1
|
Reinehr S, Rahim Pamuk M, Fuchshofer R, Burkhard Dick H, Joachim SC. Increased inflammation in older high-pressure glaucoma mice. Neurobiol Aging 2024; 145:55-64. [PMID: 39481321 DOI: 10.1016/j.neurobiolaging.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024]
Abstract
Besides an elevated intraocular pressure (IOP), advanced age is one of the most crucial risk factors for developing glaucoma. βB1-Connective Tissue Growth Factor (βB1-CTGF) high-pressure glaucoma mice were used in this study to assess whether glaucoma mice display more inflammatory and aging processes than age-matched controls. Therefore, 20-month-old βB1-CTGF and corresponding wildtype (WT) controls were examined. After IOP measurements, retinas were processed for (immuno-)histological and quantitative real-time PCR analyses. A significantly higher IOP and diminished retinal ganglion cell numbers were noted in βB1-CTGF mice compared to WT. An enhanced macrogliosis as well as an increased number of microglia/macrophages and microglia was detected in retinas of old glaucoma mice. Interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and transforming growth factor-β2 were upregulated, suggesting an ongoing inflammation. Moreover, βB1-CTGF retinas displayed an increased senescence-associated β-galactosidase staining accompanied by a downregulation of Lmnb1 (laminin-B1) mRNA levels. Our results provide a deeper insight into the association between inflammation and high-pressure glaucoma and thus might help to develop new therapy strategies.
Collapse
Affiliation(s)
- Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, Bochum 44892, Germany.
| | - M Rahim Pamuk
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, Bochum 44892, Germany
| | - Rudolf Fuchshofer
- Institute of Human Anatomy and Embryology, University Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, Bochum 44892, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, Bochum 44892, Germany
| |
Collapse
|
2
|
Talibova G, Bilmez Y, Tire B, Ozturk S. The DNA double-strand break repair proteins γH2AX, RAD51, BRCA1, RPA70, KU80, and XRCC4 exhibit follicle-specific expression differences in the postnatal mouse ovaries from early to older ages. J Assist Reprod Genet 2024; 41:2419-2439. [PMID: 39023827 PMCID: PMC11405603 DOI: 10.1007/s10815-024-03189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
PURPOSE Ovarian aging is closely related to a decrease in follicular reserve and oocyte quality. The precise molecular mechanisms underlying these reductions have yet to be fully elucidated. Herein, we examine spatiotemporal distribution of key proteins responsible for DNA double-strand break (DSB) repair in ovaries from early to older ages. Functional studies have shown that the γH2AX, RAD51, BRCA1, and RPA70 proteins play indispensable roles in HR-based repair pathway, while the KU80 and XRCC4 proteins are essential for successfully operating cNHEJ pathway. METHODS Female Balb/C mice were divided into five groups as follows: Prepuberty (3 weeks old; n = 6), puberty (7 weeks old; n = 7), postpuberty (18 weeks old; n = 7), early aged (52 weeks old; n = 7), and late aged (60 weeks old; n = 7). The expression of DSB repair proteins, cellular senescence (β-GAL) and apoptosis (cCASP3) markers was evaluated in the ovaries using immunohistochemistry. RESULT β-GAL and cCASP3 levels progressively increased from prepuberty to aged groups (P < 0.05). Notably, γH2AX levels varied in preantral and antral follicles among the groups (P < 0.05). In aged groups, RAD51, BRCA1, KU80, and XRCC4 levels increased (P < 0.05), while RPA70 levels decreased (P < 0.05) compared to the other groups. CONCLUSIONS The observed alterations were primarily attributed to altered expression in oocytes and granulosa cells of the follicles and other ovarian cells. As a result, the findings indicate that these DSB repair proteins may play a role in the repair processes and even other related cellular events in ovarian cells from early to older ages.
