1
|
Espinoza-Álvarez ML, Rojas-Rojas L, Morales-Sánchez J, Guillén-Girón T. Impact of Uniaxial Static Strain on Myoblast Differentiation in Collagen-Coated PCL Microfilament Scaffolds: Role of Onset Time of Mechanical Stimulation. Bioengineering (Basel) 2024; 11:919. [PMID: 39329661 PMCID: PMC11428666 DOI: 10.3390/bioengineering11090919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Tissue engineering endeavors to create in vitro constructs that replicate the properties of native tissue, such as skeletal muscle. This study investigated the use of mechanical stimulation to promote myogenic differentiation and enhance the functionality of bioengineered tissues. Specifically, it aimed to facilitate the differentiation of myoblasts within a three-dimensional scaffold using a defined pattern of mechanical stimulation. C2C12 cells were cultured on a collagen-coated PCL microfilament scaffold and subjected to 24 h of uniaxial static strain using a biomechanical stimulation system. Two onset times of stimulation, 72 h and 120 h post-seeding, were evaluated. Cell proliferation, myogenic marker expression, and alterations in cell morphology and orientation were assessed. Results indicate that static strain on the scaffold promoted myoblast differentiation, evidenced by morphological and molecular changes. Notably, strain initiated at 72 h induced an early differentiation stage marked by MyoD expression, whereas stimulation beginning at 120 h led to a mid-stage differentiation characterized by the co-expression of MyoD and Myogenin, culminating in myotube formation. These results highlight the critical influence of myoblast maturity at the time of strain application on the differentiation outcome. This study provides insights that could guide the optimization of mechanical stimulation protocols in tissue engineering applications.
Collapse
Affiliation(s)
- María Laura Espinoza-Álvarez
- Materials Science and Engineering School, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; (L.R.-R.); (T.G.-G.)
- Tissue Engineering Laboratory, Biotechnology Research Center, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica;
| | - Laura Rojas-Rojas
- Materials Science and Engineering School, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; (L.R.-R.); (T.G.-G.)
- Physics School, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Johan Morales-Sánchez
- Tissue Engineering Laboratory, Biotechnology Research Center, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica;
- PhD Program in Sciences, Universidad de La Frontera, Temuco 4811230, Chile
| | - Teodolito Guillén-Girón
- Materials Science and Engineering School, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; (L.R.-R.); (T.G.-G.)
| |
Collapse
|
2
|
Cook NE, McGovern MR, Zaman T, Lundin PM, Vaughan RA. Effect of mTORC Agonism via MHY1485 with and without Rapamycin on C2C12 Myotube Metabolism. Int J Mol Sci 2024; 25:6819. [PMID: 38999929 PMCID: PMC11241331 DOI: 10.3390/ijms25136819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
The mechanistic target of rapamycin complex (mTORC) regulates protein synthesis and can be activated by branched-chain amino acids (BCAAs). mTORC has also been implicated in the regulation of mitochondrial metabolism and BCAA catabolism. Some speculate that mTORC overactivation by BCAAs may contribute to insulin resistance. The present experiments assessed the effect of mTORC activation on myotube metabolism and insulin sensitivity using the mTORC agonist MHY1485, which does not share structural similarities with BCAAs. METHODS C2C12 myotubes were treated with MHY1485 or DMSO control both with and without rapamycin. Gene expression was assessed using qRT-PCR and insulin sensitivity and protein expression by western blot. Glycolytic and mitochondrial metabolism were measured by extracellular acidification rate and oxygen consumption. Mitochondrial and lipid content were analyzed by fluorescent staining. Liquid chromatography-mass spectrometry was used to assess extracellular BCAAs. RESULTS Rapamycin reduced p-mTORC expression, mitochondrial content, and mitochondrial function. Surprisingly, MHY1485 did not alter p-mTORC expression or cell metabolism. Neither treatment altered indicators of BCAA metabolism or extracellular BCAA content. CONCLUSION Collectively, inhibition of mTORC via rapamycin reduces myotube metabolism and mitochondrial content but not BCAA metabolism. The lack of p-mTORC activation by MHY1485 is a limitation of these experiments and warrants additional investigation.
Collapse
Affiliation(s)
- Norah E. Cook
- Department of Health and Human Performance, High Point University, High Point, NC 27262-3598, USA; (N.E.C.); (M.R.M.)
| | - Macey R. McGovern
- Department of Health and Human Performance, High Point University, High Point, NC 27262-3598, USA; (N.E.C.); (M.R.M.)
| | - Toheed Zaman
- Department of Chemistry, High Point University, High Point, NC 27262-3598, USA; (T.Z.); (P.M.L.)
| | - Pamela M. Lundin
- Department of Chemistry, High Point University, High Point, NC 27262-3598, USA; (T.Z.); (P.M.L.)
| | - Roger A. Vaughan
- Department of Health and Human Performance, High Point University, High Point, NC 27262-3598, USA; (N.E.C.); (M.R.M.)
| |
Collapse
|
3
|
Nguyen J, Gilbert PM. Decoding the forces that shape muscle stem cell function. Curr Top Dev Biol 2024; 158:279-306. [PMID: 38670710 DOI: 10.1016/bs.ctdb.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Skeletal muscle is a force-producing organ composed of muscle tissues, connective tissues, blood vessels, and nerves, all working in synergy to enable movement and provide support to the body. While robust biomechanical descriptions of skeletal muscle force production at the body or tissue level exist, little is known about force application on microstructures within the muscles, such as cells. Among various cell types, skeletal muscle stem cells reside in the muscle tissue environment and play a crucial role in driving the self-repair process when muscle damage occurs. Early evidence indicates that the fate and function of skeletal muscle stem cells are controlled by both biophysical and biochemical factors in their microenvironments, but much remains to accomplish in quantitatively describing the biophysical muscle stem cell microenvironment. This book chapter aims to review current knowledge on the influence of biophysical stresses and landscape properties on muscle stem cells in heath, aging, and diseases.
Collapse
Affiliation(s)
- Jo Nguyen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Penney M Gilbert
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Martins B, Bister A, Dohmen RGJ, Gouveia MA, Hueber R, Melzener L, Messmer T, Papadopoulos J, Pimenta J, Raina D, Schaeken L, Shirley S, Bouchet BP, Flack JE. Advances and Challenges in Cell Biology for Cultured Meat. Annu Rev Anim Biosci 2024; 12:345-368. [PMID: 37963400 DOI: 10.1146/annurev-animal-021022-055132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Cultured meat is an emerging biotechnology that aims to produce meat from animal cell culture, rather than from the raising and slaughtering of livestock, on environmental and animal welfare grounds. The detailed understanding and accurate manipulation of cell biology are critical to the design of cultured meat bioprocesses. Recent years have seen significant interest in this field, with numerous scientific and commercial breakthroughs. Nevertheless, these technologies remain at a nascent stage, and myriad challenges remain, spanning the entire bioprocess. From a cell biological perspective, these include the identification of suitable starting cell types, tuning of proliferation and differentiation conditions, and optimization of cell-biomaterial interactions to create nutritious, enticing foods. Here, we discuss the key advances and outstanding challenges in cultured meat, with a particular focus on cell biology, and argue that solving the remaining bottlenecks in a cost-effective, scalable fashion will require coordinated, concerted scientific efforts. Success will also require solutions to nonscientific challenges, including regulatory approval, consumer acceptance, and market feasibility. However, if these can be overcome, cultured meat technologies can revolutionize our approach to food.
