1
|
Ghosh A, Muley A, Bhat S, Ainapure A. Exploring the Renoprotective Potential of Bioactive Nutraceuticals in Chronic Kidney Disease Progression: A Narrative Review. Cureus 2024; 16:e68730. [PMID: 39371767 PMCID: PMC11454842 DOI: 10.7759/cureus.68730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Chronic kidney disease (CKD) is a condition that is characterized by progressive loss of kidney function over time. A substantial increase in the burden of CKD is evident globally, attributed to multifactorial conditions like an expanding aging population, rising diabetes and hypertension rates, and more significant exposures to risk factors associated with the environment and lifestyle. Nutraceuticals are substances that are usually considered a food or an active part of a food that provides medical or health benefits, including the prevention and treatment of a disease. The aim is to review the positive role of nutraceuticals in managing CKD. A narrative review is generated, extracting the papers from databases like Web of Science, Scopus, ScienceDirect, ResearchGate, and PubMed. Animal and human trials focusing on the effect of different nutraceuticals on the initial stage of kidney disease, i.e., stages 1, 2, and 3 of CKD, were included. The review's outcome is understanding the effectiveness of nutraceuticals that have shown positive results in CKD conditions. Active compounds include ubiquinone, curcumin, nitrates, nitrites, lycopene, and resveratrol. These bioactive components are also beneficial for other comorbid conditions like diabetes, hypertension, and cardiovascular conditions that have an eminent adverse effect on CKD. Lycopene, coenzyme Q10 (CoQ10), resveratrol, curcumin, and flavonoids have positively impacted CKD complications. Nutraceuticals hold great promise for individuals with CKD in the coming years, offering diverse potential benefits. These include delivering vital antioxidant and anti-inflammatory support to alleviate oxidative stress and inflammation, helping to regulate blood pressure and lipid levels for improved cardiovascular health, promoting optimal renal function to sustain kidney health, assisting in maintaining electrolyte balance, warding off complications, influencing gut microbiota for enhanced digestive well-being, and ultimately elevating the overall quality of life, for those managing CKD.
Collapse
Affiliation(s)
- Anindita Ghosh
- Nutritional Sciences and Dietetics, Symbiosis Skills and Professional University, Pune, IND
| | - Arti Muley
- Nutrition and Dietetics, Symbiosis School of Culinary Arts, Pune, IND
| | - Sakshi Bhat
- Nutrition and Dietetics, Symbiosis International (Deemed University), Pune, IND
| | | |
Collapse
|
2
|
Ortega-Lozano AJ, Jiménez-Uribe AP, Aranda-Rivera AK, Gómez-Caudillo L, Ríos-Castro E, Tapia E, Bellido B, Aparicio-Trejo OE, Sánchez-Lozada LG, Pedraza-Chaverri J. Expression Profiles of Kidney Mitochondrial Proteome during the Progression of the Unilateral Ureteral Obstruction: Focus on Energy Metabolism Adaptions. Metabolites 2022; 12:metabo12100936. [PMID: 36295838 PMCID: PMC9607257 DOI: 10.3390/metabo12100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Kidney diseases encompass many pathologies, including obstructive nephropathy (ON), a common clinical condition caused by different etiologies such as urolithiasis, prostatic hyperplasia in males, tumors, congenital stenosis, and others. Unilateral ureteral obstruction (UUO) in rodents is an experimental model widely used to explore the pathophysiology of ON, replicating vascular alterations, tubular atrophy, inflammation, and fibrosis development. In addition, due to the kidney’s high energetic demand, mitochondrial function has gained great attention, as morphological and functional alterations have been demonstrated in kidney diseases. Here we explore the kidney mitochondrial proteome differences during a time course of 7, 14, and 21 days after the UUO in rats, revealing changes in proteins involved in three main metabolic pathways, oxidative phosphorylation (OXPHOS), the tricarboxylic acid cycle (TCA), and the fatty acid (FA) metabolism, all of them related to bioenergetics. Our results provide new insight into the mechanisms involved in metabolic adaptations triggered by the alterations in kidney mitochondrial proteome during the ON.
Collapse
Affiliation(s)
- Ariadna Jazmín Ortega-Lozano
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Alexis Paulina Jiménez-Uribe
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Ana Karina Aranda-Rivera
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Leopoldo Gómez-Caudillo
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Emmanuel Ríos-Castro
- Genomic, Proteomic, and Metabolomic Unit (UGPM), LaNSE, Cinvestav-IPN, Mexico City 07360, Mexico
| | - Edilia Tapia
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology “Ignacio Chávez”, Mexico City 14080, Mexico
| | - Belen Bellido
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Omar Emiliano Aparicio-Trejo
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology “Ignacio Chávez”, Mexico City 14080, Mexico
| | - Laura Gabriela Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology “Ignacio Chávez”, Mexico City 14080, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
- Correspondence: ; Tel./Fax: +52-55-5622-3878
| |
Collapse
|
3
|
Noureddine B, Mostafa E, Mandal SC. Ethnobotanical, pharmacological, phytochemical, and clinical investigations on Moroccan medicinal plants traditionally used for the management of renal dysfunctions. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115178. [PMID: 35278608 DOI: 10.1016/j.jep.2022.115178] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/26/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Renal disease is a significant public health concern that affects people all over the world. The main limitations of conventional therapy are the adverse reaction on human health and the expensive cost of drugs. Indeed, it is necessary to develop new therapeutic strategies that are less expensive and have fewer side effects. As a consequence of their natural compounds, medicinal plants can be used as an alternative therapy to cure various ailments including kidney diseases. OBJECTIVE of the study: This review paper has two principal goals: (1) to inventory and describe the plants and their ancestral use by Moroccan society to cure renal problems, (2) to link traditional use with scientific confirmations (preclinical and clinical). METHODS To analyze pharmacological effects, phytochemical, and clinical trials of plants, selected for renal therapy, a bibliographical search was undertaken by examining ethnobotanical investigations conducted in Morocco between 1991 and 2019 and consulting peer-reviewed papers from all over the world. RESULTS Approximately 290 plant species, spanning 81 families and 218 genera have been reported as being utilized by Moroccans to manage renal illness. The most frequently mentioned species in Morocco were Herniaria hirsuta subsp. cinerea (DC.), Petroselinum crispum (Mill.) Fuss and Rosmarinus officinalis L. The leaves were the most frequently used plant parts, followed by the whole plant. Decoction and infusion were the most popular methods of preparation. A record of 71 plant species was studied in vitro and/or in vivo for their therapeutic efficacy against kidney disorders, including 10 plants attempting to make it to the clinical stage. Twenty compounds obtained from 15 plants have been studied for the treatment of kidney diseases. CONCLUSION Medicinal herbs could be a credible alternative therapy for renal illness. However, additional controlled trials are required to confirm their efficiency in patients with kidney failure. Overall, this work could be used as a database for future exploration.