Collapse
Affiliation(s)
- Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Yesim Bilmez
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Betul Tire
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
3
|
Muthamil S, Kim HY, Jang HJ, Lyu JH, Shin UC, Go Y, Park SH, Lee HG, Park JH. Biomarkers of Cellular Senescence and Aging: Current State-of-the-Art, Challenges and Future Perspectives. Adv Biol (Weinh) 2024; 8:e2400079. [PMID: 38935557 DOI: 10.1002/adbi.202400079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Population aging has increased the global prevalence of aging-related diseases, including cancer, sarcopenia, neurological disease, arthritis, and heart disease. Understanding aging, a fundamental biological process, has led to breakthroughs in several fields. Cellular senescence, evinced by flattened cell bodies, vacuole formation, and cytoplasmic granules, ubiquitously plays crucial roles in tissue remodeling, embryogenesis, and wound repair as well as in cancer therapy and aging. The lack of universal biomarkers for detecting and quantifying senescent cells, in vitro and in vivo, constitutes a major limitation. The applications and limitations of major senescence biomarkers, including senescence-associated β-galactosidase staining, telomere shortening, cell-cycle arrest, DNA methylation, and senescence-associated secreted phenotypes are discussed. Furthermore, explore senotherapeutic approaches for aging-associated diseases and cancer. In addition to the conventional biomarkers, this review highlighted the in vitro, in vivo, and disease models used for aging studies. Further, technologies from the current decade including multi-omics and computational methods used in the fields of senescence and aging are also discussed in this review. Understanding aging-associated biological processes by using cellular senescence biomarkers can enable therapeutic innovation and interventions to improve the quality of life of older adults.
Collapse
Affiliation(s)
- Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Hyun-Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Ji-Hyo Lyu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Ung Cheol Shin
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
| | - Younghoon Go
- Korean Medicine (KM)-application Center, Korea Institute of Oriental Medicine, Daegu, 41062, Republic of Korea
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do, Naju, 58245, Republic of Korea
- Korean Convergence Medicine Major, University of Science & Technology (UST), KIOM Campus, Daejeon, 34054, Republic of Korea
| |
Collapse
|
4
|
Basel A, Bhadsavle SS, Scaturro KZ, Parkey GK, Gaytan MN, Patel JJ, Thomas KN, Golding MC. Parental Alcohol Exposures Associate with Lasting Mitochondrial Dysfunction and Accelerated Aging in a Mouse Model. Aging Dis 2024:AD.2024.0722. [PMID: 39122451 DOI: 10.14336/ad.2024.0722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Although detrimental changes in mitochondrial morphology and function are widely described symptoms of fetal alcohol exposure, no studies have followed these mitochondrial deficits into adult life or determined if they predispose individuals with fetal alcohol spectrum disorders (FASDs) to accelerated biological aging. Here, we used a multiplex preclinical mouse model to compare markers of cellular senescence and age-related outcomes induced by maternal, paternal, and dual-parental alcohol exposures. We find that even in middle life (postnatal day 300), the adult offspring of alcohol-exposed parents exhibited significant increases in markers of stress-induced premature cellular senescence in the brain and liver, including an upregulation of cell cycle inhibitory proteins and increased senescence-associated β-galactosidase activity. Strikingly, in the male offspring, we observe an interaction between maternal and paternal alcohol use, with histological indicators of accelerated age-related liver disease in the dual-parental offspring exceeding those induced by either maternal or paternal alcohol use alone. Our studies indicate that chronic parental alcohol use causes enduring mitochondrial dysfunction in offspring, resulting in a reduced NAD+/NAHD ratio and altered expression of the NAD+-dependent deacetylases SIRT1 and SIRT3. These observations suggest that some aspects of FASDs may be linked to accelerated aging due to programmed changes in the regulation of mitochondrial function and cellular bioenergetics.
