1
|
Říhová K, Lapčík P, Veselá B, Knopfová L, Potěšil D, Pokludová J, Šmarda J, Matalová E, Bouchal P, Beneš P. Caspase-9 Is a Positive Regulator of Osteoblastic Cell Migration Identified by diaPASEF Proteomics. J Proteome Res 2024; 23:2999-3011. [PMID: 38498986 PMCID: PMC11301665 DOI: 10.1021/acs.jproteome.3c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Caspase-9 is traditionally considered the initiator caspase of the intrinsic apoptotic pathway. In the past decade, however, other functions beyond initiation/execution of cell death have been described including cell type-dependent regulation of proliferation, differentiation/maturation, mitochondrial, and endosomal/lysosomal homeostasis. As previous studies revealed nonapoptotic functions of caspases in osteogenesis and bone homeostasis, this study was performed to identify proteins and pathways deregulated by knockout of caspase-9 in mouse MC3T3-E1 osteoblasts. Data-independent acquisition-parallel accumulation serial fragmentation (diaPASEF) proteomics was used to compare protein profiles of control and caspase-9 knockout cells. A total of 7669 protein groups were quantified, and 283 upregulated/141 downregulated protein groups were associated with the caspase-9 knockout phenotype. The deregulated proteins were mainly enriched for those associated with cell migration and motility and DNA replication/repair. Altered migration was confirmed in MC3T3-E1 cells with the genetic and pharmacological inhibition of caspase-9. ABHD2, an established regulator of cell migration, was identified as a possible substrate of caspase-9. We conclude that caspase-9 acts as a modulator of osteoblastic MC3T3-E1 cell migration and, therefore, may be involved in bone remodeling and fracture repair.
Collapse
Affiliation(s)
- Kamila Říhová
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| | - Petr Lapčík
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Brno 625 00, Czech Republic
| | - Barbora Veselá
- Laboratory
of Odontogenesis and Osteogenesis, Institute of Animal Physiology
and Genetics, Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Lucia Knopfová
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| | - David Potěšil
- Proteomics
Core Facility, Central European Institute for Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Jana Pokludová
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| | - Jan Šmarda
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Eva Matalová
- Laboratory
of Odontogenesis and Osteogenesis, Institute of Animal Physiology
and Genetics, Czech Academy of Sciences, Brno 602 00, Czech Republic
- Department
of Physiology, Faculty of Veterinary Medicine, University of Veterinary Sciences, Brno 612 42, Czech Republic
| | - Pavel Bouchal
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Brno 625 00, Czech Republic
| | - Petr Beneš
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| |
Collapse
|
2
|
Bioinformatic Data Mining for Candidate Drugs Affecting Risk of Bisphosphonate-Related Osteonecrosis of the Jaw (BRONJ) in Cancer Patients. DISEASE MARKERS 2022; 2022:3348480. [PMID: 36157219 PMCID: PMC9492334 DOI: 10.1155/2022/3348480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
Background. Bisphosphonate-related osteonecrosis of the jaw (BRONJ) leads to significant morbidity. Other coadministered drugs may modulate the risk for BRONJ. The present study aimed to leverage bioinformatic data mining to identify drugs that potentially modulate the risk of BRONJ in cancer. Methods. A GEO gene expression dataset of peripheral blood mononuclear cells related to BRONJ in multiple myeloma patients was downloaded, and differentially expressed genes (DEGs) in patients with BRONJ versus those without BRONJ were identified. A protein-protein interaction network of the DEGs was constructed using experimentally validated interactions in the STRING database. Overrepresented Gene Ontology (GO) molecular function terms and KEGG pathways in the network were analysed. Network topology was determined, and ‘hub genes’ with degree ≥2 in the network were identified. Known drug targets of the hub genes were mined from the ‘drug gene interaction database’ (DGIdb) and labelled as candidate drugs affecting the risk of BRONJ. Results. 751 annotated DEGs (
,
) were obtained from the microarray gene expression dataset GSE7116. A PPI network with 633 nodes and 168 edges was constructed. Data mining for drugs interacting with 49 gene nodes was performed. 37 drug interactions were found for 9 of the hub genes including TBP, TAF1, PPP2CA, PRPF31, CASP8, UQCRB, ACTR2, CFLAR, and FAS. Interactions were found for several established and novel anticancer chemotherapeutic, kinase inhibitor, caspase inhibitor, antiangiogenic, and immunomodulatory agents. Aspirin, metformin, atrovastatin, thrombin, androgen and antiandrogen drugs, progesterone, Vitamin D, and Ginsengoside 20(S)-Protopanaxadiol were also documented. Conclusions. A bioinformatic data mining strategy identified several anticancer, immunomodulator, and other candidate drugs that may affect the risk of BRONJ in cancer patients.