Collapse
Affiliation(s)
- Bencheikh Noureddine
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Elachouri Mostafa
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Subhash C Mandal
- Pharmacognosy and Phytotherapy Research Laboratory, Division of Pharmacognosy, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
4
|
Widowati W, Prahastuti S, Tjokropranoto R, Onggowidjaja P, Kusuma HSW, Afifah E, Arumwardana S, Maulana MA, Rizal R. Quercetin prevents chronic kidney disease on mesangial cells model by regulating inflammation, oxidative stress, and TGF-β1/SMADs pathway. PeerJ 2022; 10:e13257. [PMID: 35673387 PMCID: PMC9167587 DOI: 10.7717/peerj.13257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/22/2022] [Indexed: 01/13/2023] Open
Abstract
Background Chronic kidney disease (CKD) happens due to decreasing kidney function. Inflammation and oxidative stress have been shown to result in the progression of CKD. Quercetin is widely known to have various bioactivities including antioxidant, anticancer, and anti-inflammatory activities. Objective To evaluate the activity of quercetin to inhibit inflammation, stress oxidative, and fibrosis on CKD cells model (mouse mesangial cells induced by glucose). Methods and Material The SV40 MES 13 cells were plated in a 6-well plate with cell density at 5,000 cells/well. The medium had been substituted for 3 days with a glucose-induced medium with a concentration of 20 mM. Quercetin was added with 50, 10, and 5 µg/mL concentrations. The negative control was the untreated cell. The levels of TGF-β1, TNF-α, and MDA were determined using ELISA KIT. The gene expressions of the SMAD7, SMAD3, SMAD2, and SMAD4 were analyzed using qRT-PCR. Results Glucose can lead to an increase in inflammatory cytokines TNF-α, TGF-β1, MDA as well as the expressions of the SMAD2, SMAD3, SMAD4, and a decrease in SMAD7. Quercetin caused the reduction of TNF-α, TGF-β1, MDA as well as the expression of the SMAD2, SMAD3, SMAD4, and increased SMAD7. Conclusion Quercetin has anti-inflammation, antioxidant, antifibrosis activity in the CKD cells model. Thus, quercetin is a promising substance for CKD therapy and further research is needed to prove this in CKD animal model.
Collapse
Affiliation(s)
- Wahyu Widowati
- Faculty of Medicine, Maranatha Christian University, Bandung, West Java, Indonesia
| | - Sijani Prahastuti
- Faculty of Medicine, Maranatha Christian University, Bandung, West Java, Indonesia
| | - Rita Tjokropranoto
- Faculty of Medicine, Maranatha Christian University, Bandung, West Java, Indonesia
| | - Philips Onggowidjaja
- Faculty of Medicine, Maranatha Christian University, Bandung, West Java, Indonesia
| | - Hanna Sari Widya Kusuma
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Bandung, West Java, Indonesia
| | - Ervi Afifah
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Bandung, West Java, Indonesia
| | - Seila Arumwardana
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Bandung, West Java, Indonesia
| | - Muhamad Aldi Maulana
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Bandung, West Java, Indonesia
| | - Rizal Rizal
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Bandung, West Java, Indonesia,Biomedical Engineering, Department of Electrical Engineering, Faculty of Engineering, University of Indonesia, Depok, West Java, Indonesia
| |
Collapse
|
5
|
Induction of mesenchymal-epithelial transition (MET) by epigallocatechin-3-gallate to reverse epithelial-mesenchymal transition (EMT) in SNAI1-overexpressed renal cells: A potential anti-fibrotic strategy. J Nutr Biochem 2022; 107:109066. [DOI: 10.1016/j.jnutbio.2022.109066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 03/04/2022] [Accepted: 04/25/2022] [Indexed: 11/19/2022]
|
6
|
Yu R, Tian M, He P, Chen J, Zhao Z, Zhang Y, Zhang B. Suppression of LMCD1 ameliorates renal fibrosis by blocking the activation of ERK pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119200. [PMID: 34968577 DOI: 10.1016/j.bbamcr.2021.119200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 12/10/2021] [Accepted: 12/18/2021] [Indexed: 12/29/2022]
Abstract
Tubulointerstitial fibrosis is a common pathway of chronic kidney disease (CKD) and is closely related to the progression of CKD. LMCD1, acting as an intermediary, has been reported to play a role in cardiac fibrosis. However, its role in renal fibrosis is yet to be deciphered. Based on the GEO database, we found the expression of LMCD1 is increased in kidney tissues of CKD patients and in human proximal tubular epithelial (HK-2) cells treated with transforming growth factor-β1 (TGF-β1), suggesting that LMCD1 may be involved in tubulointerstitial fibrosis. Herein, we investigated the role of LMCD1 in mice with unilateral ureteral obstruction (UUO) and in TGF-β1-stimulated HK-2 cells. In the UUO model, the expression of LMCD1 was upregulated. UUO-induced renal histopathological changes were mitigated by knockdown of LMCD1. LMCD1 silence alleviated renal interstitial fibrosis in UUO mice by decreasing the expression of TGF-β1, fibronectin, collagen I, and collagen III. LMCD1 deficiency suppressed cell apoptosis in kidney to prevent UUO-triggered renal injury. Furthermore, LMCD1 deficiency blocked the activation of ERK signaling in UUO mice. In vitro, LMCD1 was upregulated in HK-2 cells after TGF-β1 stimulation. LMCD1 silence abrogated TGF-β1-mediated upregulation of fibrotic genes. Treatment of HK-2 cells with ERK-specific inhibitor SCH772984 and agonist TPA validated LMCD1 exerted its function via activating ERK signaling. Together, our findings suggest that inhibition of LMCD1 protects against renal interstitial fibrosis by impeding ERK activation.