Collapse
Affiliation(s)
- Beatriz Martins
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Arthur Bister
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Richard G J Dohmen
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Maria Ana Gouveia
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Rui Hueber
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Lea Melzener
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Tobias Messmer
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Joanna Papadopoulos
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Joana Pimenta
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Dhruv Raina
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Lieke Schaeken
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Sara Shirley
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Benjamin P Bouchet
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands;
| | - Joshua E Flack
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| |
Collapse
|
5
|
Loi G, Scocozza F, Aliberti F, Rinvenuto L, Cidonio G, Marchesi N, Benedetti L, Ceccarelli G, Conti M. 3D Co-Printing and Substrate Geometry Influence the Differentiation of C2C12 Skeletal Myoblasts. Gels 2023; 9:595. [PMID: 37504474 PMCID: PMC10378771 DOI: 10.3390/gels9070595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/07/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023] Open
Abstract
Cells are influenced by several biomechanical aspects of their microenvironment, such as substrate geometry. According to the literature, substrate geometry influences the behavior of muscle cells; in particular, the curvature feature improves cell proliferation. However, the effect of substrate geometry on the myogenic differentiation process is not clear and needs to be further investigated. Here, we show that the 3D co-printing technique allows the realization of substrates. To test the influence of the co-printing technique on cellular behavior, we realized linear polycaprolactone substrates with channels in which a fibrinogen-based hydrogel loaded with C2C12 cells was deposited. Cell viability and differentiation were investigated up to 21 days in culture. The results suggest that this technology significantly improves the differentiation at 14 days. Therefore, we investigate the substrate geometry influence by comparing three different co-printed geometries-linear, circular, and hybrid structures (linear and circular features combined). Based on our results, all structures exhibit optimal cell viability (>94%), but the linear pattern allows to increase the in vitro cell differentiation, in particular after 14 days of culture. This study proposes an endorsed approach for creating artificial muscles for future skeletal muscle tissue engineering applications.
Collapse
Affiliation(s)
- Giada Loi
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, 27100 Pavia, Italy
| | - Franca Scocozza
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, 27100 Pavia, Italy
| | - Flaminia Aliberti
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, Center for Inherited Cardiovascular Diseases, Transplant Research Area, 27100 Pavia, Italy
| | - Lorenza Rinvenuto
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Gianluca Cidonio
- Center for Life Nano- & Neuro-Science (CLN2S), Fondazione Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Nicola Marchesi
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Laura Benedetti
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Gabriele Ceccarelli
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Michele Conti
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, 27100 Pavia, Italy
| |
Collapse
|
6
|
Zhou G, Ma S, Yang M, Yang Y. Global Quantitative Proteomics Analysis Reveals the Downstream Signaling Networks of Msx1 and Msx2 in Myoblast Differentiation. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:201-210. [PMID: 36939786 PMCID: PMC9590559 DOI: 10.1007/s43657-022-00049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/25/2022]
Abstract
The msh homeobox 1 (Msx1) and msh homeobox 2 (Msx2) coordinate in myoblast differentiation and also contribute to muscle defects if altered during development. Deciphering the downstream signaling networks of Msx1 and Msx2 in myoblast differentiation will help us to understand the molecular events that contribute to muscle defects. Here, the proteomics characteristics in Msx1- and Msx2-mediated myoblast differentiation was evaluated using isobaric tags for the relative and absolute quantification labeling technique (iTRAQ). The downstream regulatory proteins of Msx1- and Msx2-mediated differentiation were identified. Bioinformatics analysis revealed that these proteins were primarily associated with xenobiotic metabolism by cytochrome P450, fatty acid degradation, glycolysis/gluconeogenesis, arginine and proline metabolism, and apoptosis. In addition, our data show Acta1 was probably a core of the downstream regulatory networks of Msx1 and Msx2 in myoblast differentiation. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00049-y.
Collapse
Affiliation(s)
- Guoqiang Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Shuangping Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Ming Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yenan Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| |
Collapse
|
7
|
Carton F, Di Francesco D, Fusaro L, Zanella E, Apostolo C, Oltolina F, Cotella D, Prat M, Boccafoschi F. Myogenic Potential of Extracellular Matrix Derived from Decellularized Bovine Pericardium. Int J Mol Sci 2021; 22:ijms22179406. [PMID: 34502309 PMCID: PMC8431302 DOI: 10.3390/ijms22179406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscles represent 40% of body mass and its native regenerative capacity can be permanently lost after a traumatic injury, congenital diseases, or tumor ablation. The absence of physiological regeneration can hinder muscle repair preventing normal muscle tissue functions. To date, tissue engineering (TE) represents one promising option for treating muscle injuries and wasting. In particular, hydrogels derived from the decellularized extracellular matrix (dECM) are widely investigated in tissue engineering applications thanks to their essential role in guiding muscle regeneration. In this work, the myogenic potential of dECM substrate, obtained from decellularized bovine pericardium (Tissuegraft Srl), was evaluated in vitro using C2C12 murine muscle cells. To assess myotubes formation, the width, length, and fusion indexes were measured during the differentiation time course. Additionally, the ability of dECM to support myogenesis was assessed by measuring the expression of specific myogenic markers: α-smooth muscle actin (α-sma), myogenin, and myosin heavy chain (MHC). The results obtained suggest that the dECM niche was able to support and enhance the myogenic potential of C2C12 cells in comparison of those grown on a plastic standard surface. Thus, the use of extracellular matrix proteins, as biomaterial supports, could represent a promising therapeutic strategy for skeletal muscle tissue engineering.
Collapse
Affiliation(s)
- Flavia Carton
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (F.C.); (D.D.F.); (E.Z.); (C.A.); (F.O.); (D.C.); (M.P.)
| | - Dalila Di Francesco
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (F.C.); (D.D.F.); (E.Z.); (C.A.); (F.O.); (D.C.); (M.P.)
| | | | - Emma Zanella
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (F.C.); (D.D.F.); (E.Z.); (C.A.); (F.O.); (D.C.); (M.P.)
| | - Claudio Apostolo
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (F.C.); (D.D.F.); (E.Z.); (C.A.); (F.O.); (D.C.); (M.P.)
| | - Francesca Oltolina
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (F.C.); (D.D.F.); (E.Z.); (C.A.); (F.O.); (D.C.); (M.P.)
| | - Diego Cotella
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (F.C.); (D.D.F.); (E.Z.); (C.A.); (F.O.); (D.C.); (M.P.)
| | - Maria Prat
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (F.C.); (D.D.F.); (E.Z.); (C.A.); (F.O.); (D.C.); (M.P.)
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (F.C.); (D.D.F.); (E.Z.); (C.A.); (F.O.); (D.C.); (M.P.)