Collapse
|
5
|
Rattanaprukskul K, Xia XJ, Jiang M, Albuquerque-Souza E, Bandyopadhyay D, Sahingur S. Molecular Signatures of Senescence in Periodontitis: Clinical Insights. J Dent Res 2024; 103:800-808. [PMID: 38877743 PMCID: PMC11308264 DOI: 10.1177/00220345241255325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024] Open
Abstract
Most of the elderly population is afflicted by periodontal diseases, creating a health burden worldwide. Cellular senescence is one of the hallmarks of aging and associated with several chronic comorbidities. Senescent cells produce a variety of deleterious secretions, collectively termed the senescence-associated secretory phenotype (SASP). This disrupts neighboring cells, leading to further senescence propagation and inciting chronic inflammation, known as "inflammaging." Detrimental repercussions within the tissue microenvironment can trigger senescence at a younger age, accelerate biological aging, and drive the initiation or progression of diseases. Here, we investigated the biological signatures of senescence in healthy and diseased gingival tissues by assessing the levels of key senescence markers (p16, lipofuscin, and β-galactosidase) and inflammatory mediators (interleukin [IL]-1β, IL-6, IL-8, matrix metalloproteinase [MMP]-1, MMP-3, and tumor necrosis factor-α). Our results showed significantly increased senescence features including p16, lipofuscin, and β-galactosidase in both epithelial and connective tissues of periodontitis patients compared with healthy sites in all age groups, indicating that an inflammatory microenvironment can trigger senescence-like alterations in younger diseased gingival tissues as well. Subsequent analyses using double staining with specific cell markers noted the enrichment of β-galactosidase in fibroblasts and macrophages. Concurrently, inflammatory mediators consistent with SASP were increased in the gingival biopsies obtained from periodontitis lesions. Together, our findings provide the first clinical report revealing susceptibility to elevated senescence and inflammatory milieu consistent with senescence secretome in gingival tissues, thus introducing senescence as one of the drivers of pathological events in the oral mucosa and a novel strategy for targeted interventions.
Collapse
Affiliation(s)
- K. Rattanaprukskul
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - X.-J. Xia
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M. Jiang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E. Albuquerque-Souza
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lipid Mediator Unit, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - D. Bandyopadhyay
- Department of Biostatistics, School of Population Health, Virginia Commonwealth, Richmond, VA, USA
| | - S.E. Sahingur
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Hyeon J, Lee J, Kim E, Lee HM, Kim KP, Shin J, Park HS, Lee YI, Nam CH. Vutiglabridin exerts anti-ageing effects in aged mice through alleviating age-related metabolic dysfunctions. Exp Gerontol 2023; 181:112269. [PMID: 37567452 DOI: 10.1016/j.exger.2023.112269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Ageing alters the ECM, leading to mitochondrial dysfunction and oxidative stress, which triggers an inflammatory response that exacerbates with age. Age-related changes impact satellite cells, affecting muscle regeneration, and the balance of proteins. Furthermore, ageing causes a decline in NAD+ levels, and alterations in fat metabolism that impact our health. These various metabolic issues become intricately intertwined with ageing, leading to a variety of individual-level diseases and profoundly affecting individuals' healthspan. Therefore, we hypothesize that vutiglabridin capable of alleviating these metabolic abnormalities will be able to ameliorate many of the problems associated with ageing. METHOD The efficacy of vutiglabridin, which alleviates metabolic issues by enhancing mitochondrial function, was assessed in aged mice treated with vutiglabridin and compared to untreated elderly mice. On young mice, vutiglabridin-treated aged mice, and non-treated aged mice, the Senescence-associated beta-galactosidase staining and q-PCR for ageing marker genes were carried out. Bulk RNA-seq was carried out on GA muscle, eWAT, and liver from each group of mice to compare differences in gene expression in various gene pathways. Blood from each group of mice was used to compare and analyze the ageing lipid profile. RESULTS SA-β-gal staining of eWAT, liver, kidney, and spleen of ageing mice showed that vutiglabridin had anti-ageing effects compared to the control group, and q-PCR of ageing marker genes including Cdkn1a and Cdkn2a in each tissue showed that vutiglabridin reduced the ageing process. In aged mice treated with vutiglabridin, GA muscle showed improved homeostasis compared to controls, eWAT showed restored insulin sensitivity and prevented FALC-induced inflammation, and liver showed reduced inflammation levels due to prevented TLO formation, improved mitochondrial complex I assembly, resulting in reduced ROS formation. Furthermore, blood lipid analysis revealed that ageing-related lipid profile was relieved in ageing mice treated with vutiglabridin versus the control group. CONCLUSION Vutiglabridin slows metabolic ageing mechanisms such as decreased insulin sensitivity, increased inflammation, and altered NAD+ metabolism in adipose tissue in mice experiments, while also retaining muscle homeostasis, which is deteriorated with age. It also improves the lipid profile in the blood and restores mitochondrial function in the liver to reduce ROS generation.