Collapse
Affiliation(s)
- Rui Yu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Mi Tian
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Ping He
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jie Chen
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Zixia Zhao
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Yongzhe Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Beiru Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| |
Collapse
|
7
|
Xu H, Wu T, Huang L. Therapeutic and delivery strategies of phytoconstituents for renal fibrosis. Adv Drug Deliv Rev 2021; 177:113911. [PMID: 34358538 DOI: 10.1016/j.addr.2021.113911] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD) is one of the most common diseases endangering human health and life. By 2030, 14 per 100,000 people may die from CKD. Renal fibrosis (RF) is an important intermediate link and the final pathological change during CKD progression to the terminal stage. Therefore, identifying safe and effective treatment methods for RF has become an important goal. In 2018, the World Health Organization introduced traditional Chinese medicine into its effective global medical program. Various phytoconstituents that affect the RF process have been extracted from different plants. Here, we review the potential therapeutic capabilities of active phytoconstituents in RF treatment and discuss how phytoconstituents can be structurally modified or combined with other ingredients to enhance efficiency and reduce toxicity. We also summarize phytoconstituent delivery strategies to overcome renal barriers and improve bioavailability and targeting.
Collapse
Affiliation(s)
- Huan Xu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China.
| | - Tianyi Wu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
8
|
Diniz LRL, Elshabrawy HA, Souza MTDS, Duarte ABS, Datta S, de Sousa DP. Catechins: Therapeutic Perspectives in COVID-19-Associated Acute Kidney Injury. Molecules 2021; 26:5951. [PMID: 34641495 PMCID: PMC8512361 DOI: 10.3390/molecules26195951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022] Open
Abstract
Data obtained from several intensive care units around the world have provided substantial evidence of the strong association between impairment of the renal function and in-hospital deaths of critically ill COVID-19 patients, especially those with comorbidities and requiring renal replacement therapy (RRT). Acute kidney injury (AKI) is a common renal disorder of various etiologies characterized by a sudden and sustained decrease of renal function. Studies have shown that 5-46% of COVID-19 patients develop AKI during hospital stay, and the mortality of those patients may reach up to 100% depending on various factors, such as organ failures and RRT requirement. Catechins are natural products that have multiple pharmacological activities, including anti-coronavirus and reno-protective activities against kidney injury induced by nephrotoxic agents, obstructive nephropathies and AKI accompanying metabolic and cardiovascular disorders. Therefore, in this review, we discuss the anti-SARS-CoV-2 and reno-protective effects of catechins from a mechanistic perspective. We believe that catechins may serve as promising therapeutics in COVID-19-associated AKI due to their well-recognized anti-SARS-CoV-2, and antioxidant and anti-inflammatory properties that mediate their reno-protective activities.
Collapse
Affiliation(s)
| | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA;
| | | | | | - Sabarno Datta
- College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA;
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil;
| |
Collapse
|
9
|
Potential Effects of Delphinidin-3- O-Sambubioside and Cyanidin-3- O-Sambubioside of Hibiscus sabdariffa L. on Ruminant Meat and Milk Quality. Animals (Basel) 2021; 11:ani11102827. [PMID: 34679848 PMCID: PMC8532787 DOI: 10.3390/ani11102827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 01/24/2023] Open
Abstract
Simple Summary Hibiscus sabdariffa (HS) calyxes are widely used as nutraceutical supplements in humans; however, stalks, leaves, and seeds are considered as agriculture by-products. Including HS by-products in animal feeding could reduce economic costs and environmental problems, and due to their bioactive compounds, could even improve the quality of meat and milk. However, although HS antioxidants have not been tested enough in ruminants, comparison with other by-products rich in polyphenols allows for hypothesizing on the potential effects of including HS by-products and calyxes in nutrition, animal performance, and meat and milk quality. Antioxidants of HS might affect ruminal fiber degradability, fermentation patterns, fatty acids biohydrogenation (BH), and reduce the methane emissions. After antioxidants cross into the bloodstream and deposit into ruminants’ milk and meat, they increase the quality of fatty acids, the antioxidant activity, and the shelf-life stability of dairy products and meat, which leads to positive effects in consumers’ health. In other animals, the specific anthocyanins of HS have improved blood pressure, which leads to positive clinical and chemicals effects, and those could affect some productive variables in ruminants. The HS by-products rich in polyphenols and anthocyanins can improve fatty acid quality and reduce the oxidative effects on the color, odor, and flavor of milk products and meat. Abstract The objective was to review the potential effects of adding anthocyanin delphinidin-3-O-sambubioside (DOS) and cyanidin-3-O-sambubioside (COS) of HS in animal diets. One hundred and four scientific articles published before 2021 in clinics, pharmacology, nutrition, and animal production were included. The grains/concentrate, metabolic exigency, and caloric stress contribute to increasing the reactive oxygen species (ROS). COS and DOS have antioxidant, antibacterial, antiviral, and anthelmintic activities. In the rumen, anthocyanin might obtain interactions and/or synergisms with substrates, microorganisms, and enzymes which could affect the fiber degradability and decrease potential methane (CH4) emissions; since anthocyanin interferes with ruminal fatty acids biohydrogenation (BH), they can increase the n-3 and n-6 polyunsaturated fatty acids (PUFA), linoleic acid (LA), and conjugated linoleic acid (CLA) in milk and meat, as well as improving their quality. Anthocyanins reduce plasma oxidation and can be deposited in milk and meat, increasing antioxidant activities. Therefore, the reduction of the oxidation of fats and proteins improves shelf-life. Although studies in ruminants are required, COS and DOS act as inhibitors of the angiotensin-converting enzyme (ACEi) and rennin expression, regulating the homeostatic control and possibly the milk yield and body weight. By-products of HS contain polyphenols as calyces with positive effects on the average daily gain and fat meat quality.
