1
|
QIAO L, SHI Y, TAN L, JIANG Y, YANG Y. Efficacy of electroacupuncture stimulating Shenmen (HT7), Baihui (GV20), Sanyinjiao (SP6) on spatial learning and memory deficits in rats with insomnia induced by para-chlorophenylalanine: a single acupoint combined acupoints. J TRADIT CHIN MED 2023; 43:704-714. [PMID: 37454255 PMCID: PMC10320443 DOI: 10.19852/j.cnki.jtcm.20230308.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/03/2022] [Indexed: 07/18/2023]
Abstract
OBJECTIVE To investiage the effect of electroacupuncture (EA) at a single acupoint of Shenmen (HT7), Baihui (GV20), Sanyinjiao (SP6) and at combined acupoints of Shenmen (HT7) and Baihui (GV20) and Sanyinjiao (SP6) on the PKA/CREB and BDNF/TrkB signaling, as well as neuroapoptosis and neurogenesis in hippocampus and elucidate the underlying mechanism of single and combined acupoints on ameliorating spatial learning and memory deficits in a rat model of primary insomnia. METHODS Primary insomnia was modeled by intraperitoneal injection of para-chlorophenylalanine (PCPA) once daily for 2 d. EA was applied at Shenmen (HT7), Baihui (GV20), Sanyinjiao (SP6), or Shenmen (HT7) + Baihui (GV20) + Sanyinjiao (SP6) (combined) for 30 min daily for 4 d. Spatial learning and memory function was evaluated by the Morris water maze (MWM) test. Protein expressions of hippocampal cAMP-dependent protein kinase (PKA)-Cβ, phosphorylated cAMP-responsive element-binding protein (p-CREB), brain-derived neurotrophic factor (BDNF), and tyrosine kinase receptor B (TrkB) were evaluated by Western blotting. Neuronal apoptosis in the hippocampus was detected with the transferase-mediated dUTP-X nick end labeling assay. Endogenous neurogenesis was examined with bromodeoxyuridine staining. The MWM test and hippocampal p-CREB, BDNF, and TrkB protein levels in the combined acupoints group were evaluated after the administration of a PKA-selective inhibitor (H89). RESULTS Spatial learning and memory were significantly impaired in rats with insomnia. The spatial learning deficits were ameliorated in the Shenmen (HT7), Baihui (GV20), Sanyinjiao (SP6), and combined groups; this improvement was significantly greater in the combined group than the single acupoint groups. The spatial memory impairment was improved in the combined, Baihui (GV20), and Shenmen (HT7) groups, but not the Sanyinjiao (SP6) group. The expressions of PKA-Cβ, p-CREB, BDNF, and TrkB were decreased in rats with insomnia. All these proteins were significantly upregulated in the combined group. PKA/p-CREB protein levels were elevated in the Baihui (GV20) and Shenmen (HT7) groups, whereas BDNF/TrkB expression was upregulated in the Sanyinjiao (SP6) group. The staining results showed significant attenuation of hippocampal cell apoptosis and increased numbers of proliferating cells in the combined group, whereas the single acupoint groups only showed decreased numbers of apoptotic cells. In the combined group, the PKA inhibitor reversed the improvement of spatial memory and upregulation of p-CREB expression caused by EA, but did not affect its activation of BDNF/TrkB signaling. CONCLUSIONS EA at the single acupoints Baihui (GV20), Shenmen (HT7), or Sanyinjiao (SP6) had an ameliorating effect on the spatial learning and memory deficits induced by insomnia. EA at combined acupoints exerted a synergistic effect on the improvements in spatial learning and memory impairment in rats with insomnia by upregulating the hippocampal PKA/CREB and BDNF/TrkB signaling, facilitating neurogenesis, and inhibiting neuronal apoptosis. These findings indicate that EA at combined acupoints [(Baihui (GV20), Shenmen (HT7), and Sanyinjiao (SP6)] achieves a more pronounced regulation of hippocampal neuroplasticity than EA at single acupoints, which may partly explain the underlying mechanisms by which EA at combined acupoints exerts a better ameliorative effect on the cognitive dysfunction caused by insomnia.