- Correspondence: ; Tel.: +39-0321-660-556
| |
Collapse
|
8
|
Lee JW, Chae S, Oh S, Kim SH, Meeseepong M, Choi KH, Jeon J, Lee NE, Song SY, Lee JH, Choi JY. Bio-essential Inorganic Molecular Nanowires as a Bioactive Muscle Extracellular-Matrix-Mimicking Material. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39135-39141. [PMID: 34374274 DOI: 10.1021/acsami.1c12440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many physiochemical properties of the extracellular matrix (ECM) of muscle tissues, such as nanometer scale dimension, nanotopography, negative charge, and elasticity, must be carefully reproduced to fabricate scaffold materials mimicking muscle tissues. Hence, we developed a muscle tissue ECM-mimicking scaffold using Mo6S3I6 inorganic molecular wires (IMWs). Composed of bio-essential elements and having a nanofibrous structure with a diameter of ∼1 nm and a negative surface charge with high stability, Mo6S3I6 IMWs are ideal for mimicking natural ECM molecules. Once Mo6S3I6 IMWs were patterned on a polydimethylsiloxane surface with an elasticity of 1877.1 ± 22.2 kPa, that is, comparable to that of muscle tissues, the proliferation and α-tubulin expression of myoblasts enhanced significantly. Additionally, the repetitive one-dimensional patterns of Mo6S3I6 IMWs induced the alignment and stretching of myoblasts with enhanced α-tubulin expression and differentiation into myocytes. This study demonstrates that Mo6S3I6 IMWs are promising for mimicking the ECM of muscle tissues.
Collapse
Affiliation(s)
- Jin Woong Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Research Center for Advanced Materials Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sudong Chae
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Seungbae Oh
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Si Hyun Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Montri Meeseepong
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyung Hwan Choi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiho Jeon
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Nae-Eung Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Research Center for Advanced Materials Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Si Young Song
- Department of Orthopaedic Surgery, Hallym University Dongtan Sacred Heart Hospital, Hwaseong 18450, Republic of Korea
| | - Jung Heon Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Research Center for Advanced Materials Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae-Young Choi
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
9
|
Carleton MM, Sefton MV. Promoting endogenous repair of skeletal muscle using regenerative biomaterials. J Biomed Mater Res A 2021; 109:2720-2739. [PMID: 34041836 DOI: 10.1002/jbm.a.37239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Skeletal muscles normally have a remarkable ability to repair themselves; however, large muscle injuries and several myopathies diminish this ability leading to permanent loss of function. No clinical therapy yet exists that reliably restores muscle integrity and function following severe injury. Consequently, numerous tissue engineering techniques, both acellular and with cells, are being investigated to enhance muscle regeneration. Biomaterials are an essential part of these techniques as they can present physical and biochemical signals that augment the repair process. Successful tissue engineering strategies require regenerative biomaterials that either actively promote endogenous muscle repair or create an environment supportive of regeneration. This review will discuss several acellular biomaterial strategies for skeletal muscle regeneration with a focus on those under investigation in vivo. This includes materials that release bioactive molecules, biomimetic materials and immunomodulatory materials.
Collapse
Affiliation(s)
- Miranda M Carleton
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Michael V Sefton
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Yeo M, Kim G. Micro/nano-hierarchical scaffold fabricated using a cell electrospinning/3D printing process for co-culturing myoblasts and HUVECs to induce myoblast alignment and differentiation. Acta Biomater 2020; 107:102-114. [PMID: 32142759 DOI: 10.1016/j.actbio.2020.02.042] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
Human skeletal muscle is composed of intricate anatomical structures, including uniaxially arranged myotubes and widely distributed blood capillaries. In this regard, vascularization is an essential part of the successful development of an engineered skeletal muscle tissue to restore its function and physiological activities. In this paper, we propose a method to obtain a platform for co-culturing human umbilical vein endothelial cells (HUVECs) and C2C12 cells using cell electrospinning and 3D bioprinting. To elaborate, on the surface of mechanical supporters (polycaprolactone and collagen struts) with a topographical cue, HUVECs-laden alginate bioink was uniaxially electrospun. The electrospun HUVECs showed high cell viability (90%), homogeneous cell distribution, and efficient HUVEC growth. Furthermore, the myoblasts (C2C12 cells), which were seeded on the vascularized structure (HUVECs-laden fibers), were co-cultured to facilitate myoblast regeneration. As a result, the scaffold that included myoblasts and HUVECs represented a high degree of the myosin heavy chain (MHC) with striated patterns and enhanced myogenic-specific gene expressions (MyoD, troponin T, MHC and myogenin) as compared to the scaffold that included only myoblasts. STATEMENT OF SIGNIFICANCE: Cell electrospinning is an advanced electrospinning method that improves cell-matrix interactions by embedding cells directly into micro/nanofibers. Here, cell electrospinning was employed to achieve not only the homogeneous human umbilical vein endothelial cells (HUVECs) distribution with a high cell-viability (~90%), but also highly aligned topographical cue. Moreover, the uniaxially micropatterned PCL/collagen struts as a physical support were generated using three-dimensional (3D) printing, and was covered with HUVEC-laden micro/nanofibers. This hierarchical structure provided meaningful mechanical stability, homogeneous cell distribution, and HUVEC transformation into a narrow, elongated structure. Furthermore, the myoblasts (C2C12 cells) were seeded on the HUVECs-laden fibers and cocultured to facilitate myogenesis. In brief, a myosin heavy chain with striated patterns and enhanced myogenic specific gene expressions were represented.
Collapse
Affiliation(s)
- Miji Yeo
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon 440-746, South Korea
| | - GeunHyung Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon 440-746, South Korea.
| |
Collapse
|
11
|
Kim W, Jang CH, Kim GH. A Myoblast-Laden Collagen Bioink with Fully Aligned Au Nanowires for Muscle-Tissue Regeneration. NANO LETTERS 2019; 19:8612-8620. [PMID: 31661283 DOI: 10.1021/acs.nanolett.9b03182] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Contact guidance can promote cell alignment and is thus widely employed in tissue regeneration. In particular, skeletal muscle consists of long fibrous bundles of multinucleated myotubes formed by the fusion and differentiation of the satellite cells of myoblasts. Herein, a functional bioink and cell-printing process supplemented with an electric field are proposed for obtaining highly aligned myoblasts in a collagen-based bioink. To achieve the goal, we mixed Au nanowires (GNWs) with the collagen-based bioink to provide aligned topographical cues to the laden cells. Because the aligned GNWs could clearly provide topographical cues to the cells, we adjusted various processing parameters (flow rate, nozzle speed, and processing temperature) and applied an external electric field to optimally align the GNWs. By selecting an appropriate condition, the GNWs in the printed C2C12-laden structure were well aligned in the printing direction, and they eventually induced a high degree of myoblast alignment and efficient myotube formation. Through the several in vitro cellular activities and in vivo works revealing the myogenesis of the cell-laden structure, we conclude that the collagen/GNW-based cell-laden structure fabricated using the proposed method is a new prospective platform for the effective formation of muscle tissues.