Collapse
|
10
|
Caffeic Acid, One of the Major Phenolic Acids of the Medicinal Plant Antirhea borbonica, Reduces Renal Tubulointerstitial Fibrosis. Biomedicines 2021; 9:biomedicines9040358. [PMID: 33808509 PMCID: PMC8065974 DOI: 10.3390/biomedicines9040358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/16/2022] Open
Abstract
The renal fibrotic process is characterized by a chronic inflammatory state and oxidative stress. Antirhea borbonica (A. borbonica) is a French medicinal plant found in Reunion Island and known for its antioxidant and anti-inflammatory activities mostly related to its high polyphenols content. We investigated whether oral administration of polyphenol-rich extract from A. borbonica could exert in vivo a curative anti-renal fibrosis effect. To this aim, three days after unilateral ureteral obstruction (UUO), mice were daily orally treated either with a non-toxic dose of polyphenol-rich extract from A. borbonica or with caffeic acid (CA) for 5 days. The polyphenol-rich extract from A. borbonica, as well as CA, the predominant phenolic acid of this medicinal plant, exerted a nephroprotective effect through the reduction in the three phases of the fibrotic process: (i) macrophage infiltration, (ii) myofibroblast appearance and (iii) extracellular matrix accumulation. These effects were associated with the mRNA down-regulation of Tgf-β, Tnf-α, Mcp1 and NfkB, as well as the upregulation of Nrf2. Importantly, we observed an increased antioxidant enzyme activity for GPX and Cu/ZnSOD. Last but not least, desorption electrospray ionization-high resolution/mass spectrometry (DESI-HR/MS) imaging allowed us to visualize, for the first time, CA in the kidney tissue. The present study demonstrates that polyphenol-rich extract from A. borbonica significantly improves, in a curative way, renal tubulointerstitial fibrosis progression in the UUO mouse model.
Collapse
|
11
|
Wu X, Liu M, Wei G, Guan Y, Duan J, Xi M, Wang J. Renal protection of rhein against 5/6 nephrectomied-induced chronic kidney disease: role of SIRT3-FOXO3α signalling pathway. ACTA ACUST UNITED AC 2020; 72:699-708. [PMID: 32196681 DOI: 10.1111/jphp.13234] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 01/01/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The purpose of this study is to investigate the antifibrosis and anti-oxidation of rhein in vivo and in vitro, and to evaluate potential mechanisms involved in the treatment of chronic kidney disease (CKD). METHODS In experimental animal studies, CKD was established by 5/6 nephrectomy (5/6Nx). Serum creatinine (Scr) and blood urea nitrogen (BUN) were determined. Histopathologic tests were performed by HE and Masson trichrome stained. The level of ROS was investigated by fluorescence microplate with the probe 2', 7'-dichlorofluorescein diacetate (DCFH-DA). The protein expressions of p47phox and gp91phox were measured in 5/6Nx rats. In HK-2 cells, the expression of SIRT3 and Foxo3α was measured in SIRT3 knockdown conditions. The indicators of oxidation and fibrosisi were measured in SIRT3 knockdown conditions. KEY FINDINGS The results showed that, in addition to reducing renal interstitial pathologic injury and collagen fibrils, rhein administration improved renal function. The protective mechanisms were attributed to active SIRT3/FOXO3α signalling pathway and then play the anti-oxidative capacity of rhein, as well as to subsequent antifibrotic effect. CONCLUSION Taken together, rhein protected kidney through SIRT3/FOXO3a involvement. The anti-oxidative capacity of rhein contributed to the protective effects including the subsequent antifibrotic responses.