Collapse
Affiliation(s)
- Lina QIAO
- 1 Department of Biochemistry and Molecular Biology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing100700, China
| | - Yinan SHI
- 1 Department of Biochemistry and Molecular Biology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing100700, China
| | - Lianhong TAN
- 1 Department of Biochemistry and Molecular Biology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing100700, China
| | - Yanshu JIANG
- 2 College of Acupuncture-moxibustion and Massage, Changchun University of Traditional Chinese Medicine, Changchun 130117, China
| | - Yongsheng YANG
- 1 Department of Biochemistry and Molecular Biology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing100700, China
| |
Collapse
|
2
|
Ferreiro ME, Méndez CS, Glienke L, Sobarzo CM, Ferraris MJ, Pisera DA, Lustig L, Jacobo PV, Theas MS. Unraveling the effect of the inflammatory microenvironment in spermatogenesis progression. Cell Tissue Res 2023; 392:581-604. [PMID: 36627392 DOI: 10.1007/s00441-022-03703-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/02/2022] [Indexed: 01/12/2023]
Abstract
Experimental autoimmune orchitis (EAO) is a chronic inflammatory disorder that causes progressive spermatogenic impairment. EAO is characterized by high intratesticular levels of nitric oxide (NO) and tumor necrosis factor alpha (TNFα) causing germ cell apoptosis and Sertoli cell dysfunction. However, the impact of this inflammatory milieu on the spermatogenic wave is unknown. Therefore, we studied the effect of inflammation on spermatogonia and preleptotene spermatocyte cell cycle progression in an EAO context and through the intratesticular DETA-NO and TNFα injection in the normal rat testes. In EAO, premeiotic germ cell proliferation is limited as a consequence of the undifferentiated spermatogonia (CD9+) cell cycle arrest in G2/M and the reduced number of differentiated spermatogonia (c-kit+) and preleptotene spermatocytes that enter in the meiotic S-phase. Although inflammation disrupts spermatogenesis in EAO, it is maintained in some seminiferous tubules at XIV and VII-VIII stages of the epithelial cell cycle, thereby guaranteeing sperm production. We found that DETA-NO (2 mM) injected in normal testes arrests spermatogonia and preleptotene spermatocyte cell cycle; this effect reduces the number of proliferative spermatogonia and the number of preleptotene spermatocytes in meiosis S-phase (36 h after). The temporal inhibition of spermatogonia clonal amplification delayed progression of the spermatogenic wave (5 days after) finally altering spermatogenesis. TNFα (0.5 and 1 µg) exposure did not affect premeiotic germ cell cycle or spermatogenic wave. Our results show that in EAO the inflammatory microenvironment altered spermatogenesis kinetics through premeiotic germ cell cycle arrest and that NO is a sufficient factor contributing to this phenomenon.
Collapse
Affiliation(s)
| | - Cinthia Soledad Méndez
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Paraguay 2155, Piso 10, Laboratorio 7, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1421ABG, Argentina
| | - Leilane Glienke
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Paraguay 2155, Piso 10, Laboratorio 7, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1421ABG, Argentina
| | - Cristian Marcelo Sobarzo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Paraguay 2155, Piso 10, Laboratorio 7, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1421ABG, Argentina
| | - María Jimena Ferraris
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C SE-106 91, Stockholm, Sweden
| | - Daniel Alberto Pisera
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Paraguay 2155, Piso 10, Laboratorio 7, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1421ABG, Argentina
| | - Livia Lustig
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Paraguay 2155, Piso 10, Laboratorio 7, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1421ABG, Argentina
| | - Patricia Verónica Jacobo
- Laboratorio de Reproducción y Fisiología Materno-Placentaria (CONICET), Departamento de Biodiversidad y Biología Experimental (DBEE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón 2, Piso 4, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| | - María Susana Theas
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina. .,CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Paraguay 2155, Piso 10, Laboratorio 7, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1421ABG, Argentina.
