1
|
Assanah F, Grassie K, Anderson H, Xin X, Rowe D, Khan Y. Ultrasound-derived mechanical stimulation of cell-laden collagen hydrogels for bone repair. J Biomed Mater Res A 2023; 111:1200-1215. [PMID: 36728346 DOI: 10.1002/jbm.a.37508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023]
Abstract
Cell therapy is emerging as an effective treatment strategy for many diseases. Here we describe a novel approach to bone tissue repair that combines hydrogel-based cell therapy with low intensity pulsed ultrasound (LIPUS), an FDA approved treatment for fracture repair. Bone marrow-derived stromal cells (BMSCs) have been encapsulated in type I collagen hydrogels and mechanically stimulated using LIPUS-derived acoustic radiation force (ARF). We observed the expression and upward trend of load-sensitive, osteoblast-specific markers and determined that the extent of cell response is dependent on an optimal combination of both hydrogel stiffness and ARF intensity. Specifically, cells encapsulated in hydrogels of optimal stiffness respond at the onset of ultrasound by upregulating early bone-sensitive markers such as calcium, cyclooxygenase-2, and prostaglandin E2 , and later by supporting mineralized tissue formation after 21 days of culture. In vivo evaluation of a critical size calvarial defect in NOD scid gamma (NSG) mice indicated that the implantation of BMSC-laden hydrogels of optimal stiffness improved healing of calvarial defects after daily administration of ARF over 4 weeks. Collectively, these findings validate the efficacy of our system of localized cell delivery for treating bone defects where undifferentiated BMSCs are induced to the osteoblastic lineage. Further, in vivo healing may be enhanced via non-invasive transdermal mechanical stimulation of implanted cells using ARF.
Collapse
Affiliation(s)
- Fayekah Assanah
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UCONN Health, Farmington, Connecticut, USA
| | - Kevin Grassie
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UCONN Health, Farmington, Connecticut, USA
| | - Hanna Anderson
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UCONN Health, Farmington, Connecticut, USA
| | - Xiaonan Xin
- Center for Regenerative Medicine and Skeletal Development, UCONN School of Dental Medicine, Farmington, Connecticut, USA
| | - David Rowe
- Center for Regenerative Medicine and Skeletal Development, UCONN School of Dental Medicine, Farmington, Connecticut, USA
| | - Yusuf Khan
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UCONN Health, Farmington, Connecticut, USA
- Department of Orthopedic Surgery, UCONN Health, Farmington, Connecticut, USA
| |
Collapse
|
2
|
Zhou Y, Xin X, Wang L, Wang B, Chen L, Liu O, Rowe DW, Xu M. Senolytics improve bone forming potential of bone marrow mesenchymal stem cells from aged mice. NPJ Regen Med 2021; 6:34. [PMID: 34117259 PMCID: PMC8195980 DOI: 10.1038/s41536-021-00145-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
The osteogenic potential of bone marrow mesenchymal stem cells (BMSCs) declines dramatically with aging. By using a calvarial defect model, we showed that a senolytic cocktail (dasatinib+quercetin; D + Q) improved osteogenic capacity of aged BMSC both in vitro and in vivo. The study presented a model to assess strategies to improve bone-forming potential on aged BMSCs. D + Q might hold promise for improving BMSC function in aged populations.
Collapse
Affiliation(s)
- Yueying Zhou
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China.,UConn Center on Aging, Farmington, CT, USA.,Center for Regenerative Medicine and Skeletal Development, Farmington, CT, USA
| | - Xiaonan Xin
- Center for Regenerative Medicine and Skeletal Development, Farmington, CT, USA
| | - Lichao Wang
- UConn Center on Aging, Farmington, CT, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Binsheng Wang
- UConn Center on Aging, Farmington, CT, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Li Chen
- Center for Regenerative Medicine and Skeletal Development, Farmington, CT, USA
| | - Ousheng Liu
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - David W Rowe
- Center for Regenerative Medicine and Skeletal Development, Farmington, CT, USA.