Collapse
Affiliation(s)
- Xiaoxiao Wu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Meiyou Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guo Wei
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yue Guan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jialin Duan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Miaomiao Xi
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
12
|
Epigallocatechin-3-gallate prevents TGF-β1-induced epithelial-mesenchymal transition and fibrotic changes of renal cells via GSK-3β/β-catenin/Snail1 and Nrf2 pathways. J Nutr Biochem 2020; 76:108266. [DOI: 10.1016/j.jnutbio.2019.108266] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 08/28/2019] [Accepted: 11/03/2019] [Indexed: 11/20/2022]
|
13
|
Kanlaya R, Thongboonkerd V. Molecular Mechanisms of Epigallocatechin-3-Gallate for Prevention of Chronic Kidney Disease and Renal Fibrosis: Preclinical Evidence. Curr Dev Nutr 2019; 3:nzz101. [PMID: 31555758 PMCID: PMC6752729 DOI: 10.1093/cdn/nzz101] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is a common public health problem worldwide characterized by gradual decline of renal function over months/years accompanied by renal fibrosis and failure in tissue wound healing after sustained injury. Patients with CKD frequently present with profound signs/symptoms that require medical treatment, mostly culminating in hemodialysis and renal transplantation. To prevent CKD more efficiently, there is an urgent need for better understanding of the pathogenic mechanisms and molecular pathways of the disease pathogenesis and progression, and for developing novel therapeutic targets. Recently, several lines of evidence have shown that epigallocatechin-3-gallate (EGCG), an abundant phytochemical polyphenol derived from Camellia sinensis, might be a promising bioactive compound for prevention of CKD development/progression. This review summarizes current knowledge of molecular mechanisms underlying renoprotective roles of EGCG in CKD based on available preclinical evidence (from both in vitro and in vivo animal studies), particularly its antioxidant property through preservation of mitochondrial function and activation of Nrf2 (nuclear factor erythroid 2-related factor 2)/HO-1 (heme oxygenase-1) signaling, anti-inflammatory activity, and protective effect against epithelial mesenchymal transition. Finally, future perspectives, challenges, and concerns regarding its clinical use in CKD and renal fibrosis are discussed.
Collapse
Affiliation(s)
- Rattiyaporn Kanlaya
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
Oxidative Stress and TGF- β1/Smads Signaling Are Involved in Rosa roxburghii Fruit Extract Alleviating Renal Fibrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4946580. [PMID: 31531112 PMCID: PMC6720365 DOI: 10.1155/2019/4946580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 11/18/2022]
Abstract
Fibrosis is involved in the pathogenesis of kidney diseases. We previously discovered that Rosa roxburghii fruit (Cili) possesses antifibrosis property in chronic renal disease, but the mechanisms are unknown. We hypothesized that Cili might prevent fibrosis development through mediating TGF-β/Smads signaling, which is known to be involved in renal fibrosis. This study aimed to confirm the effects of freeze-dried Cili powder in a rat model of unilateral ureteral obstruction (UUO) and examine TGF-β/Smads signaling. Rats were randomized to (n=12/group): sham operation, UUO, UUO with losartan, UUO with moderate Cili dose (3 g/kg/d), and UUO with high Cili dose (6 g/kg/d). The rats were sacrificed after 14 days of treatment. Collagen deposition was tested using Masson's staining. TGF-β/Smads signaling was examined by qRT-PCR, western blot, and immunohistochemistry. Rats in the UUO group showed excessive deposition of collagen in kidney interstitium, accompanied with high levels of renal 8-hydroxy-2′-deoxyguanosine, renal malondialdehyde, blood urea nitrogen (BUN), serum creatinine (Scr), and proteinuria (all P<0.05). Cili powder efficiently alleviated the pathological changes and oxidative stress in the kidneys of UUO rats, and decreased BUN, Scr and proteinuria (all P<0.05). Cili powder also inhibited the upregulation of TGFB1, TGFBR1, TGFBR2, SMAD2, and SMAD3 and reversed the downregulation of SMAD7 in obstructed kidneys (mRNA and protein) (all P<0.05). In summary, the results suggest that Cili freeze-dried powder effectively prevents renal fibrosis and impairment in UUO rats, which is associated with the inhibition of oxidative stress and TGF-β1/Smads signaling.
Collapse
|
15
|
Kanlaya R, Thongboonkerd V. Protective Effects of Epigallocatechin-3-Gallate from Green Tea in Various Kidney Diseases. Adv Nutr 2019; 10:112-121. [PMID: 30615092 PMCID: PMC6370267 DOI: 10.1093/advances/nmy077] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022] Open
Abstract
Kidney diseases are common health problems worldwide. Various etiologies (e.g., diabetes, hypertension, drug-induced nephrotoxicity, infection, cancers) can affect renal function and ultimately lead to development of chronic kidney disease (CKD) and end-stage renal disease (ESRD). The global rise in number of CKD/ESRD patients during recent years has led to tremendous concern to look for effective strategies to prevent or slow progression of CKD and ESRD. Natural compounds derived from herbs or medicinal plants have gained wide attention for scientific scrutiny to achieve such goals. One of such natural compounds that has been extensively investigated is epigallocatechin-3-gallate (EGCG), a major polyphenol found in the tea plant (Camellia sinensis). A growing body of recent evidence has shown that EGCG may be a promising therapeutic or protective agent in various kidney diseases. This article thus highlights recent progress in medical research on beneficial effects of EGCG against a broad spectrum of kidney diseases, including acute kidney injury, cisplatin-induced nephrotoxicity, kidney stone disease, glomerulonephritis, lupus nephritis, renal cell carcinoma, diabetic nephropathy, CKD, and renal fibrosis. The renoprotective mechanisms are also detailed. Finally, future perspectives of medical research on EGCG and its potential use in clinical practice for treatment and prevention of kidney diseases are discussed.