Collapse
Affiliation(s)
- Jooseung Hyeon
- Aging and Immunity Laboratory, Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Jihan Lee
- Aging and Immunity Laboratory, Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Eunju Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea; Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Hyeong Min Lee
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea; Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea; Glaceum Incorporation, Research Department, Suwon, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea; Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Jaejin Shin
- Glaceum Incorporation, Research Department, Suwon, Republic of Korea
| | - Hyung Soon Park
- Glaceum Incorporation, Research Department, Suwon, Republic of Korea
| | - Yun-Il Lee
- Well Aging Research Center, Division of Biotechnology, Department of Interdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Chang-Hoon Nam
- Aging and Immunity Laboratory, Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea.
| |
Collapse
|
7
|
Vitale F, Cacciottola L, Yu FS, Barretta M, Hossay C, Donnez J, Dolmans MM. Importance of oxygen tension in human ovarian tissue in vitro culture. Hum Reprod 2023:7194693. [PMID: 37308325 DOI: 10.1093/humrep/dead122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/23/2023] [Indexed: 06/14/2023] Open
Abstract
STUDY QUESTION Is there any difference between 20% and 5% oxygen (O2) tension in vitro culture (IVC) on the viability and quality of human follicles contained in cultured ovarian cortex? SUMMARY ANSWER An O2 tension of 5% yields higher follicle viability and quality than does 20% O2 tension after 6 days of IVC. WHAT IS KNOWN ALREADY The primordial follicle (PMF) pool resides within the ovarian cortex, where the in vivo O2 tension ranges between 2% and 8%. Some studies suggest that lowering O2 tension to physiological levels may improve in vitro follicle quality rates. STUDY DESIGN, SIZE, DURATION This prospective experimental study included frozen-thawed ovarian cortex from six adult patients (mean age: 28.5 years; age range: 26-31 years) who were undergoing laparoscopic surgery for non-ovarian diseases. Ovarian cortical fragments were cultured for 6 days at (i) 20% O2 with 5% CO2 and (ii) 5% O2 with 5% CO2. Non-cultured fragments served as controls. PARTICIPANTS/MATERIALS, SETTING, METHODS Cortical fragments were used for the following analyses: hematoxylin and eosin staining for follicle count and classification; Ki67 staining to evaluate PMF proliferation; cleaved caspase-3 immunostaining to identify follicle apoptosis; 8-hydroxy-2-deoxyguanosine and gamma-H2AX (γH2AX) immunolabeling to detect oxidative stress damage and DNA double-strand breaks (DSBs) in oocytes and granulosa cells (GCs); and β-galactosidase staining to assess follicle senescence. Droplet digital PCR was also performed to further explore the gene expression of superoxide dismutase 2 (SOD2) and glutathione peroxidase 4 (GPX4) from the antioxidant defense system and cyclin-dependent kinase inhibitors (p21 and p16) as tissue senescence-related genes. MAIN RESULTS AND THE ROLE OF CHANCE Apoptosis (P = 0.002) and follicle senescence (P < 0.001) rates were significantly lower in the 5% O2 group than in the 20% O2 group. Moreover, GCs in follicles in the 20% O2 group exhibited significantly (P < 0.001) higher oxidative stress damage rates than those in the 5% O2 group. DNA DSB damage rates in GCs of follicles were also significantly higher (P = 0.001) in the 20% O2 group than in the 5% O2 group. SOD2 expression was significantly greater in the 5% O2 group compared to the 20% O2 group (P = 0.04) and the non-cultured group (P = 0.002). Expression of p21 was significantly increased in both the 20% O2 (P = 0.03) and 5% O2 (P = 0.008) groups compared to the non-cultured group. Moreover, the 20% O2 group showed significantly greater p16 expression (P = 0.04) than the non-cultured group, while no significant variation was observed between the 5% O2 and no culture groups. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This study focuses on improving follicle outcomes during the first step of ovarian tissue IVC, where follicles remain in situ within the tissue. The impact of O2 tension in further steps, such as secondary follicle isolation and maturation, was not investigated here. WIDER IMPLICATIONS OF THE FINDINGS Our findings suggest that 5% O2 tension culture is a promising step toward potentially solving the problem of poor follicle viability after IVC. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (FNRS-PDR T.0064.22, CDR J.0063.20 and grant 5/4/150/5 awarded to M.M.D.). The authors have nothing to disclose.