Collapse
Affiliation(s)
- WonJin Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering , Sungkyunkwan University (SKKU) , Suwon , Gyeonggi-Do 16419 , South Korea
| | - Chul Ho Jang
- Department of Otolaryngology , Chonnam National University Medical School , Gwangju 61469 , South Korea
| | - Geun Hyung Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering , Sungkyunkwan University (SKKU) , Suwon , Gyeonggi-Do 16419 , South Korea
| |
Collapse
|
12
|
Almonacid Suarez AM, Zhou Q, van Rijn P, Harmsen MC. Directional topography gradients drive optimum alignment and differentiation of human myoblasts. J Tissue Eng Regen Med 2019; 13:2234-2245. [PMID: 31677226 PMCID: PMC6973069 DOI: 10.1002/term.2976] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 09/06/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022]
Abstract
Tissue engineering of skeletal muscle aims to replicate the parallel alignment of myotubes on the native tissue. Directional topography gradients allow the study of the influence of topography on cellular orientation, proliferation, and differentiation, resulting in yield cues and clues to develop a proper in vitro environment for muscle tissue engineering. In this study, we used a polydimethylsiloxane-based substrate containing an aligned topography gradient with sinusoidal features ranging from wavelength (λ) = 1,520 nm and amplitude (A) =176 nm to λ = 9,934 nm and A = 2,168 nm. With this topography gradient, we evaluated the effect of topography on human myoblasts distribution, dominant orientation, cell area, nuclei coverage, cell area per number of nuclei, and nuclei area of myotubes. We showed that human myoblasts aligned and differentiated irrespective of the topography section. In addition, aligned human myotubes showed functionality and maturity by contracting spontaneously and nuclei peripheral organization resembling natural myotubes.
Collapse
Affiliation(s)
- Ana Maria Almonacid Suarez
- Department of Pathology and Medical Biology, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Qihui Zhou
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Patrick van Rijn
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenGroningenThe Netherlands
| | - Martin C. Harmsen
- Department of Pathology and Medical Biology, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
13
|
Yeo M, Kim G. Nano/microscale topographically designed alginate/PCL scaffolds for inducing myoblast alignment and myogenic differentiation. Carbohydr Polym 2019; 223:115041. [DOI: 10.1016/j.carbpol.2019.115041] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022]
|
14
|
Vajanthri KY, Sidu RK, Poddar S, Singh AK, Mahto SK. Combined substrate micropatterning and FFT analysis reveals myotube size control and alignment by contact guidance. Cytoskeleton (Hoboken) 2019; 76:269-285. [DOI: 10.1002/cm.21527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/23/2019] [Accepted: 05/02/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Kiran Yellappa Vajanthri
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| | - Rakesh Kumar Sidu
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| | - Suruchi Poddar
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| | - Ashish Kumar Singh
- School of Biochemical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| | - Sanjeev Kumar Mahto
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
- Center for Advanced Biomaterials and Tissue EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| |
Collapse
|
15
|
Moreno-Ulloa A, Miranda-Cervantes A, Licea-Navarro A, Mansour C, Beltrán-Partida E, Donis-Maturano L, Delgado De la Herrán HC, Villarreal F, Álvarez-Delgado C. (-)-Epicatechin stimulates mitochondrial biogenesis and cell growth in C2C12 myotubes via the G-protein coupled estrogen receptor. Eur J Pharmacol 2018; 822:95-107. [PMID: 29355558 PMCID: PMC5809192 DOI: 10.1016/j.ejphar.2018.01.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 01/24/2023]
Abstract
We have reported on the capacity of (-)-epicatechin ((-)-EPI) to stimulate mitochondrial biogenesis (MiB) in mouse skeletal muscle (SkM). However, the mechanisms mediating the effects of (-)-EPI are not fully understood. We previously identified a role of the G-protein coupled estrogen receptor (GPER) in modulating the vascular effects of (-)-EPI. We therefore tested the hypothesis that GPER mediates (at least in part) the stimulatory effects of (-)-EPI on MiB in SkM cells. As an in vitro model, we employed mouse SkM-derived C2C12 myoblasts differentiated into myotubes. Using confocal microscopy, we detected GPER at the cell surface and cytoplasm in C2C12 myotubes. Treatment with (-)-EPI (3 and 10μM) resulted in the stimulation of MiB as per increases in mitochondrial inner (MitoTracker Red FM fluorescence staining) and outer membrane (porin protein levels) markers, transcription factors involved in MiB stimulation (i.e., nuclear respiratory factor-2 [NRF-2] and mitochondrial transcription factor A [TFAM] protein levels) and citrate synthase (CS) activity levels. (-)-EPI-treated myotubes were longer and wider compared to vehicle-treated myotubes. The effects of (-)-EPI on myotube mitochondria and cell size were larger in magnitude to those observed with the GPER agonist G-1. The chemical blockade and down-regulation (siRNA) of GPER evidenced a partial and complete blockade of measured endpoints following (-)-EPI- or G-1-treatment, respectively. Altogether, results indicate that GPER is expressed in muscle cells and appears to mediate to a significant extent, the stimulatory effects of (-)-EPI on MiB. Thus, GPER activation may account for the stimulatory effects of (-)-EPI on SkM structure/function.
Collapse
Affiliation(s)
- Aldo Moreno-Ulloa
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, México
| | - Adriana Miranda-Cervantes
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, México
| | - Alexei Licea-Navarro
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, México
| | | | | | - Luis Donis-Maturano
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, México
| | - Hilda C Delgado De la Herrán
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, México
| | | | - Carolina Álvarez-Delgado
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, México.
| |
Collapse
|
16
|
Young J, Margaron Y, Fernandes M, Duchemin-Pelletier E, Michaud J, Flaender M, Lorintiu O, Degot S, Poydenot P. MyoScreen, a High-Throughput Phenotypic Screening Platform Enabling Muscle Drug Discovery. SLAS DISCOVERY 2018; 23:790-806. [PMID: 29498891 DOI: 10.1177/2472555218761102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite the need for more effective drug treatments to address muscle atrophy and disease, physiologically accurate in vitro screening models and higher information content preclinical assays that aid in the discovery and development of novel therapies are lacking. To this end, MyoScreen was developed: a robust and versatile high-throughput high-content screening (HT/HCS) platform that integrates a physiologically and pharmacologically relevant micropatterned human primary skeletal muscle model with a panel of pertinent phenotypic and functional assays. MyoScreen myotubes form aligned, striated myofibers, and they show nerve-independent accumulation of acetylcholine receptors (AChRs), excitation-contraction coupling (ECC) properties characteristic of adult skeletal muscle and contraction in response to chemical stimulation. Reproducibility and sensitivity of the fully automated MyoScreen platform are highlighted in assays that quantitatively measure myogenesis, hypertrophy and atrophy, AChR clusterization, and intracellular calcium release dynamics, as well as integrating contractility data. A primary screen of 2560 compounds to identify stimulators of myofiber regeneration and repair, followed by further biological characterization of two hits, validates MyoScreen for the discovery and testing of novel therapeutics. MyoScreen is an improvement of current in vitro muscle models, enabling a more predictive screening strategy for preclinical selection of the most efficacious new chemical entities earlier in the discovery pipeline process.