Collapse
Affiliation(s)
- Rattiyaporn Kanlaya
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand,Address correspondence to VT (e-mail: or )
| |
Collapse
|
16
|
Kataoka S, Norikura T, Sato S. Maternal green tea polyphenol intake during lactation attenuates kidney injury in high-fat-diet-fed male offspring programmed by maternal protein restriction in rats. J Nutr Biochem 2018. [DOI: 10.1016/j.jnutbio.2018.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Kim DY, Kang MK, Park SH, Lee EJ, Kim YH, Oh H, Choi YJ, Kang YH. Eucalyptol ameliorates Snail1/β-catenin-dependent diabetic disjunction of renal tubular epithelial cells and tubulointerstitial fibrosis. Oncotarget 2017; 8:106190-106205. [PMID: 29290941 PMCID: PMC5739726 DOI: 10.18632/oncotarget.22311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/05/2017] [Indexed: 12/13/2022] Open
Abstract
Renal tubulointerstitial fibrosis is an important event in the pathogenesis of diabetic nephropathy. Under pathologic conditions, renal tubular epithelial cells undergo transition characterized by loss of cell-cell adhesion and increased cell migration. This study investigated that eucalyptol inhibited tubular epithelial cell disjunction and tubulointerstitial fibrosis stimulated by glucose. Human renal proximal tubular epithelial cells were incubated for up to 72 h in media containing 27.5 mM mannitol as osmotic controls or 33 mM glucose in the presence of 1-20 μM eucalyptol. Nontoxic eucalyptol inhibited glucose-induced expression of the mesenchymal markers of N-cadherin and α-smooth muscle actin, whereas the induction of E-cadherin was enhanced. Eucalyptol attenuated the induction of connective tissue growth factor and collagen IV by glucose, whereas the membrane type 1-matrix metalloproteinase expression was enhanced with reducing tissue inhibitor of metalloproteinase-2 expression. Oral administration of 10 mg/kg eucalyptol to db/db mice for 8 weeks blunted hyperglycemia and proteinuria. Eucalyptol reversed tissue levels of E-cadherin, N-cadherin and P-cadherin and the collagen fiber deposition in diabetic kidneys. Eucalyptol attenuated the induction of Snail1, β-catenin and integrin-linked kinase 1 (ILK1) in glucose-exposed tubular cells and diabetic kidneys, and the glycogen synthase kinase (GSK)-3β expression was reversely enhanced. Glucose prompted TGF-β1 production in tubular cells, leading to induction of Snail1, β-catenin and ILK1, which was dampened by eucalyptol. Furthermore, the Snail1 gene deletion encumbered the β-catenin induction in glucose/eucalyptol-treated tubular cells accompanying enhanced GSK-3β expression. Therefore, eucalyptol may antagonize hyperglycemia-induced tubular epithelial derangement and tubulointerstitial fibrosis through blocking ILK1-dependent transcriptional interaction of Snail1/β-catenin.
Collapse
Affiliation(s)
- Dong Yeon Kim
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
| | - Min-Kyung Kang
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
| | - Sin-Hye Park
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
| | - Eun-Jung Lee
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
| | - Yun-Ho Kim
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
| | - Hyeongjoo Oh
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
| | - Yean-Jung Choi
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
| | - Young-Hee Kang
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
| |
Collapse
|
18
|
Mohan T, Velusamy P, Chakrapani LN, Srinivasan AK, Singh A, Johnson T, Periandavan K. Impact of EGCG Supplementation on the Progression of Diabetic Nephropathy in Rats: An Insight into Fibrosis and Apoptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8028-8036. [PMID: 28823168 DOI: 10.1021/acs.jafc.7b03301] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Apoptosis is an active response of cells to altered microenvironments, which is characterized by cell shrinkage, chromatin condensation, and DNA fragmentation, in a variety of cell types such as renal epithelial cells, endothelial cells, mesangial cells, and podocytes. Hyperglycemia is among the microenvironmental factors that may facilitate apoptosis, which plays a decisive role in the initiation of diabetic nephropathy. Transforming growth factor-β emerges as a powerful fibrogenic factor in the development of renal hypertrophy. Although, a number of potential treatment strategies exist for diabetic nephropathy, considering the ease of use and bioavailability, phytochemicals stands distinct as the preeminent option. EGCG, a green tea catechin is one such phytochemical which possesses hypoglycemic and antifibrotic activity. The present study aims to explore the potential of EGCG to prevent apoptosis in a high-fat diet and STZ induced diabetic nephropathy rats by assessing renal function, pro-fibrotic marker, and the expression of apoptotic and antiapoptotic proteins. Our results validate EGCG as a potential antiapoptotic agent evidently by improving renal function via down regulating TGF-β, consequently ameliorating diabetic nephropathy. In accordance with this, EGCG might be regarded as a prospective therapeutic candidate in modulating diabetic nephropathy, thus being a promising treatment.
Collapse
Affiliation(s)
- Thangarajeswari Mohan
- Department of Medical Biochemistry, Dr ALMPGIBMS, University of Madras , Taramani Campus, Chennai, India
| | - Prema Velusamy
- Department of Medical Biochemistry, Dr ALMPGIBMS, University of Madras , Taramani Campus, Chennai, India
| | | | - Ashok Kumar Srinivasan
- Department of Medical Biochemistry, Dr ALMPGIBMS, University of Madras , Taramani Campus, Chennai, India
| | - Abhilasha Singh
- Department of Medical Biochemistry, Dr ALMPGIBMS, University of Madras , Taramani Campus, Chennai, India
| | - Thanka Johnson
- Department of Pathology, Sri Ramachandra University , Chennai, India
| | - Kalaiselvi Periandavan
- Department of Medical Biochemistry, Dr ALMPGIBMS, University of Madras , Taramani Campus, Chennai, India
| |
Collapse
|
19
|
Hammad FT, Lubbad L. The effect of epigallocatechin-3-gallate on the renal dysfunction in the obstructed kidney in the rat. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2017; 9:119-126. [PMID: 28951774 PMCID: PMC5592246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 08/26/2017] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Epigallocatechin-3-gallate (EGCG) is the most active catechin polyphenol extracted from the green tea. EGCG has protective effects in various renal and non-renal conditions. The aim of this study was to investigate the effect of EGCG on the alterations in renal functional parameters following reversible unilateral ureteral obstruction (UUO) in the rat. METHODS Wistar rats underwent reversible left UUO for 72 hours. Group-EGCG (n=10) received intraperitoneal 50 mg/kg/day of EGCG whereas Group-Vx (n=10) had only normal saline. Five days post UUO reversal, renal functions of both kidneys were measured using clearance techniques and the gene expression of some of kidney injury markers (KIM-1 and NGL) and the pro-inflammatory mediator (TNF-α) were determined using real time PCR. RESULTS Renal blood flow, glomerular filtration rate, urine volume and urinary sodium excretion were still altered 5 days post-UUO reversal. Fractional sodium excretion had returned to baseline values by that time. EGCG did not significantly affect any of the renal functional parameters of the obstructed kidney (P>0.05 for all). However, it significantly decreased the gene expressions of KIM-1, NGAL and TNF-α in the left obstructed kidney in Group-EGCG compared to Group-Vx (28±27 vs. 286±107, 1.1±0.2 vs. 10.9±4.3, and 0.8±0.1 vs. 1.5±0.2, P<0.05 for all). CONCLUSION EGCG appears to have no significant protective effect on the haemodynamic or tubular glomerular functions when measured as early as five days post reversal of UUO despite the attenuation of some of the kidney injury markers and pro-inflammatory mediators.