Collapse
Affiliation(s)
- F Vitale
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - L Cacciottola
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - F S Yu
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - M Barretta
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - C Hossay
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - J Donnez
- Société de Recherche pour l'Infertilité, Brussels, Belgium
- Université Catholique de Louvain, Brussels, Belgium
| | - M M Dolmans
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Gynecology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
8
|
Peng N, Kang HH, Feng Y, Minikes AM, Jiang X. Autophagy inhibition signals through senescence to promote tumor suppression. Autophagy 2023; 19:1764-1780. [PMID: 36472478 PMCID: PMC10262760 DOI: 10.1080/15548627.2022.2155794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Macroautophagy/autophagy, a stress-responsive cellular survival mechanism, plays important and context-dependent roles in cancer, and its inhibition has been implicated as a promising cancer therapeutic approach. The detailed mechanisms underlying the function of autophagy in cancer have not been fully understood. In this study, we show that autophagy inhibition promotes both the efficacy of chemotherapy for the treatment of glioblastoma (GBM) and therapy-induced senescence of GBM cells. As a specific cell fate characterized by permanent cell cycle arrest, senescence is also associated with the expression of a panel of specific secreted protein factors known as senescence-associated secretory phenotype (SASP). Intriguingly, we found that autophagy inhibition not only quantitatively enhanced GBM cell senescence but also qualitatively altered the spectrum of SASP. The altered SASP had increased potent activity to induce paracrine senescence of neighboring GBM cells, to skew macrophage polarization toward the anti-tumor M1 state, and to block the recruitment of pro-tumor neutrophils to GBM tumor tissues. Taken together, this study reveals novel functional communication between autophagy and senescence and suggests cancer therapeutic approaches harnessing autophagy blockage in inducing senescence-mediated antitumor immunity.
Collapse
Affiliation(s)
- Nanfang Peng
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Helen H. Kang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology & Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA
| | - Yan Feng
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander M. Minikes
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- BCMB Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
9
|
Jannone G, Riani EB, de Magnée C, Tambucci R, Evraerts J, Ravau J, Baldin P, Bouzin C, Loriot A, Gatto L, Decottignies A, Najimi M, Sokal EM. Senescence and senotherapies in biliary atresia and biliary cirrhosis. Aging (Albany NY) 2023; 15:204700. [PMID: 37204430 DOI: 10.18632/aging.204700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Premature senescence occurs in adult hepatobiliary diseases and worsens the prognosis through deleterious liver remodeling and hepatic dysfunction. Senescence might also arises in biliary atresia (BA), the first cause of pediatric liver transplantation. Since alternatives to transplantation are needed, our aim was to investigate premature senescence in BA and to assess senotherapies in a preclinical model of biliary cirrhosis. METHODS BA liver tissues were prospectively obtained at hepatoportoenterostomy (n=5) and liver transplantation (n=30) and compared to controls (n=10). Senescence was investigated through spatial whole transcriptome analysis, SA-β-gal activity, p16 and p21 expression, γ-H2AX and senescence-associated secretory phenotype (SASP). Human allogenic liver-derived progenitor cells (HALPC) or dasatinib and quercetin (D+Q) were administrated to two-month-old Wistar rats after bile duct ligation (BDL). RESULTS Advanced premature senescence was evidenced in BA livers from early stage and continued to progress until liver transplantation. Senescence and SASP were predominant in cholangiocytes, but also present in surrounding hepatocytes. HALPC but not D+Q reduced the early marker of senescence p21 in BDL rats and improved biliary injury (serum γGT and Sox9 expression) and hepatocytes mass loss (Hnf4a). CONCLUSIONS BA livers displayed advanced cellular senescence at diagnosis that continued to progress until liver transplantation. HALPC reduced early senescence and improved liver disease in a preclinical model of BA, providing encouraging preliminary results regarding the use of senotherapies in pediatric biliary cirrhosis.