Collapse
|
3
|
Bell N, Bhagat S, Muruganandan S, Kim R, Ho K, Pierce R, Kozhemyakina E, Lassar AB, Gamer L, Rosen V, Ionescu AM. Overexpression of transcription factor FoxA2 in the developing skeleton causes an enlargement of the cartilage hypertrophic zone, but it does not trigger ectopic differentiation in immature chondrocytes. Bone 2022; 160:116418. [PMID: 35398294 PMCID: PMC9133231 DOI: 10.1016/j.bone.2022.116418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 01/29/2023]
Abstract
We previously found that FoxA factors are necessary for chondrocyte differentiation. To investigate whether FoxA factors alone are sufficient to drive chondrocyte hypertrophy, we build a FoxA2 transgenic mouse in which FoxA2 cDNA is driven by a reiterated Tetracycline Response Element (TRE) and a minimal CMV promoter. This transgenic line was crossed with a col2CRE;Rosa26rtTA/+ mouse line to generate col2CRE;Rosa26rtTA/+;TgFoxA2+/- mice for inducible expression of FoxA2 in cartilage using doxycycline treatment. Ectopic expression of FoxA2 in the developing skeleton reveals skeletal defects and shorter skeletal elements in E17.5 mice. The chondro-osseous border was frequently mis-shaped in mutant mice, with small islands of col.10+ hypertrophic cells extending in the metaphyseal bone. Even though overexpression of FoxA2 causes an accumulation of hypertrophic chondrocytes, it did not trigger ectopic hypertrophy in the immature chondrocytes. This suggests that FoxA2 may need transcriptional co-factors (such as Runx2), whose expression is restricted to the hypertrophic zone, and absent in the immature chondrocytes. To investigate a potential FoxA2/Runx2 interaction in immature chondrocytes versus hypertrophic cells, we separated these two subpopulations by FACS to obtain CD24+CD200+ hypertrophic chondrocytes and CD24+CD200- immature chondrocytes and we ectopically expressed FoxA2 alone or in combination with Runx2 via lentiviral gene delivery. In CD24+CD200+ hypertrophic chondrocytes, FoxA2 enhanced the expression of chondrocyte hypertrophic markers collagen 10, MMP13, and alkaline phosphatase. In contrast, in the CD24+CD200- immature chondrocytes, neither FoxA2 nor Runx2 overexpression could induce ectopic expression of hypertrophic markers MMP13, alkaline phosphatase, or PTH/PTHrP receptor. Overall these findings mirror our in vivo data, and suggest that induction of chondrocyte hypertrophy by FoxA2 may require other factors in addition to Runx2 (i.e., Hif2α, MEF2C, or perhaps unknown factors), whose expression/activity is rate-limiting in immature chondrocytes.
Collapse
Affiliation(s)
- Nicole Bell
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, United States of America
| | - Sanket Bhagat
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, United States of America.
| | - Shanmugam Muruganandan
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, United States of America; Department of Biology, 134 Mugar Life Sciences Building, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States of America.
| | - Ryunhyung Kim
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, United States of America.
| | - Kailing Ho
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, United States of America.
| | - Rachel Pierce
- Department of Biology, 134 Mugar Life Sciences Building, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States of America.
| | - Elena Kozhemyakina
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, United States of America.
| | - Andrew B Lassar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, United States of America.
| | - Laura Gamer
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, United States of America.