Collapse
|
17
|
Shin YC, Kim C, Song SJ, Jun S, Kim CS, Hong SW, Hyon SH, Han DW, Oh JW. Ternary Aligned Nanofibers of RGD Peptide-Displaying M13 Bacteriophage/PLGA/Graphene Oxide for Facilitated Myogenesis. Nanotheranostics 2018; 2:144-156. [PMID: 29577018 PMCID: PMC5865268 DOI: 10.7150/ntno.22433] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/23/2017] [Indexed: 12/14/2022] Open
Abstract
Recently, there have been tremendous efforts to develop the biofunctional scaffolds by incorporating various biochemical factors. In the present study, we fabricated poly(lactic-co-glycolic acid) (PLGA) nanofiber sheets decorated with graphene oxide (GO) and RGD peptide. The decoration of GO and RGD peptide was readily achieved by using RGD peptide-displaying M13 bacteriophage (RGD-M13 phage) and electrospinning. Furthermore, the aligned GO-decorated PLGA/RGD peptide (GO-PLGA/RGD) ternary nanofiber sheets were prepared by magnetic field-assisted electrospinning, and their potentials as bifunctional scaffolds for facilitating myogenesis were explored. We characterized the physicochemical and mechanical properties of the sheets by scanning electron microscopy, Raman spectroscopy, contact angle measurement, and tensile test. In addition, the C2C12 skeletal myoblasts were cultured on the aligned GO-PLGA/RGD nanofiber sheets, and their cellular behaviors, including initial attachment, proliferation and myogenic differentiation, were evaluated. Our results revealed that the GO-PLGA/RGD nanofiber sheets had suitable physicochemical and mechanical properties for supporting cell growth, and could significantly promote the spontaneous myogenic differentiation of C2C12 skeletal myoblasts. Moreover, it was revealed that the myogenic differentiation was further accelerated on the aligned GO-PLGA/RGD nanofiber sheets due to the synergistic effects of RGD peptide, GO and aligned nanofiber structure. Therefore, , it is suggested that the aligned GO-PLGA/RGD ternary nanofiber sheets are one of the most promising approaches for facilitating myogenesis and promoting skeletal tissue regeneration.
Collapse
Affiliation(s)
- Yong Cheol Shin
- Research Center for Energy Convergence Technology, Pusan National University, Busan 46241, Republic of Korea
| | - Chuntae Kim
- Department of Nanofusion Technology, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Su-Jin Song
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Seungwon Jun
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Suong-Hyu Hyon
- Center for Fiber and Textile Science, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Jin-Woo Oh
- Department of Nanofusion Technology, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
18
|
Gattazzo F, De Maria C, Rimessi A, Donà S, Braghetta P, Pinton P, Vozzi G, Bonaldo P. Gelatin-genipin-based biomaterials for skeletal muscle tissue engineering. J Biomed Mater Res B Appl Biomater 2018; 106:2763-2777. [PMID: 29412500 DOI: 10.1002/jbm.b.34057] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 01/03/2023]
Abstract
Skeletal muscle engineering aims at tissue reconstruction to replace muscle loss following traumatic injury or in congenital muscle defects. Skeletal muscle can be engineered by using biodegradable and biocompatible scaffolds that favor myogenic cell adhesion and subsequent tissue organization. In this study, we characterized scaffolds made of gelatin cross-linked with genipin, a natural derived cross-linking agent with low cytotoxicity and high biocompatibility, for tissue engineering of skeletal muscle. We generated gelatin-genipin hydrogels with a stiffness of 13 kPa to reproduce the mechanical properties characteristic of skeletal muscle and we show that their surface can be topographically patterned through soft lithography to drive myogenic cells differentiation and unidirectional orientation. Furthermore, we demonstrate that these biomaterials can be successfully implanted in vivo under dorsal mouse skin, showing good biocompatibility and slow biodegradation rate. Moreover, the grafting of this biomaterial in partially ablated tibialis anterior muscle does not impair muscle regeneration, supporting future applications of gelatin-genipin biomaterials in the field of skeletal muscle tissue repair. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2763-2777, 2018.
Collapse
Affiliation(s)
- Francesca Gattazzo
- Department of Molecular Medicine, University of Padova, Padova, 35131, Italy.,Research Center "E. Piaggio," University of Pisa, Pisa, 56122, Italy
| | - Carmelo De Maria
- Research Center "E. Piaggio," University of Pisa, Pisa, 56122, Italy
| | - Alessandro Rimessi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, 44121, Italy
| | - Silvia Donà
- Department of Molecular Medicine, University of Padova, Padova, 35131, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, Padova, 35131, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, 44121, Italy
| | - Giovanni Vozzi
- Research Center "E. Piaggio," University of Pisa, Pisa, 56122, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Padova, 35131, Italy.,CRIBI Biotechnology Center, University of Padova, Padova, 35131, Italy
| |
Collapse
|
19
|
Cutler AA, Jackson JB, Corbett AH, Pavlath GK. Non-equivalence of nuclear import among nuclei in multinucleated skeletal muscle cells. J Cell Sci 2018; 131:jcs.207670. [PMID: 29361530 DOI: 10.1242/jcs.207670] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/21/2017] [Indexed: 01/01/2023] Open
Abstract
Skeletal muscle is primarily composed of large myofibers containing thousands of post-mitotic nuclei distributed throughout a common cytoplasm. Protein production and localization in specialized myofiber regions is crucial for muscle function. Myonuclei differ in transcriptional activity and protein accumulation, but how these differences among nuclei sharing a cytoplasm are achieved is unknown. Regulated nuclear import of proteins is one potential mechanism for regulating transcription spatially and temporally in individual myonuclei. The best-characterized nuclear localization signal (NLS) in proteins is the classical NLS (cNLS), but many other NLS motifs exist. We examined cNLS and non-cNLS reporter protein import using multinucleated muscle cells generated in vitro, revealing that cNLS and non-cNLS nuclear import differs among nuclei in the same cell. Investigation of cNLS nuclear import rates in isolated myofibers ex vivo confirmed differences in nuclear import rates among myonuclei. Analyzing nuclear import throughout myogenesis revealed that cNLS and non-cNLS import varies during differentiation. Taken together, our results suggest that both spatial and temporal regulation of nuclear import pathways are important in muscle cell differentiation and protein regionalization in myofibers.