Collapse
Affiliation(s)
- Giulia Jannone
- Pediatric Hepatology and Cell Therapy Unit, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Eliano Bonaccorsi Riani
- Abdominal Transplantation Unit, Department of Surgery, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Catherine de Magnée
- Pediatric Surgery and Transplantation Unit, Department of Surgery, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Roberto Tambucci
- Pediatric Surgery and Transplantation Unit, Department of Surgery, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Jonathan Evraerts
- Pediatric Hepatology and Cell Therapy Unit, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Joachim Ravau
- Pediatric Hepatology and Cell Therapy Unit, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Pamela Baldin
- Department of Anatomopathology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform (2IP), Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Axelle Loriot
- Computational Biology and Bioinformatics Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Laurent Gatto
- Computational Biology and Bioinformatics Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Anabelle Decottignies
- Genetic and Epigenetic Alterations of Genomes Group, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Mustapha Najimi
- Pediatric Hepatology and Cell Therapy Unit, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Etienne Marc Sokal
- Pediatric Hepatology and Cell Therapy Unit, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| |
Collapse
|
10
|
Siraj Y, Galderisi U, Alessio N. Senescence induces fundamental changes in the secretome of mesenchymal stromal cells (MSCs): implications for the therapeutic use of MSCs and their derivates. Front Bioeng Biotechnol 2023; 11:1148761. [PMID: 37229499 PMCID: PMC10203235 DOI: 10.3389/fbioe.2023.1148761] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are a heterogeneous population containing multipotent adult stem cells with a multi-lineage differentiation capacity, which differentiated into mesodermal derivatives. MSCs are employed for therapeutic purposes and several investigations have demonstrated that the positive effects of MSC transplants are due to the capacity of MSCs to modulate tissue homeostasis and repair via the activity of their secretome. Indeed, the MSC-derived secretomes are now an alternative strategy to cell transplantation due to their anti-inflammatory, anti-apoptotic, and regenerative effects. The cellular senescence is a dynamic process that leads to permanent cell cycle arrest, loss of healthy cells' physiological functions and acquiring new activities, which are mainly accrued through the release of many factors, indicated as senescence-associated secretory phenotype (SASP). The senescence occurring in stem cells, such as those present in MSCs, may have detrimental effects on health since it can undermine tissue homeostasis and repair. The analysis of MSC secretome is important either for the MSC transplants and for the therapeutic use of secretome. Indeed, the secretome of MSCs, which is the main mechanism of their therapeutic activity, loses its beneficial functions and acquire negative pro-inflammatory and pro-aging activities when MSCs become senescent. When MSCs or their derivatives are planned to be used for therapeutic purposes, great attention must be paid to these changes. In this review, we analyzed changes occurring in MSC secretome following the switch from healthy to senescence status.