Collapse
Affiliation(s)
- Fayez T Hammad
- Department of Surgery, College of Medicine & Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Loay Lubbad
- Department of Surgery, College of Medicine & Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| |
Collapse
|
20
|
NDRG2 knockdown promotes fibrosis in renal tubular epithelial cells through TGF-β1/Smad3 pathway. Cell Tissue Res 2017. [DOI: 10.1007/s00441-017-2643-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Liu H, He XJ, Li GJ, Ding QX, Liang WX, Fan J. [Effects of microRNA-145 on epithelial-mesenchymal transition of TGF-β1-induced human renal proximal tubular epithelial cells]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:712-718. [PMID: 28606242 PMCID: PMC7390295 DOI: 10.7499/j.issn.1008-8830.2017.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the effects of microRNA-145 (miR-145) on epithelial-mesenchymal transition (EMT) of TGF-β1-induced human renal proximal tubular epithelial (HK-2) cells. METHODS The gene sequence of miR-145 was synthesized and cloned into pCMV-myc to construct recombinant plasmid pCMV-miR-145. HK-2 cells were divided into four groups: control (untreated), TGF-β1 (treated with TGF-β1), blank+TGF-β1 (treated with TGF-β1 after HK-2 cells transfected with blank plasmid) and miR-145+TGF-β1 (treated with TGF-β1 after HK-2 cells transfected with pCMV-miR-145 recombinant plasmid). Expression of miR-145 was detected by real-time PCR (RT-PCR). TGF-β1, Smad3, Smad2/3, p-Smad2/3, α-SMA, FN and type I collagen (Col I) protein levels were detected by Western blot. Concentrations of fibronectin (FN) and Col I in cell culture supernatants were measured using ELISA. RESULTS pCMV-miR-145 recombinant plasmid was successfully transfected into HK-2 cells. Compared with the control group, the miR-145+TGF-β1 group showed a significant up-regulation in the expression level of miR-145 (P<0.01). However, the TGF-β1 and blank+TGF-β1 groups showed a significant down-regulation in the expression level of miR-145 compared with that in the control and miR-145+TGF-β1 groups (P<0.01). Compared with the TGF-β1 and blank+TGF-β1 groups, the miR-145+TGF-β1 group showed significantly reduced levels of the signal proteins TGF-β1, Smad3, Smad2/3 and p-Smad2/3 (P<0.05), as well as significantly reduced levels of the biomarkers α-SMA, FN and Col I (P<0.05). Meanwhile, concentrations of FN and Col I in cell culture supernatants also decreased (P<0.05). CONCLUSIONS miR-145 modulates the EMT of HK-2 cells treated with TGF-β1, possibly by inhibition of the activation of TGF-β-dependent Smad signaling pathway.
Collapse
Affiliation(s)
- Hua Liu
- Department of Pediatrics, Nanshan Maternity and Child Health Care Hospital of Shenzhen, Shenzhen, Guangdong 518052, China.
| | | | | | | | | | | |
Collapse
|
22
|
Mohabbulla Mohib M, Fazla Rabby S, Paran TZ, Mehedee Hasan M, Ahmed I, Hasan N, Abu Taher Sagor M, Mohiuddin S. Protective role of green tea on diabetic nephropathy—A review. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/23312025.2016.1248166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Md. Mohabbulla Mohib
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - S.M. Fazla Rabby
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Tasfiq Zaman Paran
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Md. Mehedee Hasan
- Department of Pharmacy, State University of Bangladesh, Dhaka 1205, Bangladesh
| | - Iqbal Ahmed
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Nahid Hasan
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Md. Abu Taher Sagor
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Sarif Mohiuddin
- Department of Anatomy, Pioneer Dental College and Hospital, Dhaka 1229, Bangladesh
| |
Collapse
|
23
|
Granata S, Dalla Gassa A, Tomei P, Lupo A, Zaza G. Mitochondria: a new therapeutic target in chronic kidney disease. Nutr Metab (Lond) 2015; 12:49. [PMID: 26612997 PMCID: PMC4660721 DOI: 10.1186/s12986-015-0044-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/18/2015] [Indexed: 12/24/2022] Open
Abstract
Cellular metabolic changes during chronic kidney disease (CKD) may induce higher production of oxygen radicals that play a significant role in the progression of renal damage and in the onset of important comorbidities. This condition seems to be in part related to dysfunctional mitochondria that cause an increased electron "leakage" from the respiratory chain during oxidative phosphorylation with a consequent generation of reactive oxygen species (ROS). ROS are highly active molecules that may oxidize proteins, lipids and nucleic acids with a consequent damage of cells and tissues. To mitigate this mitochondria-related functional impairment, a variety of agents (including endogenous and food derived antioxidants, natural plants extracts, mitochondria-targeted molecules) combined with conventional therapies could be employed. However, although the anti-oxidant properties of these substances are well known, their use in clinical practice has been only partially investigated. Additionally, for their correct utilization is extremely important to understand their effects, to identify the correct target of intervention and to minimize adverse effects. Therefore, in this manuscript, we reviewed the characteristics of the available mitochondria-targeted anti-oxidant compounds that could be employed routinely in our nephrology, internal medicine and renal transplant centers. Nevertheless, large clinical trials are needed to provide more definitive information about their use and to assess their overall efficacy or toxicity.