| |
Collapse
|
3
|
Stem Cells in Adult Mice Ovaries Form Germ Cell Nests, Undergo Meiosis, Neo-oogenesis and Follicle Assembly on Regular Basis During Estrus Cycle. Stem Cell Rev Rep 2021; 17:1695-1711. [PMID: 34455541 DOI: 10.1007/s12015-021-10237-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 12/21/2022]
Abstract
Very small embryonic-like (VSELs) and ovarian (OSCs) stem cells are located in adult mammalian ovary surface epithelium (OSE). OSCs can expand long-term and differentiate into oocyte-like structures in vitro and have resulted in birth of fertile pups. Lineage tracing studies have provided evidence to suggest OSCs differentiation into oocytes in vivo. But how these stem cells function under normal physiological conditions has not yet been well worked out. Besides studying STRA-8 and SCP-3 expression in enzymatically isolated OSE cells smears, mice were injected BrdU to track mitosis, meiosis and follicle assembly. H&E stained OSE cells during late diestrus and proestrus showed VSELs undergoing asymmetrical cell divisions to give rise to slightly bigger OSCs which in turn underwent symmetrical cell divisions followed by clonal expansion (rapid expansion with incomplete cytokinesis) during early estrus to form germ cell nests (GCN). OCT-4, SSEA-1, MVH and DAZL positive cells in GCN expressed Erα, Erβ and FSHR, were interconnected by ring canals (TEX-14), showed mitochondrial aggregation (Cytochrome C) and Balbiani Body (TRAL). Apoptosis in 'nurse' cells was marked by PARP and putative oocytes were clearly visualized. BrdU was detected in cells undergoing mitosis/meiosis and also in an oocyte of secondary follicle. FACS sorted, green fluorescent protein (GFP) positive VSELs upon transplantation resulted in GFP positive GCN suggesting crucial role for VSELs in adult ovaries. Results suggest that various events described during oogenesis and follicle assembly in fetal ovaries are recapitulated on regular basis in adult ovary and result in the formation of follicles.
Collapse
|
4
|
Sequential Maturation of Olfactory Sensory Neurons in the Mature Olfactory Epithelium. eNeuro 2019; 6:ENEURO.0266-19.2019. [PMID: 31554664 PMCID: PMC6795559 DOI: 10.1523/eneuro.0266-19.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/10/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
The formation of the olfactory nerve and olfactory bulb (OB) glomeruli begins embryonically in mice. However, the development of the olfactory system continues throughout life with the addition of new olfactory sensory neurons (OSNs) in the olfactory epithelium (OE). Much attention has been given to the perinatal innervation of the OB by OSN axons, but in the young adult the process of OSN maturation and axon targeting to the OB remains controversial. To address this gap in understanding, we used BrdU to label late-born OSNs in young adult mice at postnatal day 25 (P25-born OSNs) and timed their molecular maturation following basal cell division. We show that OSNs in young adults undergo a sequential molecular development with the expression of GAP 43 (growth-associated protein 43) > AC3 (adenylyl cyclase 3) > OMP (olfactory marker protein), consecutively, in a time frame of ∼8 d. To assess OSN axon development, we implemented an in vivo fate-mapping strategy to label P25-born OSNs with ZsGreen. Using sampling intervals of 24 h, we demonstrate the progressive extension of OSN axons in the OE, through the foramen of the cribriform plate, and onto the surface of the OB. OSN axons reached the OB and began to target and robustly innervate specific glomeruli ∼10 d following basal cell division, a time point at which OMP expression becomes evident. Our data demonstrate a sequential process of correlated axon extension and molecular maturation that is similar to that seen in the neonate, but on a slightly longer timescale and with regional differences in the OE.
Collapse
|
5
|
Abstract
The formation of the olfactory nerve and olfactory bulb (OB) glomeruli begins embryonically in mice. However, the development of the olfactory system continues throughout life with the addition of new olfactory sensory neurons (OSNs) in the olfactory epithelium (OE). Much attention has been given to the perinatal innervation of the OB by OSN axons, but in the young adult the process of OSN maturation and axon targeting to the OB remains controversial. To address this gap in understanding, we used BrdU to label late-born OSNs in young adult mice at postnatal day 25 (P25-born OSNs) and timed their molecular maturation following basal cell division. We show that OSNs in young adults undergo a sequential molecular development with the expression of GAP 43 (growth-associated protein 43) > AC3 (adenylyl cyclase 3) > OMP (olfactory marker protein), consecutively, in a time frame of ∼8 d. To assess OSN axon development, we implemented an in vivo fate-mapping strategy to label P25-born OSNs with ZsGreen. Using sampling intervals of 24 h, we demonstrate the progressive extension of OSN axons in the OE, through the foramen of the cribriform plate, and onto the surface of the OB. OSN axons reached the OB and began to target and robustly innervate specific glomeruli ∼10 d following basal cell division, a time point at which OMP expression becomes evident. Our data demonstrate a sequential process of correlated axon extension and molecular maturation that is similar to that seen in the neonate, but on a slightly longer timescale and with regional differences in the OE.
