai 315602, PR China; Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Xiaoyan Kang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Ninghai Doubly Advanced Material Co, Ltd., Ninghai 315602, PR China.
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Jinguang Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
9
|
He A, Zeng X, Xu Y, Noda I, Ozaki Y, Wu J. Investigation on the Behavior of Noise in Asynchronous Spectra in Generalized Two-Dimensional (2D) Correlation Spectroscopy and Application of Butterworth Filter in the Improvement of Signal-to-Noise Ratio of 2D Asynchronous Spectra. J Phys Chem A 2017; 121:7524-7533. [DOI: 10.1021/acs.jpca.7b06621] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anqi He
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Ninhai Doubly Advanced Material Co, Ltd., Ninhai 315602, China
- Department
of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Xianzhe Zeng
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- School
of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Yizhuang Xu
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Ninhai Doubly Advanced Material Co, Ltd., Ninhai 315602, China
| | - Isao Noda
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Department
of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Yukihiro Ozaki
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- School
of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Jinguang Wu
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
10
|
Zhang J, Guo R, He A, Weng S, Gao X, Xu Y, Noda I, Wu J. Investigation on the relationship between solubility of artemisinin and polyvinylpyrroli done addition by using DAOSD approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 182:136-142. [PMID: 28414978 DOI: 10.1016/j.saa.2017.03.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/26/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
In this work, we investigated the influence of polyvinylpyrrolidone (PVP) on the solubility of artemisinin in aqueous solution by using quantitative 1H NMR. Experimental results demonstrate that about 4 times of incremental increase occurs on the solubility of artemisinin upon introducing PVP. In addition, dipole-dipole interaction between the ester group of artemisinin and the amide group of N-methylpyrrolidone (NMP), a model compound of PVP, is characterized by two-dimensional (2D) correlation FTIR spectroscopy with the DAOSD (Double Asynchronous Orthogonal Sample Design) approach developed in our previous work. The observation of cross peaks in a pair of 2D asynchronous spectra suggests that dipole-dipole interaction indeed occurs between the ester group of artemisinin and amide group of NMP. Moreover, the pattern of cross peaks indicates that the carbonyl band of artemisinin undergoes blue-shift while the bandwidth and absorptivity increases via interaction with NMP, and the amide band of NMP undergoes blue-shift while the absorptivity increases via interaction with artemisinin. Dipole-dipole interaction, as one of the strongest intermolecular interaction between artemisinin and excipient, may play an important role in the enhancement of the solubility of artemisinin in aqueous solution.
Collapse
Affiliation(s)
- Jin Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shenyang 110032, PR China
| | - Ran Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Key Laboratory of Optoelectronic Devices and System of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Anqi He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Ninghai Doubly Advanced Materials Co., Ltd., Ninghai 315602, PR China
| | - Shifu Weng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Xiuxiang Gao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Ninghai Doubly Advanced Materials Co., Ltd., Ninghai 315602, PR China.
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jinguang Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
11
|
|
12
|
Frontiers of two-dimensional correlation spectroscopy. Part 2. Perturbation methods, fields of applications, and types of analytical probes. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.01.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Characterization of intermolecular interaction between two substances when one substance does not possess any characteristic peak. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.01.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Bi Q, Chen J, Li X, Shi JJ, Guo R, Zhai Y, Xu Y, Noda I, Wu J. A method based on the DAOSD approach to estimate the variation of the peak position and bandwidth caused by intermolecular interactions. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Noda I. Frontiers of Two-Dimensional Correlation Spectroscopy. Part 1. New concepts and noteworthy developments. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.01.025] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Identification of weak transitions using moving-window two-dimensional correlation analysis: treatment with scaling techniques. Anal Bioanal Chem 2014; 406:4157-72. [DOI: 10.1007/s00216-014-7788-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
|
17
|
Shinzawa H, Nishida M, Tsuge A, Ishikawa D, Ozaki Y, Morita S, Kanematsu W. Thermal behavior of poly(lactic acid)-nanocomposite studied by near-infrared imaging based on roundtrip temperature scan. APPLIED SPECTROSCOPY 2014; 68:371-378. [PMID: 24666955 DOI: 10.1366/13-07176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The thermal behavior of poly(lactic acid) (PLA) was studied by near-infrared imaging to provide a molecular-level understanding of the physical improvement caused by nanoclay dispersion. A set of PLA samples, each having different nanoclay dispersion, was prepared under varying sonication time. Crystallinity variation of the polymer interacting with the nanoclay particles was analyzed by a roundtrip temperature scan below the melting temperature. Namely, the samples underwent heating and then cooling in the opposite way during the spectral measurement. The discrepancy of the spectral feature between the heating and the cooling indicated the development of the hysteresis associated with the cold crystallization of the PLA lamellae. The generation of the spectral residuals revealed the inner working mechanism of how the polymer structure undergoes variation depending on the presence of the clay particles and their dispersions. The sonication brings substantial dispersion of the nanoclay over the polymer matrix. The nanoclay particles then induce the additional development of the crystalline structure due to the molecular interaction between the PLA and nanoclay arising from the presence of enormous surface area, which in turn induces variation of mechanical strength to the polymer.
Collapse
Affiliation(s)
- Hideyuki Shinzawa
- Research Institute of Instrumentation Frontier (RIIF), Advanced Industrial Science and Technology (AIST) Nagoya, Aichi 463-8560, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Pressure-induced association of oleic acid (OA) under varying temperature studied by multiple-perturbation two-dimensional (2D) IR correlation spectroscopy. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2012.06.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Shinzawa H, Nishida M, Kanematsu W, Tanaka T, Suzuki K, Noda I. Parallel factor (PARAFAC) kernel analysis of temperature- and composition-dependent NMR spectra of poly(lactic acid) nanocomposites. Analyst 2012; 137:1913-21. [DOI: 10.1039/c2an16019f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|