Collapse
Affiliation(s)
- Simona Granata
- Renal Unit, Department of Medicine, University-Hospital of Verona, Piazzale A. Stefani 1, 37126 Verona, VR Italy
| | - Alessandra Dalla Gassa
- Renal Unit, Department of Medicine, University-Hospital of Verona, Piazzale A. Stefani 1, 37126 Verona, VR Italy
| | - Paola Tomei
- Renal Unit, Department of Medicine, University-Hospital of Verona, Piazzale A. Stefani 1, 37126 Verona, VR Italy
| | - Antonio Lupo
- Renal Unit, Department of Medicine, University-Hospital of Verona, Piazzale A. Stefani 1, 37126 Verona, VR Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University-Hospital of Verona, Piazzale A. Stefani 1, 37126 Verona, VR Italy
| |
Collapse
|
24
|
Mazzei L, Docherty NG, Manucha W. Mediators and mechanisms of heat shock protein 70 based cytoprotection in obstructive nephropathy. Cell Stress Chaperones 2015; 20:893-906. [PMID: 26228633 PMCID: PMC4595437 DOI: 10.1007/s12192-015-0622-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/24/2015] [Accepted: 07/09/2015] [Indexed: 12/19/2022] Open
Abstract
Urinary heat shock protein 70 (Hsp70) is rapidly increased in patients with clinical acute kidney injury, indicating that it constitutes a component of the endogenous stress response to renal injury. Moreover, experimental models have demonstrated that Hsp70 activation is associated with the cytoprotective actions of several drugs following obstruction, including nitric oxide (NO) donors, geranylgeranylacetone, vitamin D, and rosuvastatin. Discrete and synergistic effects of the biological activities of Hsp70 may explain its cytoprotective role in obstructive nephropathy. Basic studies point to a combination of effects including inhibition of apoptosis and inflammation, repair of damaged proteins, prevention of unfolded protein aggregation, targeting of damaged protein for degradation, and cytoskeletal stabilization as primary effectors of Hsp70 action. This review summarizes our understanding of how the biological actions of Hsp70 may affect renal cytoprotection in the context of obstructive injury. The potential of Hsp70 to be of central importance to the mechanism of action of various drugs that modify the genesis of experimental obstructive nephropathy is considered.
Collapse
Affiliation(s)
- Luciana Mazzei
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
- IMBECU-CONICET (National Council of Scientific and Technical Research of Argentina), Buenos Aires, Argentina.
| | - Neil G Docherty
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Walter Manucha
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- IMBECU-CONICET (National Council of Scientific and Technical Research of Argentina), Buenos Aires, Argentina
| |
Collapse
|
25
|
Wang Y, Liu N, Bian X, Sun G, Du F, Wang B, Su X, Li D. Epigallocatechin-3-gallate reduces tubular cell apoptosis in mice with ureteral obstruction. J Surg Res 2015; 197:145-54. [PMID: 25913488 DOI: 10.1016/j.jss.2015.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/04/2015] [Accepted: 03/13/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Tubular cell apoptosis plays a crucial role in different kinds of renal diseases. Epigallocatechin-3-gallate (EGCG), a polyphenol extracted from green tea, has been shown to inhibit renal fibrosis in unilateral ureteral obstruction (UUO) mice, but its role in preventing tubular cell apoptosis and the underlying signaling mechanisms still remains unclear. MATERIALS AND METHODS Mice subjected to UUO were intraperitoneally administered EGCG (5 mg/kg) for 14 d. Normal rat kidney proximal tubular epithelial cell line NRK-52E was induced by transforming growth factor β1 (TGF-β1). Periodic acid-schiff and Masson's trichrome staining was used for histologic study. TUNEL, Hoechst staining, and flow cytometry analysis were used to measure the apoptotic status of tubular cells. Western blotting was used to determine the expression of apoptotic-associated proteins and mitogen-activated protein kinase pathway proteins. RESULTS EGCG significantly attenuated tubular injury and renal tubulointerstitial fibrosis in the obstructed kidneys of UUO mice. In addition, EGCG prevented UUO and TGF-β1-induced tubular apoptosis in a dose-dependent manner. In parallel, protein expression of B-clell lymphoma-2 (Bcl-2) was upregulated and protein expressions of Bcl-2 accosiated X protein (Bax), cleaved caspase 3, and cleaved poly ADP-ribose polymerase (PARP) were downregulated by EGCG. Furthermore, UUO and TGF-β1-stimulated phosphorylation of mitogen-activated protein kinase was inhibited by EGCG. CONCLUSIONS EGCG effectively reduces tubular cell apoptosis induced by UUO and may have potential as a clinical treatment in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Yanqiu Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Na Liu
- Department of Nephrology, Ordos Central Hospital, Ordos, Inner Mongolia, People's Republic of China
| | - Xiaohui Bian
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Guangping Sun
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Feng Du
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Bowen Wang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xuesong Su
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Detian Li
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|