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, United States of America.
| | - Andreia M Ionescu
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, United States of America; Department of Biology, 134 Mugar Life Sciences Building, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States of America.
| |
Collapse
|
4
|
New Therapeutics Targeting Arterial Media Calcification: Friend or Foe for Bone Mineralization? Metabolites 2022; 12:metabo12040327. [PMID: 35448514 PMCID: PMC9027727 DOI: 10.3390/metabo12040327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 01/27/2023] Open
Abstract
The presence of arterial media calcification, a highly complex and multifactorial disease, puts patients at high risk for developing serious cardiovascular consequences and mortality. Despite the numerous insights into the mechanisms underlying this pathological mineralization process, there is still a lack of effective treatment therapies interfering with the calcification process in the vessel wall. Current anti-calcifying therapeutics may induce detrimental side effects at the level of the bone, as arterial media calcification is regulated in a molecular and cellular similar way as physiological bone mineralization. This especially is a complication in patients with chronic kidney disease and diabetes, who are the prime targets of this pathology, as they already suffer from a disturbed mineral and bone metabolism. This review outlines recent treatment strategies tackling arterial calcification, underlining their potential to influence the bone mineralization process, including targeting vascular cell transdifferentiation, calcification inhibitors and stimulators, vascular smooth muscle cell (VSMC) death and oxidative stress: are they a friend or foe? Furthermore, this review highlights nutritional additives and a targeted, local approach as alternative strategies to combat arterial media calcification. Paving a way for the development of effective and more precise therapeutic approaches without inducing osseous side effects is crucial for this highly prevalent and mortal disease.
Collapse
|
5
|
Ramesova A, Vesela B, Svandova E, Lesot H, Matalova E. Caspase-9 inhibition decreases expression of Mmp9 during chondrogenesis. Histochem Cell Biol 2022; 157:403-413. [PMID: 34999953 DOI: 10.1007/s00418-021-02067-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 01/03/2023]
Abstract
Besides cell death, caspase-9 participates in non-apoptotic events, including cell differentiation. To evaluate a possible impact on the expression of chondrogenic/osteogenic factors, a caspase-9 inhibitor was tested in vitro. For this purpose, mouse forelimb-derived micromass cultures, the most common chondrogenic in vitro model, were used. The following analyses were performed based on polymerase chain reaction (PCR) arrays and real-time PCR. The expression of several chondrogenesis-related genes was shown to be altered, some of which may impact chondrogenic differentiation (Bmp4, Bmp7, Sp7, Gli1), mineral deposition (Alp, Itgam) or the remodelling of the extracellular matrix (Col1a2, Mmp9) related to endochondral ossification. From the cluster of genes with altered expression, Mmp9 showed the most significant decrease in expression, of more than 50-fold. Additionally, we determined the possible impact of caspase-9 downregulation on the expression of other Mmp genes. A mild increase in Mmp14 was observed, but there was no change in the expression of other studied Mmp genes (-2, -3, -8, -10, -12, -13). Interestingly, inhibition of Mmp9 in micromasses led to decreased expression of some chondrogenic markers related to caspase-9. These samples also showed a decreased expression of caspase-9 itself, suggesting a bidirectional regulation of these two enzymes. These results indicate a specific impact of caspase-9 inhibition on the expression of Mmp9. The localisation of these two enzymes overlaps in resting, proliferative and pre-hypertrophic chondrocytes during in vivo development, which supports their multiple functions, either apoptotic or non-apoptotic. Notably, a coincidental expression pattern was identified in Pik3cg, a possible candidate for Mmp9 regulation.