| | - Ming Xu
- UConn Center on Aging, Farmington, CT, USA. .,Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
| |
Collapse
|
3
|
Rowe DW, Hong SH, Zhang C, Shin DG, Adams DJ, Youngstrom DW, Chen L, Wu Z, Zhou Y, Maye P. Skeletal screening IMPC/KOMP using μCT and computer automated cryohistology: Application to the Efna4 KO mouse line. Bone 2021; 144:115688. [PMID: 33065355 DOI: 10.1016/j.bone.2020.115688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023]
Abstract
The IMPC/KOMP program provides the opportunity to screen mice harboring well defined gene-inactivation mutations in a uniform genetic background. The program performs a global tissue phenotyping survey that includes skeletal x-rays and bone density measurements. Because of the relative insensitivity of the two screening tests for detecting variance in bone architecture, we initiated a secondary screen based on μCT and a cryohistolomorphological workflow that was performed on the femur and vertebral compartments on 220 randomly selected knockouts (KOs) and 36 control bone samples over a 2 1/2 year collection period provided by one of the production/phenotyping centers. The performance of the screening protocol was designed to balance throughput and cost versus sensitivity and informativeness such that the output would be of value to the skeletal biology community. Here we report the reliability of this screening protocol to establish criteria for control skeletal variance at the architectural, dynamic and cellular histomorphometric level. Unexpected properties of the control population include unusually high variance in BV/TV in male femurs and greater bone formation and bone turnover rates in the female femur and vertebral trabeculae bone compartments. However, the manner for maintaining bone formation differed between these two bone sites. The vertebral compartment relies on maintaining a greater number of bone forming surfaces while the femoral compartment utilized more matrix production per cell. The comparison of the architectural properties obtained by μCT and histomorphology revealed significant differences in values for BV/TV, Tb.Th and Tb.N which is attributable to sampling density of the two methods. However, as a screening tool, expressing the ratio of KO to the control line as obtained by either method was remarkably similar. It identified KOs with significant variance which led to a more detailed histological analysis. Our findings are exemplified by the Efna4 KO, in which a high BV/TV was identified by μCT and confirmed by histomorphometry in the femur but not in the vertebral compartment. Dynamic labeling showed a marked increase in BFR which was attributable to increased labeling surfaces. Cellular analysis confirmed partitioning of osteoblast to labeling surfaces and a marked decrease in osteoclastic activity on both labeling and quiescent surfaces. This pattern of increased bone modeling would not be expected based on prior studies of the Ephrin-Ephrin receptor signaling pathways between osteoblasts and osteoclasts. Overall, our findings underscore why unbiased screening is needed because it can reveal unknown or unanticipated genes that impact skeletal variation.
Collapse
Affiliation(s)
- David W Rowe
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT 06030, United States of America.
| | - Seung-Hyun Hong
- Computer Science & Engineering, School of Engineering, University of Connecticut, Storrs, CT 06269, United States of America
| | - Caibin Zhang
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT 06030, United States of America
| | - Dong-Guk Shin
- Computer Science & Engineering, School of Engineering, University of Connecticut, Storrs, CT 06269, United States of America
| | - Douglas J Adams
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, School of Medicine, University of Connecticut Health, Farmington, CT 06030, United States of America
| | - Li Chen
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT 06030, United States of America
| | - Zhihua Wu
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT 06030, United States of America
| | - Yueying Zhou
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT 06030, United States of America
| | - Peter Maye
- Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT 06030, United States of America
| |
Collapse
|
4
|
Basile M, Marchegiani F, Novak S, Kalajzic I, Di Pietro R. Human amniotic fluid stem cells attract osteoprogenitor cells in bone healing. J Cell Physiol 2020; 235:4643-4654. [PMID: 31650536 PMCID: PMC7018542 DOI: 10.1002/jcp.29342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/30/2019] [Indexed: 02/05/2023]
Abstract
Current treatments of large bone defects are based on autologous or allogenic bone transplantation. Human amniotic fluid stem cells (hAFSCs) were evaluated for their potential in bone regenerative medicine. In this study, hAFSCs were transduced with lentiviral vector harboring red fluorescent protein to investigate their role in the regeneration of critical-size bone defects in calvarial mouse model. To distinguish donor versus recipient cells, a transgenic mouse model carrying GFP fluorescent reporter was used as recipient to follow the fate of hAFSCs transplanted in vivo into Healos® scaffold. Our results showed that transduced hAFSCs can be tracked in vivo directly at the site of transplantation. The presence of GFP positive cells in the scaffold at 3 and 6 weeks after transplantation indicates that donor hAFSCs can recruit host cells during the repair process. These observations help clarify the role of hAFSCs in bone tissue repair.