Collapse
Affiliation(s)
- Yesuf Siraj
- Department of Experimental Medicine, University of Campania, Naples, Italy
- Department of Medical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania, Naples, Italy
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Türkiye
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United States
| | - Nicola Alessio
- Department of Experimental Medicine, University of Campania, Naples, Italy
| |
Collapse
|
11
|
El-Sadoni M, Shboul SA, Alhesa A, Shahin NA, Alsharaiah E, Ismail MA, Ababneh NA, Alotaibi MR, Azab B, Saleh T. A three-marker signature identifies senescence in human breast cancer exposed to neoadjuvant chemotherapy. Cancer Chemother Pharmacol 2023; 91:345-360. [PMID: 36964435 DOI: 10.1007/s00280-023-04523-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023]
Abstract
PURPOSE Despite the beneficial effects of chemotherapy, therapy-induced senescence (TIS) manifests itself as an undesirable byproduct. Preclinical evidence suggests that tumor cells undergoing TIS can re-emerge as more aggressive divergents and contribute to recurrence, and thus, senolytics were proposed as adjuvant treatment to eliminate senescent tumor cells. However, the identification of TIS in clinical samples is essential for the optimal use of senolytics in cancer therapy. In this study, we aimed to detect and quantify TIS using matched breast cancer samples collected pre- and post-exposure to neoadjuvant chemotherapy (NAC). METHODS Detection of TIS was based on the change in gene and protein expression levels of three senescence-associated markers (downregulation of Lamin B1 and Ki-67 and upregulation of p16INK4a). RESULTS Our analysis revealed that 23 of 72 (31%) of tumors had a shift in the protein expression of the three markers after exposure to NAC suggestive of TIS. Gene expression sets of two independent NAC-treated breast cancer samples showed consistent changes in the expression levels of LMNB1, MKI67 and CDKN2A. CONCLUSIONS Collectively, our study shows a more individualized approach to measure TIS hallmarks in matched breast cancer samples and provides an estimation of the extent of TIS in breast cancer clinically. Results from this work should be complemented with more comprehensive identification approaches of TIS in clinical samples in order to adopt a more careful implementation of senolytics in cancer treatment.
Collapse
Affiliation(s)
- Mohammed El-Sadoni
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Ahmad Alhesa
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Nisreen Abu Shahin
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Elham Alsharaiah
- Department of Pathology, Royal Medical Services, King Hussein Medical Center, Amman, 11942, Jordan
| | | | - Nidaa A Ababneh
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Moureq R Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bilal Azab
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
| |
Collapse
|
12
|
Shi D, Liu W, Gao Y, Li X, Huang Y, Li X, James TD, Guo Y, Li J. Photoactivatable senolysis with single-cell resolution delays aging. NATURE AGING 2023; 3:297-312. [PMID: 37118423 DOI: 10.1038/s43587-023-00360-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/03/2023] [Indexed: 04/30/2023]
Abstract
Strategies that can selectively eliminate senescent cells (SnCs), namely senolytics, have been shown to promote healthy lifespan. However, it is challenging to achieve precise, broad-spectrum and tractable senolysis. Here, we integrate multiple technologies that combine the enzyme substrate of senescence-associated β-galactosidase (SA-β-gal) with fluorescence tag for the precise tracking of SnCs, construction of a bioorthogonal receptor triggered by SA-β-gal to target and anchor SnCs with single-cell resolution and incorporation of a selenium atom to generate singlet oxygen and achieve precise senolysis through controllable photodynamic therapy (PDT). We generate KSL0608-Se, a photosensitive senolytic prodrug, which is selectively activated by SA-β-gal. In naturally-aged mice, KSL0608-Se-mediated PDT prevented upregulation of age-related SnCs markers and senescence-associated secretory phenotype factors. This treatment also countered age-induced losses in liver and renal function and inhibited the age-associated physical dysfunction in mice. We therefore provide a strategy to monitor and selectively eliminate SnCs to regulate aging.
Collapse
Affiliation(s)
- Donglei Shi
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China
| | - Wenwen Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Pharmacy, Hainan University, Haikou, Hainan, China
| | - Ying Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China
| | - Xinming Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yunyuan Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, UK
| | - Yuan Guo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China.
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Pharmacy, Hainan University, Haikou, Hainan, China.
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from West Yunnan, College of Pharmacy, Dali University, Dali, China.