Collapse
Affiliation(s)
- A Ramesova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.,Department of Physiology, Faculty of Veterinary Medicine, Veterinary University, Brno, Czech Republic
| | - B Vesela
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.,Department of Physiology, Faculty of Veterinary Medicine, Veterinary University, Brno, Czech Republic
| | - E Svandova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic. .,Department of Physiology, Faculty of Veterinary Medicine, Veterinary University, Brno, Czech Republic.
| | - H Lesot
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - E Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.,Department of Physiology, Faculty of Veterinary Medicine, Veterinary University, Brno, Czech Republic
| |
Collapse
|
6
|
Vesela B, Zapletalova M, Svandova E, Ramesova A, Doubek J, Lesot H, Matalova E. General Caspase Inhibition in Primary Chondrogenic Cultures Impacts Their Transcription Profile Including Osteoarthritis-Related Factors. Cartilage 2021; 13:1144S-1154S. [PMID: 34496641 PMCID: PMC8804802 DOI: 10.1177/19476035211044823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE The knowledge about functions of caspases, usually associated with cell death and inflammation, keeps expanding also regarding cartilage. Active caspases are present in the growth plate, and caspase inhibition in limb-derived chondroblasts altered the expression of osteogenesis-related genes. Caspase inhibitors were reported to reduce the severity of cartilage lesions in osteoarthritis (OA), and caspase-3 might represent a promising biomarker for OA prognosis. The objective of this investigation was to decipher the transcriptomic regulation of caspase inhibition in chondrogenic cells. DESIGN Limb-derived chondroblasts were cultured in the presence of 2 different inhibitors: Z-VAD-FMK (FMK) and Q-VD-OPH (OPH). A whole transcriptome RNA sequencing was performed as the key analysis. RESULTS The analysis revealed a statistically significant increase in the expression of 252 genes in the FMK samples and 163 genes in the OPH samples compared with controls. Conversely, there was a significant decrease in the expression of 290 genes in the FMK group and 188 in the OPH group. Among the top up- and downregulated genes (more than 10 times changed), almost half of them were associated with OA. Both inhibitors displayed the highest upregulation of the inflammatory chemokine Ccl5, the most downregulated gene was the one for mannose receptors Mrc1. CONCLUSIONS The obtained datasets pointed to a significant impact of caspase inhibition on the expression of several chondro-/osteogenesis-related markers in an in vitro model of endochondral ossification. Notably, the list of these genes included some encoding for factors associated with cartilage/bone pathologies such as OA.
Collapse
Affiliation(s)
- Barbora Vesela
- Department of Physiology, University of
Veterinary Sciences, Brno, Czech Republic,Institute of Animal Physiology and
Genetics, Czech Academy of Sciences, Brno, Czech Republic,Barbora Vesela, Institute of Animal
Physiology and Genetics, Czech Academy of Sciences, v.v.i., Veveri 97, Brno 602
00, Czech Republic.
| | - Martina Zapletalova
- Institute of Animal Physiology and
Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Eva Svandova
- Department of Physiology, University of
Veterinary Sciences, Brno, Czech Republic,Institute of Animal Physiology and
Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Alice Ramesova
- Department of Physiology, University of
Veterinary Sciences, Brno, Czech Republic
| | - Jaroslav Doubek
- Department of Physiology, University of
Veterinary Sciences, Brno, Czech Republic
| | - Hervé Lesot
- Institute of Animal Physiology and
Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Eva Matalova
- Department of Physiology, University of
Veterinary Sciences, Brno, Czech Republic,Institute of Animal Physiology and
Genetics, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
7
|
Vesela B, Svandova E, Ramesova A, Kratochvilova A, Tucker AS, Matalova E. Caspase Inhibition Affects the Expression of Autophagy-Related Molecules in Chondrocytes. Cartilage 2021; 13:956S-968S. [PMID: 32627581 PMCID: PMC8804809 DOI: 10.1177/1947603520938444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objective. Caspases, cysteine proteases traditionally associated with apoptosis and inflammation, have recently been identified as important regulators of autophagy and reported within the growth plate, a cartilaginous part of the developing bone. The aim of this research was to identify novel autophagy-related molecules affected by inhibition of pro-apoptotic caspases in chondrocytes. Design. Chondrocyte micromasses derived from mouse limb buds were treated with pharmacological inhibitors of caspases. Autophagy-related gene expression was examined and possible novel molecules were confirmed by real-time polymerase chain reaction and immunocytofluorescence. Individual caspases inhibitors were used to identify the effect of specific caspases. Results. Chondrogenesis accompanied by caspase activation and autophagy progression was confirmed in micromass cultures. Expression of several autophagy-associated genes was significantly altered in the caspases inhibitors treated groups with the most prominent decrease for Pik3cg and increase of Tnfsf10. The results showed the specific pro-apoptotic caspases that play a role in these effects. Importantly, use of caspase inhibitors mimicked changes triggered by an autophagy stimulator, rapamycin, linking loss of caspase activity to an increase in autophagy. Conclusion. Caspase inhibition significantly affects regulation of autophagy-related genes in chondrocytes cultures. Detected markers are of importance in diagnostics and thus the data presented here open new perspectives in the field of cartilage development and degradation.