Collapse
Affiliation(s)
- Alicia A Cutler
- Department of Pharmacology, Emory University, Atlanta, GA 30322, USA.,Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Grace K Pavlath
- Department of Pharmacology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
20
|
Cha SH, Lee HJ, Koh WG. Study of myoblast differentiation using multi-dimensional scaffolds consisting of nano and micropatterns. Biomater Res 2017; 21:1. [PMID: 28097017 PMCID: PMC5225639 DOI: 10.1186/s40824-016-0087-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The topographical cue is major influence on skeletal muscle cell culture because the structure is highly organized and consists of long parallel bundles of multinucleated myotubes that are formed by differentiation and fusion of myoblast satellite cells. In this technical report, we fabricated a multiscale scaffold using electrospinning and poly (ethylene glycol) (PEG) hydrogel micropatterns to monitor the cell behaviors on nano- and micro-alignment combined scaffolds with different combinations of angles. RESULTS We fabricated multiscale scaffolds that provide biocompatible and extracellular matrix (ECM)-mimetic environments via electrospun nanofiber and PEG hydrogel micro patterning. MTT assays demonstrated an almost four-fold increase in the proliferation rate during the 7 days of cell culture for all of the experimental groups. Cell orientation and elongation were measured to confirm the myogenic potential. On the aligned fibrous scaffolds, more than 90% of the cells were dispersed ± 20° of the fiber orientation. To determine cell elongation, we monitored nuclei aspect ratios. On a random nanofiber, the cells demonstrated an aspect ratio of 1.33, but on perpendicular and parallel nanofibers, the aspect ratio was greater than 2. Myosin heavy chain (MHC) expression was significantly higher i) on parallel compared to random fibers, ii) the 100 μm compared to the 200 μm line pattern. We confirmed the disparate trends of myotube formation that can be provoked through multi-dimensional scaffolds. CONCLUSION We studied more favorable environments that induce cell alignment and elongation for myogenesis by combining nano- and micro-scale patterns. The fabricated system can serve as a novel multi-dimensional platform to study in vitro cell behaviors.
Collapse
Affiliation(s)
- Sung Ho Cha
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 South Korea
| | - Hyun Jong Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 South Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 South Korea
| |
Collapse
|
21
|
Jana S, Lan Levengood SK, Zhang M. Anisotropic Materials for Skeletal-Muscle-Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:10588-10612. [PMID: 27865007 PMCID: PMC5253134 DOI: 10.1002/adma.201600240] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/27/2016] [Indexed: 05/19/2023]
Abstract
Repair of damaged skeletal-muscle tissue is limited by the regenerative capacity of the native tissue. Current clinical approaches are not optimal for the treatment of large volumetric skeletal-muscle loss. As an alternative, tissue engineering represents a promising approach for the functional restoration of damaged muscle tissue. A typical tissue-engineering process involves the design and fabrication of a scaffold that closely mimics the native skeletal-muscle extracellular matrix (ECM), allowing organization of cells into a physiologically relevant 3D architecture. In particular, anisotropic materials that mimic the morphology of the native skeletal-muscle ECM, can be fabricated using various biocompatible materials to guide cell alignment, elongation, proliferation, and differentiation into myotubes. Here, an overview of fundamental concepts associated with muscle-tissue engineering and the current status of muscle-tissue-engineering approaches is provided. Recent advances in the development of anisotropic scaffolds with micro- or nanoscale features are reviewed, and how scaffold topographical, mechanical, and biochemical cues correlate to observed cellular function and phenotype development is examined. Finally, some recent developments in both the design and utility of anisotropic materials in skeletal-muscle-tissue engineering are highlighted, along with their potential impact on future research and clinical applications.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Sheeny K. Lan Levengood
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Miqin Zhang
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
22
|
Ansseau E, Eidahl JO, Lancelot C, Tassin A, Matteotti C, Yip C, Liu J, Leroy B, Hubeau C, Gerbaux C, Cloet S, Wauters A, Zorbo S, Meyer P, Pirson I, Laoudj-Chenivesse D, Wattiez R, Harper SQ, Belayew A, Coppée F. Homologous Transcription Factors DUX4 and DUX4c Associate with Cytoplasmic Proteins during Muscle Differentiation. PLoS One 2016; 11:e0146893. [PMID: 26816005 PMCID: PMC4729438 DOI: 10.1371/journal.pone.0146893] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 12/24/2015] [Indexed: 12/26/2022] Open
Abstract
Hundreds of double homeobox (DUX) genes map within 3.3-kb repeated elements dispersed in the human genome and encode DNA-binding proteins. Among these, we identified DUX4, a potent transcription factor that causes facioscapulohumeral muscular dystrophy (FSHD). In the present study, we performed yeast two-hybrid screens and protein co-purifications with HaloTag-DUX fusions or GST-DUX4 pull-down to identify protein partners of DUX4, DUX4c (which is identical to DUX4 except for the end of the carboxyl terminal domain) and DUX1 (which is limited to the double homeodomain). Unexpectedly, we identified and validated (by co-immunoprecipitation, GST pull-down, co-immunofluorescence and in situ Proximal Ligation Assay) the interaction of DUX4, DUX4c and DUX1 with type III intermediate filament protein desmin in the cytoplasm and at the nuclear periphery. Desmin filaments link adjacent sarcomere at the Z-discs, connect them to sarcolemma proteins and interact with mitochondria. These intermediate filament also contact the nuclear lamina and contribute to positioning of the nuclei. Another Z-disc protein, LMCD1 that contains a LIM domain was also validated as a DUX4 partner. The functionality of DUX4 or DUX4c interactions with cytoplasmic proteins is underscored by the cytoplasmic detection of DUX4/DUX4c upon myoblast fusion. In addition, we identified and validated (by co-immunoprecipitation, co-immunofluorescence and in situ Proximal Ligation Assay) as DUX4/4c partners several RNA-binding proteins such as C1QBP, SRSF9, RBM3, FUS/TLS and SFPQ that are involved in mRNA splicing and translation. FUS and SFPQ are nuclear proteins, however their cytoplasmic translocation was reported in neuronal cells where they associated with ribonucleoparticles (RNPs). Several other validated or identified DUX4/DUX4c partners are also contained in mRNP granules, and the co-localizations with cytoplasmic DAPI-positive spots is in keeping with such an association. Large muscle RNPs were recently shown to exit the nucleus via a novel mechanism of nuclear envelope budding. Following DUX4 or DUX4c overexpression in muscle cell cultures, we observed their association with similar nuclear buds. In conclusion, our study demonstrated unexpected interactions of DUX4/4c with cytoplasmic proteins playing major roles during muscle differentiation. Further investigations are on-going to evaluate whether these interactions play roles during muscle regeneration as previously suggested for DUX4c.
Collapse
Affiliation(s)
- Eugénie Ansseau
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Jocelyn O. Eidahl
- Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Céline Lancelot
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Alexandra Tassin
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Christel Matteotti
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Cassandre Yip
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Jian Liu
- Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Baptiste Leroy
- Laboratory of Proteomic and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Céline Hubeau
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Cécile Gerbaux
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Samuel Cloet
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Armelle Wauters
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Sabrina Zorbo
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Pierre Meyer
- Pediatric Department, CHRU Montpellier, Montpellier, France
| | - Isabelle Pirson
- I.R.I.B.H.M., Free University of Brussels, Brussels, Belgium
| | | | - Ruddy Wattiez
- Laboratory of Proteomic and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Scott Q. Harper
- Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, United States of America
| | - Alexandra Belayew
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Frédérique Coppée
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
- * E-mail:
| |
Collapse
|
23
|
Uzel SGM, Pavesi A, Kamm RD. Microfabrication and microfluidics for muscle tissue models. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:279-93. [PMID: 25175338 DOI: 10.1016/j.pbiomolbio.2014.08.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 08/19/2014] [Indexed: 12/14/2022]
Abstract
The relatively recent development of microfluidic systems with wide-ranging capabilities for generating realistic 2D or 3D systems with single or multiple cell types has given rise to an extensive collection of platform technologies useful in muscle tissue engineering. These new systems are aimed at (i) gaining fundamental understanding of muscle function, (ii) creating functional muscle constructs in vitro, and (iii) utilizing these constructs a variety of applications. Use of microfluidics to control the various stimuli that promote differentiation of multipotent cells into cardiac or skeletal muscle is first discussed. Next, systems that incorporate muscle cells to produce either 2D sheets or 3D tissues of contractile muscle are described with an emphasis on the more recent 3D platforms. These systems are useful for fundamental studies of muscle biology and can also be incorporated into drug screening assays. Applications are discussed for muscle actuators in the context of microrobotics and in miniaturized biological pumps. Finally, an important area of recent study involves coculture with cell types that either activate muscle or facilitate its function. Limitations of current designs and the potential for improving functionality for a wider range of applications is also discussed, with a look toward using current understanding and capabilities to design systems of greater realism, complexity and functionality.