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Lin N, Lin J, Plosch T, Sun P, Zhou X. An Oxidative Stress-Related Gene Signature in Granulosa Cells Is Associated with Ovarian Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1070968. [PMID: 36466095 PMCID: PMC9713466 DOI: 10.1155/2022/1070968] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Ovarian aging is associated with a decrease in fecundity. Increased oxidative stress of granulosa cells (GCs) is an important contributor. We thus asked whether there is an oxidative stress-related gene signature in GCs associated with ovarian aging. Public nonhuman primate (NHP) single-cell transcriptome was processed to identify GC cluster. Then, a GC signature for ovarian aging was established based on six oxidative stress-related differentially expressed genes (MAPK1, STK24, AREG, ATG7, ANXA1, and PON2). Receiver operating characteristic (ROC) analysis confirmed good discriminating capacity in both NHP single-cell and human bulk transcriptome datasets. Gene expression levels were investigated using qPCR in the human ovarian granulosa-like tumor cell line (KGN) and mouse GCs. In an oxidative stress model, KGN cells were treated with menadione (7.5 μM, 24 h) to induce oxidative stress, after which upregulation of MAPK1, STK24, ATG7, ANXA1, and PON2 and downregulation of AREG were observed (p < 0.05). In an aging model, KGN cells were continuously cultured for 3 months, leading to increased expressions of all genes (p < 0.05). In GCs of reproductively aged (8-month-old) Kunming mice, upregulated expression of Mapk1, Stk24, Atg7, and Pon2 and downregulated expression of Anxa1 and Areg were observed (p < 0.01). We therefore here identify a six-gene GC signature associated with oxidative stress and ovarian aging.
Collapse
Affiliation(s)
- Nuan Lin
- Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, Netherlands
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jiazhe Lin
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Torsten Plosch
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, Netherlands
| | - Pingnan Sun
- Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Xiaoling Zhou
- Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
14
|
Yu X, Quan J, Chen S, Yang X, Huang S, Yang G, Zhang Y. A protocol for rapid construction of senescent cells. Front Integr Neurosci 2022; 16:929788. [PMID: 35965600 PMCID: PMC9372585 DOI: 10.3389/fnint.2022.929788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/04/2022] [Indexed: 01/10/2023] Open
Abstract
Aging may be the largest factor for a variety of chronic diseases that influence survival, independence, and wellbeing. Evidence suggests that aging could be thought of as the modifiable risk factor to delay or alleviate age-related conditions as a group by regulating essential aging mechanisms. One such mechanism is cellular senescence, which is a special form of most cells that are present as permanent cell cycle arrest, apoptosis resistance, expression of anti-proliferative molecules, acquisition of pro-inflammatory, senescence-associated secretory phenotype (SASP), and others. Most cells cultured in vitro or in vivo may undergo cellular senescence after accruing a set number of cell divisions or provoked by excessive endogenous and exogenous stress or damage. Senescent cells occur throughout life and play a vital role in various physiological and pathological processes such as embryogenesis, wound healing, host immunity, and tumor suppression. In contrast to the beneficial senescent processes, the accumulation of senescent also has deleterious effects. These non-proliferating cells lead to the decrease of regenerative potential or functions of tissues, inflammation, and other aging-associated diseases because of the change of tissue microenvironment with the acquisition of SASP. While it is understood that age-related diseases occur at the cellular level from the cellular senescence, the mechanisms of cellular senescence in age-related disease progression remain largely unknown. Simplified and rapid models such as in vitro models of the cellular senescence are critically needed to deconvolute mechanisms of age-related diseases. Here, we obtained replicative senescent L02 hepatocytes by culturing the cells for 20 weeks. Then, the conditioned medium containing supernatant from replicative senescent L02 hepatocytes was used to induce cellular senescence, which could rapidly induce hepatocytes into senescence. In addition, different methods were used to validate senescence, including senescence-associated β-galactosidase (SA-β-gal), the rate of DNA synthesis using 5-ethynyl-2′-deoxyuridine (EdU) incorporation assay, and senescence-related proteins. At last, we provide example results and discuss further applications of the protocol.
Collapse
Affiliation(s)
- Xing Yu
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Jing Quan
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Shuai Chen
- Department of Breast and Thyroid Surgery, Yiyang Central Hospital, Yiyang, China
| | - Xinyue Yang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Shuai Huang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Gang Yang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yujing Zhang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- *Correspondence: Yujing Zhang,
| |
Collapse
|
15
|
Sun T, Zhang L, Feng J, Bao L, Wang J, Song Z, Mao Z, Li J, Hu Z. Characterization of cellular senescence in doxorubicin-induced aging mice. Exp Gerontol 2022; 163:111800. [DOI: 10.1016/j.exger.2022.111800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/04/2022]
|