Collapse
|
6
|
Wang H, Wang G, Dai Y, Li Z, Zhu Y, Sun F. Functional role of GKAP1 in the regulation of male germ cell spontaneous apoptosis and sperm number. Mol Reprod Dev 2019; 86:1199-1209. [PMID: 31318116 DOI: 10.1002/mrd.23236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 06/27/2019] [Indexed: 01/18/2023]
Abstract
G kinase-anchoring protein 1 (GKAP1) is a G kinase-associated protein that is conserved in many eutherians and is mainly expressed in the testis, especially in spermatocytes and round spermatids. The function of GKAP1 in the testis is largely unknown. Here, we revealed that deletion of GKAP1 led to an increase in sperm production with swollen epididymis, and germ cell apoptosis was found to decrease in GKAP1 knock-out mice. Further investigations showed that a deficiency of GKAP1 could partly change the cellular location of cGK-Iα and increase the amount of active cAMP response element-binding protein (CREB) in the nucleus. Therefore, the expression of a particular inhibitor of apoptosis proteins (IAPs) was upregulated because of the activation of CREB, and this increase in IAPs was associated with a decrease in the level of activated caspase-3. These results suggest that a deficiency of GKAP1 in mouse testis could increase sperm production through a reduction of the spontaneous apoptosis of germ cells in the testis, possibly because of a change in the activity of the cGK-Iα pathway.
Collapse
Affiliation(s)
- Hanshu Wang
- International Peace Maternity & Child Health Hospital, Shanghai Key laboratory for Embryo-Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guishuan Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yubing Dai
- Qingdao University Medical College, School of Medicine, Qingdao University, Qingdao, China
| | - Zhenhua Li
- International Peace Maternity & Child Health Hospital, Shanghai Key laboratory for Embryo-Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Zhu
- International Peace Maternity & Child Health Hospital, Shanghai Key laboratory for Embryo-Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Sun
- International Peace Maternity & Child Health Hospital, Shanghai Key laboratory for Embryo-Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
7
|
Chauvigné F, Ollé J, González W, Duncan N, Giménez I, Cerdà J. Toward developing recombinant gonadotropin-based hormone therapies for increasing fertility in the flatfish Senegalese sole. PLoS One 2017; 12:e0174387. [PMID: 28329024 PMCID: PMC5362233 DOI: 10.1371/journal.pone.0174387] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/08/2017] [Indexed: 11/18/2022] Open
Abstract
Captive flatfishes, such as the Senegalese sole, typically produce very low volumes of sperm. This situation is particularly prevalent in the first generation (F1) of reared sole males, which limits the development of artificial fertilization methods and the implementation of selective breeding programs. In this study, we investigated whether combined treatments with homologous recombinant follicle-stimulating (rFsh) and luteinizing (rLh) hormones, produced in a mammalian host system, could stimulate spermatogenesis and enhance sperm production in Senegalese sole F1 males. In an initial autumn/winter experiment, weekly intramuscular injections with increasing doses of rFsh over 9 weeks resulted in the stimulation of gonad weight, androgen release, germ cell proliferation and entry into meiosis, and the expression of different spermatogenesis-related genes, whereas a subsequent single rLh injection potentiated spermatozoa differentiation. In a second late winter/spring trial corresponding to the sole’s natural prespawning and spawning periods, we tested the effect of repeated rLh injections on the amount and quality of sperm produced by males previously treated with rFsh for 4, 6, 8 or 10 weeks. These latter results showed that the combination of rFsh and rLh treatments could increase sperm production up to 7 times, and slightly improve the motility of the spermatozoa, although a high variability in the response was found. However, sustained administration of rFsh during spawning markedly diminished Leydig cell survival and the steroidogenic potential of the testis. These data suggest that in vivo application of rFsh and rLh is effective at stimulating spermatogenesis and sperm production in Senegalese sole F1 males, setting the basis for the future establishment of recombinant gonadotropin-based hormone therapies to ameliorate reproductive dysfunctions of this species.