Collapse
Affiliation(s)
- Sebastien G M Uzel
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Andrea Pavesi
- Singapore MIT Alliance for Research and Technology, BioSystems and Micromechanics, 1 CREATE way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Singapore MIT Alliance for Research and Technology, BioSystems and Micromechanics, 1 CREATE way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
24
|
Yeh YC, Kim ST, Tang R, Yan B, Rotello VM. Insulin-Based Regulation of Glucose-functionalized Nanoparticle Uptake in Muscle Cells. J Mater Chem B 2014; 2:10.1039/C4TB00608A. [PMID: 25089564 PMCID: PMC4116632 DOI: 10.1039/c4tb00608a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Effective regulation of nanoparticle (NP) uptake facilitates the NP-based therapeutics and diagnostics. Here, we report the use of insulin and 2-deoxyglucose (2-DG) to modulate the cellular uptake of glucose-functionalized quantum dots (Glc-QDs) in C2C12 muscle cells. The cellular uptake of Glc-QDs can be modulated up to almost two-fold under insulin stimulation while be down-regulated in the presence of 2-DG. These results demonstrate the use of secondary regulators to control the cellular uptake of NPs through membrane protein recognition in a specific and fine-tunable fashion.
Collapse
Affiliation(s)
| | | | - Rui Tang
- Department of Chemistry, University of Massachusetts at Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA, Tel.: (+1) 413-545-2058; Fax: (+1) 413-545-4490
| | - Bo Yan
- Department of Chemistry, University of Massachusetts at Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA, Tel.: (+1) 413-545-2058; Fax: (+1) 413-545-4490
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts at Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA, Tel.: (+1) 413-545-2058; Fax: (+1) 413-545-4490
| |
Collapse
|
25
|
Aligning cells in arbitrary directions on a membrane sheet using locally formed microwrinkles. Biotechnol Lett 2013; 36:391-6. [DOI: 10.1007/s10529-013-1368-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/18/2013] [Indexed: 11/26/2022]
|
26
|
Aas V, Bakke SS, Feng YZ, Kase ET, Jensen J, Bajpeyi S, Thoresen GH, Rustan AC. Are cultured human myotubes far from home? Cell Tissue Res 2013; 354:671-82. [PMID: 23749200 DOI: 10.1007/s00441-013-1655-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/03/2013] [Indexed: 12/25/2022]
Abstract
Satellite cells can be isolated from skeletal muscle biopsies, activated to proliferating myoblasts and differentiated into multinuclear myotubes in culture. These cell cultures represent a model system for intact human skeletal muscle and can be modulated ex vivo. The advantages of this system are that the most relevant genetic background is available for the investigation of human disease (as opposed to rodent cell cultures), the extracellular environment can be precisely controlled and the cells are not immortalized, thereby offering the possibility of studying innate characteristics of the donor. Limitations in differentiation status (fiber type) of the cells and energy metabolism can be improved by proper treatment, such as electrical pulse stimulation to mimic exercise. This review focuses on the way that human myotubes can be employed as a tool for studying metabolism in skeletal muscles, with special attention to changes in muscle energy metabolism in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Vigdis Aas
- Institute of Pharmacy and Biomedical Laboratory Science, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, Oslo, Norway,
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Egusa H, Kobayashi M, Matsumoto T, Sasaki JI, Uraguchi S, Yatani H. Application of Cyclic Strain for Accelerated Skeletal Myogenic Differentiation of Mouse Bone Marrow-Derived Mesenchymal Stromal Cells with Cell Alignment. Tissue Eng Part A 2013; 19:770-82. [DOI: 10.1089/ten.tea.2012.0164] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hiroshi Egusa
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Suita City, Japan
| | - Munemasa Kobayashi
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Suita City, Japan
| | - Takuya Matsumoto
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jun-Ichi Sasaki
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Suita City, Japan
| | - Shinya Uraguchi
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Suita City, Japan
| | - Hirofumi Yatani
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Suita City, Japan
| |
Collapse
|
28
|
DeQuach JA, Lin JE, Cam C, Hu D, Salvatore MA, Sheikh F, Christman KL, Christman KL. Injectable skeletal muscle matrix hydrogel promotes neovascularization and muscle cell infiltration in a hindlimb ischemia model. Eur Cell Mater 2012; 23:400-12; discussion 412. [PMID: 22665162 PMCID: PMC3524267 DOI: 10.22203/ecm.v023a31] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Peripheral artery disease (PAD) currently affects approximately 27 million patients in Europe and North America, and if untreated, may progress to the stage of critical limb ischemia (CLI), which has implications for amputation and potential mortality. Unfortunately, few therapies exist for treating the ischemic skeletal muscle in these conditions. Biomaterials have been used to increase cell transplant survival as well as deliver growth factors to treat limb ischemia; however, existing materials do not mimic the native skeletal muscle microenvironment they are intended to treat. Furthermore, no therapies involving biomaterials alone have been examined. The goal of this study was to develop a clinically relevant injectable hydrogel derived from decellularized skeletal muscle extracellular matrix and examine its potential for treating PAD as a stand-alone therapy by studying the material in a rat hindlimb ischemia model. We tested the mitogenic activity of the scaffold's degradation products using an in vitro assay and measured increased proliferation rates of smooth muscle cells and skeletal myoblasts compared to collagen. In a rat hindlimb ischemia model, the femoral artery was ligated and resected, followed by injection of 150 µL of skeletal muscle matrix or collagen 1 week post-injury. We demonstrate that the skeletal muscle matrix increased arteriole and capillary density, as well as recruited more desmin-positive and MyoD-positive cells compared to collagen. Our results indicate that this tissue-specific injectable hydrogel may be a potential therapy for treating ischemia related to PAD, as well as have potential beneficial effects on restoring muscle mass that is typically lost in CLI.