Collapse
Affiliation(s)
- Mariangela Basile
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, Italy
- StemTeCh Group, CAST, G. d’Annunzio University of Chieti-Pescara, Italy
| | - Francesco Marchegiani
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Sanja Novak
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, Italy
- StemTeCh Group, CAST, G. d’Annunzio University of Chieti-Pescara, Italy
| |
Collapse
|
5
|
Yu L, Rowe DW, Perera IP, Zhang J, Suib SL, Xin X, Wei M. Intrafibrillar Mineralized Collagen-Hydroxyapatite-Based Scaffolds for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18235-18249. [PMID: 32212615 DOI: 10.1021/acsami.0c00275] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
As one of the major challenges in the field of tissue engineering, large skeletal defects have attracted wide attention from researchers. Collagen (Col) and hydroxyapatite (HA), the most abundant protein and the main component in natural bone, respectively, are usually used as a biomimetic composite material in tissue engineering due to their excellent biocompatibility and biodegradability. In this study, novel intrafibrillar mineralized Col-HA-based scaffolds, constructed in either cellular or lamellar microstructures, were established through a biomimetic method to enhance the new bone-regenerating capability of tissue engineering scaffolds. Moreover, iron (Fe) and manganese (Mn), two of the essential trace elements in the body, were successfully incorporated into the lamellar scaffold to further improve the osteoinductivity of these biomaterials. It was found that the lamellar scaffolds demonstrated better osteogenic abilities compared to both in-house and commercial Col-HA-based cellular scaffolds in vitro and in vivo. Meanwhile, Fe/Mn incorporation further amplified the osteogenic promotion of the lamellar scaffolds. More importantly, a synergistic effect was observed in the Fe and Mn dual-element-incorporated lamellar scaffolds for both in vitro osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and in vivo bone regeneration loaded with fresh bone marrow cells. This study provides a simple but practical strategy for the creation of functional scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, United States
| | - David W Rowe
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut 06032, United States
| | | | | | | | - Xiaonan Xin
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut 06032, United States
| | - Mei Wei
- Department of Mechanical Engineering, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
6
|
Mikael PE, Golebiowska AA, Xin X, Rowe DW, Nukavarapu SP. Evaluation of an Engineered Hybrid Matrix for Bone Regeneration via Endochondral Ossification. Ann Biomed Eng 2019; 48:992-1005. [PMID: 31037444 DOI: 10.1007/s10439-019-02279-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/24/2019] [Indexed: 12/28/2022]
Abstract
Despite its regenerative ability, long and segmental bone defect repair remains a significant orthopedic challenge. Conventional tissue engineering efforts induce bone formation through intramembranous ossification (IO) which limits vascular formation and leads to poor bone regeneration. To overcome this challenge, a novel hybrid matrix comprised of a load-bearing polymer template and a gel phase is designed and assessed for bone regeneration. Our previous studies developed a synthetic ECM, hyaluronan (HA)-fibrin (FB), that is able to mimic cartilage-mediated bone formation in vitro. In this study, the well-characterized HA-FB hydrogel is combined with a biodegradable polymer template to form a hybrid matrix. In vitro evaluation of the matrix showed cartilage template formation, cell recruitment and recruited cell osteogenesis, essential stages in endochondral ossification. A transgenic reporter-mouse critical-defect model was used to evaluate the bone healing potential of the hybrid matrix in vivo. The results demonstrated host cell recruitment into the hybrid matrix that led to new bone formation and subsequent remodeling of the mineralization. Overall, the study developed and evaluated a novel load-bearing graft system for bone regeneration via endochondral ossification.
Collapse
Affiliation(s)
- Paiyz E Mikael
- Department of Materials Science, & Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Aleksandra A Golebiowska
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269, USA
| | - Xiaonan Xin
- Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health, Farmington, CT, 06032, USA
| | - David W Rowe
- Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health, Farmington, CT, 06032, USA
| | - Syam P Nukavarapu
- Department of Materials Science, & Engineering, University of Connecticut, Storrs, CT, 06269, USA. .,Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269, USA. .,Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA.
| |
Collapse
|