Collapse
Affiliation(s)
- François Chauvigné
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- * E-mail: (FC); (IG); (JC)
| | - Judith Ollé
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | | | - Neil Duncan
- IRTA, Sant Carles de la Ràpita, Tarragona, Spain
| | - Ignacio Giménez
- Rara Avis Biotec, S. L., Valencia, Spain
- * E-mail: (FC); (IG); (JC)
| | - Joan Cerdà
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- * E-mail: (FC); (IG); (JC)
| |
Collapse
|
8
|
Ke XX, Zhang D, Zhao H, Hu R, Dong Z, Yang R, Zhu S, Xia Q, Ding HF, Cui H. Phox2B correlates with MYCN and is a prognostic marker for neuroblastoma development. Oncol Lett 2015; 9:2507-2514. [PMID: 26137098 DOI: 10.3892/ol.2015.3088] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 03/19/2015] [Indexed: 01/19/2023] Open
Abstract
Neuroblastoma is the one of the most common extracranial childhood malignancies, accounting for ∼15% of tumor-associated deaths in children. It is generally considered that neuroblastoma originates from neural crest cells in the paravertebral sympathetic ganglia and the adrenal medulla. However, the mechanism by which neuroblastoma arises during sympathetic neurogenesis and the cellular mechanism that drives neuroblastoma development remains unclear. The present study investigated the cell components during neuroblastoma development in the tyrosine hydroxylase-v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (TH-MYCN) mouse model, a transgenic mouse model of human neuroblastoma. The present study demonstrates that paired-like homeobox 2b (Phox2B)+ neuronal progenitors are the major cellular population in hyperplastic lesions and primary tumors. In addition, Phox2B+ neuronal progenitors in hyperplastic lesions or primary tumors were observed to be in an actively proliferative and undifferentiated state. The current study also demonstrated that high expression levels of Phox2B promotes neuroblastoma cell proliferation and xenograft tumor growth. These findings indicate that the proliferation of undifferentiated Phox2B+ neuronal progenitors is a cellular mechanism that promotes neuroblastoma development and indicates that Phox2B is a critical regulator in neuroblastoma pathogenesis.
Collapse
Affiliation(s)
- Xiao-Xue Ke
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Dunke Zhang
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Hailong Zhao
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Renjian Hu
- Department of Pharmaceutical Engineering, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, P.R. China
| | - Zhen Dong
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Rui Yang
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Shunqin Zhu
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Qingyou Xia
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Han-Fei Ding
- Department of Biochemistry and Molecular Biology, Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Hongjuan Cui
- Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| |
Collapse
|
9
|
Wakayama T, Nakata H, Kumchantuek T, Gewaily MS, Iseki S. Identification of 5-bromo-2'-deoxyuridine-labeled cells during mouse spermatogenesis by heat-induced antigen retrieval in lectin staining and immunohistochemistry. J Histochem Cytochem 2014; 63:190-205. [PMID: 25479790 DOI: 10.1369/0022155414564870] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
DNA replication occurs during S-phase in spermatogonia and preleptotene spermatocytes during spermatogenesis. 5-Bromo-2'-deoxyuridine (BrdU) is incorporated into synthesized DNA and is detectable in the nucleus by immunohistochemistry (IHC). To identify BrdU-labeled spermatogenic cells, the spermatogenic stages must be determined by visualizing acrosomes and detecting cell type-specific marker molecules in the seminiferous tubules. However, the antibody reaction with BrdU routinely requires denaturation of the DNA, which is achieved by pretreating tissue sections with hydrochloric acid; however, this commonly interferes with further histochemical approaches. Therefore, we examined optimal methods for pretreating paraffin sections of the mouse testis to detect incorporated BrdU by an antibody and, at the same time, visualize acrosomes with peanut agglutinin (PNA) or detect several marker molecules with antibodies. We found that the use of heat-induced antigen retrieval (HIAR), which consisted of heating at 95C in 20 mM Tris-HCl buffer (pH 9.0) for 15 min, was superior to the use of 2 N hydrochloric acid for 90 min at room temperature in terms of the quality of subsequent PNA-lectin histochemistry with double IHC for BrdU and an appropriate stage marker protein. With this method, we identified BrdU-labeled spermatogenic cells during mouse spermatogenesis as A1 spermatogonia through to preleptotene spermatocytes.
Collapse
Affiliation(s)
- Tomohiko Wakayama
- Department of Histology and Embryology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan (TW, HN, TK, SI)
| | - Hiroki Nakata
- Department of Histology and Embryology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan (TW, HN, TK, SI)
| | - Tewarat Kumchantuek
- Department of Histology and Embryology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan (TW, HN, TK, SI)
| | - Mahmoud Saad Gewaily
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt (MSG)
| | - Shoichi Iseki
- Department of Histology and Embryology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan (TW, HN, TK, SI)
| |
Collapse
|