Collapse
Affiliation(s)
- Barbora Vesela
- Department of Physiology, University of
Veterinary and Pharmaceutical Sciences, Brno, Czech Republic,Institute of Animal Physiology and
Genetics, Czech Academy of Sciences, Brno, Czech Republic,Barbora Vesela, Institute of Animal
Physiology and Genetics, Czech Academy of Sciences, v.v.i., Veveri 97, Brno
60200, Czech Republic.
| | - Eva Svandova
- Department of Physiology, University of
Veterinary and Pharmaceutical Sciences, Brno, Czech Republic,Institute of Animal Physiology and
Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Alice Ramesova
- Department of Physiology, University of
Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Adela Kratochvilova
- Institute of Animal Physiology and
Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Abigail S. Tucker
- Centre for Craniofacial and Regenerative
Biology, King’s College London, London, UK
| | - Eva Matalova
- Department of Physiology, University of
Veterinary and Pharmaceutical Sciences, Brno, Czech Republic,Institute of Animal Physiology and
Genetics, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
8
|
Ramesova A, Vesela B, Svandova E, Lesot H, Matalova E. Caspase-1 Inhibition Impacts the Formation of Chondrogenic Nodules, and the Expression of Markers Related to Osteogenic Differentiation and Lipid Metabolism. Int J Mol Sci 2021; 22:ijms22179576. [PMID: 34502478 PMCID: PMC8431148 DOI: 10.3390/ijms22179576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/30/2021] [Accepted: 08/31/2021] [Indexed: 01/13/2023] Open
Abstract
Caspase-1, as the main pro-inflammatory cysteine protease, was investigated mostly with respect to inflammation-related processes. Interestingly, caspase-1 was identified as being involved in lipid metabolism, which is extremely important for the proper differentiation of chondrocytes. Based on a screening investigation, general caspase inhibition impacts the expression of Cd36 in chondrocytes, the fatty acid translocase with a significant impact on lipid metabolism. However, the engagement of individual caspases in the effect has not yet been identified. Therefore, the hypothesis that caspase-1 might be a candidate here appears challenging. The primary aim of this study thus was to find out whether the inhibition of caspase-1 activity would affect Cd36 expression in a chondrogenic micromass model. The expression of Pparg, a regulator Cd36, was examined as well. In the caspase-1 inhibited samples, both molecules were significantly downregulated. Notably, in the treated group, the formation of the chondrogenic nodules was apparently disrupted, and the subcellular deposition of lipids and polysaccharides showed an abnormal pattern. To further investigate this observation, the samples were subjected to an osteogenic PCR array containing selected markers related to cartilage/bone cell differentiation. Among affected molecules, Bmp7 and Gdf10 showed a significantly increased expression, while Itgam, Mmp9, Vdr, and Rankl decreased. Notably, Rankl is a key marker in bone remodeling/homeostasis and thus is a target in several treatment strategies, including a variety of fatty acids, and is balanced by its decoy receptor Opg (osteoprotegerin). To evaluate the effect of Cd36 downregulation on Rankl and Opg, Cd36 silencing was performed using micromass cultures. After Cd36 silencing, the expression of Rankl was downregulated and Opg upregulated, which was an inverse effect to caspase-1 inhibition (and Cd36 upregulation). These results demonstrate new functions of caspase-1 in chondrocyte differentiation and lipid metabolism-related pathways. The effect on the Rankl/Opg ratio, critical for bone maintenance and pathology, including osteoarthritis, is particularly important here as well.
Collapse
Affiliation(s)
- Alice Ramesova
- Department of Physiology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic; (A.R.); (E.S.); (E.M.)
| | - Barbora Vesela
- Department of Physiology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic; (A.R.); (E.S.); (E.M.)
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, 602 00 Brno, Czech Republic;
- Correspondence:
| | - Eva Svandova
- Department of Physiology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic; (A.R.); (E.S.); (E.M.)
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, 602 00 Brno, Czech Republic;
| | - Herve Lesot
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, 602 00 Brno, Czech Republic;
| | - Eva Matalova
- Department of Physiology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic; (A.R.); (E.S.); (E.M.)
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, 602 00 Brno, Czech Republic;
| |
Collapse
|
9
|
Twomey-Kozak J, Desai S, Liu W, Li NY, Lemme N, Chen Q, Owens BD, Jayasuriya CT. Distal-Less Homeobox 5 Is a Therapeutic Target for Attenuating Hypertrophy and Apoptosis of Mesenchymal Progenitor Cells. Int J Mol Sci 2020; 21:ijms21144823. [PMID: 32650430 PMCID: PMC7404054 DOI: 10.3390/ijms21144823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
Chondrocyte hypertrophy is a hallmark of osteoarthritis (OA) pathology. In the present study, we elucidated the mechanism underlying the relationship between the hypertrophy/apoptotic phenotype and OA pathogenesis in bone marrow-derived mesenchymal stem cells (BM-MSCs) via gene targeting of distal-less homeobox 5 (DLX5). Our primary objectives were (1) to determine whether DLX5 is a predictive biomarker of cellular hypertrophy in human osteoarthritic tissues; (2) To determine whether modulating DLX5 activity can regulate cell hypertrophy in mesenchymal stem/progenitor cells from marrow and cartilage. Whole transcriptome sequencing was performed to identify differences in the RNA expression profile between human-cartilage-derived mesenchymal progenitors (C-PCs) and bone-marrow-derived mesenchymal progenitors (BM-MSCs). Ingenuity Pathway Analysis (IPA) software was used to compare molecular pathways known to regulate hypertrophic terminal cell differentiation. RT-qPCR was used to measure DLX5 and hypertrophy marker COL10 in healthy human chondrocytes and OA chondrocytes. DLX5 was knocked down or overexpressed in BM-MSCs and C-PCs and RT-qPCR were used to measure the expression of hypertrophy/terminal differentiation markers following DLX5 modulation. Apoptotic cell activity was characterized by immunostaining for cleaved caspase 3/7. We demonstrate that DLX5 and downstream hypertrophy markers were significantly upregulated in BM-MSCs, relative to C-PCs. DLX5 and COL10 were also significantly upregulated in cells from OA knee joint tissues, relative to normal non-arthritic joint tissues. Knocking down DLX5 in BM-MSCs inhibited cell hypertrophy and apoptotic activity without attenuating their chondrogenic potential. Overexpression of DLX5 in C-PCs stimulated hypertrophy markers and increased apoptotic cell activity. Modulating DLX5 activity regulates cell hypertrophy and apoptosis in BM-MSCs and C-PCs. These findings suggest that DLX5 is a biomarker of OA changes in human knee joint tissues and confirms the DLX5 mechanism contributes to hypertrophy and apoptosis in BM-MSCs.
Collapse
|