Collapse
Affiliation(s)
- Jessica A. DeQuach
- Department of Bioengineering, 2880 Torrey Pines Scenic Dr., University of California, San Diego, La Jolla, California, USA, Phone: 858 534-9628; Fax: 858 534-5722
| | - Joy E. Lin
- Department of Bioengineering, 2880 Torrey Pines Scenic Dr., University of California, San Diego, La Jolla, California, USA, Phone: 858 534-9628; Fax: 858 534-5722
| | - Cynthia Cam
- Department of Bioengineering, 2880 Torrey Pines Scenic Dr., University of California, San Diego, La Jolla, California, USA, Phone: 858 534-9628; Fax: 858 534-5722
| | - Diane Hu
- Department of Bioengineering, 2880 Torrey Pines Scenic Dr., University of California, San Diego, La Jolla, California, USA, Phone: 858 534-9628; Fax: 858 534-5722
| | - Michael A. Salvatore
- Department of Bioengineering, 2880 Torrey Pines Scenic Dr., University of California, San Diego, La Jolla, California, USA, Phone: 858 534-9628; Fax: 858 534-5722
| | - Farah Sheikh
- Medicine, 9500 Gilman Drive MC 0613-C, University of California, San Diego, La Jolla, California, USA, Phone: 858 534-9628; Fax: 858 534-5722
| | - Karen L. Christman
- Department of Bioengineering, 2880 Torrey Pines Scenic Dr., University of California, San Diego, La Jolla, California, USA, Phone: 858 822-7863; Fax: 858 534-5722
| | | |
Collapse
|
29
|
Agley CC, Velloso CP, Lazarus NR, Harridge SDR. An image analysis method for the precise selection and quantitation of fluorescently labeled cellular constituents: application to the measurement of human muscle cells in culture. J Histochem Cytochem 2012; 60:428-38. [PMID: 22511600 DOI: 10.1369/0022155412442897] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
The accurate measurement of the morphological characteristics of cells with nonuniform conformations presents difficulties. We report here a straightforward method using immunofluorescent staining and the commercially available imaging program Adobe Photoshop, which allows objective and precise information to be gathered on irregularly shaped cells. We have applied this measurement technique to the analysis of human muscle cells and their immunologically marked intracellular constituents, as these cells are prone to adopting a highly branched phenotype in culture. Use of this method can be used to overcome many of the long-standing limitations of conventional approaches for quantifying muscle cell size in vitro. In addition, wider applications of Photoshop as a quantitative and semiquantitative tool in immunocytochemistry are explored.
Collapse
Affiliation(s)
- Chibeza C Agley
- Centre of Human and Aerospace Physiological Sciences, School of Biomedical Sciences, King's College London, London, United Kingdom
| | | | | | | |
Collapse
|
30
|
Sakurai T, Hashimoto A, Kiyokawa T, Kikuchi K, Miyakoshi J. Myotube orientation using strong static magnetic fields. Bioelectromagnetics 2011; 33:421-7. [DOI: 10.1002/bem.21701] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 11/24/2011] [Indexed: 11/10/2022]
|
31
|
In vitro expression profiling of myostatin, follistatin, decorin and muscle-specific transcription factors in adult caprine contractile myotubes. J Muscle Res Cell Motil 2011; 32:23-30. [PMID: 21416152 DOI: 10.1007/s10974-011-9245-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 03/11/2011] [Indexed: 10/18/2022]
Abstract
Skeletal muscle is one of the several adult postmitotic tissues that retain the capacity to regenerate, which relies on a population of quiescent precursors, termed satellite cells. Proliferation and differentiation of myoblasts to form mature myotubes in vitro has been a valuable tool in the characterization of the cellular events during myogenesis, which is a multistep process starting with progenitor cell proliferation, followed by their exit from the cell cycle, differentiation, alignment, and fusion to form multinucleated myotubes. A typical feature during muscle differentiation is the variation in expression of various genes along with myogenic factors. In this experiment, mRNA level of myostatin, follistatin, decorin and three muscle-specific transcription factors in adult caprine contractile myotubes have been studied through quantitative real time PCR. We observed that the expression level of myostatin, decorin, Myf5 and myogenin transcripts were significantly higher in contractile myotubes compared to myoblast monolayer (P < 0.05), and follistatin level was similar in both types of cells, whereas MyoD transcript level was significantly high in monolayer culture which might be due heterogeneity of myoblast population. It is concluded that the information generated would provide the base line information as well as monitoring markers to undertake experiments aimed at modulating muscle growth.
Collapse
|
32
|
Bajaj P, Reddy B, Millet L, Wei C, Zorlutuna P, Bao G, Bashir R. Patterning the differentiation of C2C12 skeletal myoblasts. Integr Biol (Camb) 2011; 3:897-909. [DOI: 10.1039/c1ib00058f] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Nagamine K, Kawashima T, Ishibashi T, Kaji H, Kanzaki M, Nishizawa M. Micropatterning contractile C2C12 myotubes embedded in a fibrin gel. Biotechnol Bioeng 2010; 105:1161-7. [PMID: 20014142 DOI: 10.1002/bit.22636] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Contractile C(2)C(12) myotube line patterns embedded in a fibrin gel have been developed to afford a physiologically relevant and stable bioassay system. The C(2)C(12) myotube/fibrin gel system was prepared by transferring a myotube monolayer from a glass substrate to a fibrin gel while retaining the original line patterns of myotubes. To endow the myotubes with contractile activity, a series of electrical pulses was applied through a pair of carbon electrodes placed at either side of a fibrin gel separately. The frequency and magnitude of myotube contraction were functions of the pulse frequency and duration, respectively. We found that the myotubes supported by an elastic fibrin gel maintained their line patterns and contractile activities for a longer period of time (1 week) than myotubes adhered on a conventional culture dish.
Collapse
Affiliation(s)
- Kuniaki Nagamine
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Gingras J, Rioux RM, Cuvelier D, Geisse NA, Lichtman JW, Whitesides GM, Mahadevan L, Sanes JR. Controlling the orientation and synaptic differentiation of myotubes with micropatterned substrates. Biophys J 2010; 97:2771-9. [PMID: 19917231 DOI: 10.1016/j.bpj.2009.08.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 08/03/2009] [Accepted: 08/17/2009] [Indexed: 01/16/2023] Open
Abstract
Micropatterned poly(dimethylsiloxane) substrates fabricated by soft lithography led to large-scale orientation of myoblasts in culture, thereby controlling the orientation of the myotubes they formed. Fusion occurred on many chemically identical surfaces in which varying structures were arranged in square or hexagonal lattices, but only a subset of patterned surfaces yielded aligned myotubes. Remarkably, on some substrates, large populations of myotubes oriented at a reproducible acute angle to the lattice of patterned features. A simple geometrical model predicts the angle and extent of orientation based on maximizing the contact area between the myoblasts and patterned topographic surfaces. Micropatterned substrates also provided short-range cues that influenced higher-order functions such as the localization of focal adhesions and accumulation of postsynaptic acetylcholine receptors. Our results represent what we believe is a new approach for musculoskeletal tissue engineering, and our model sheds light on mechanisms of myotube alignment in vivo.
Collapse
Affiliation(s)
- Jacinthe Gingras
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Hsiao SC, Shum BJ, Onoe H, Douglas ES, Gartner ZJ, Mathies RA, Bertozzi CR, Francis MB. Direct cell surface modification with DNA for the capture of primary cells and the investigation of myotube formation on defined patterns. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:6985-91. [PMID: 19505164 PMCID: PMC2812030 DOI: 10.1021/la900150n] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Previously, we reported a method for the attachment of living cells to surfaces through the hybridization of synthetic DNA strands attached to their plasma membrane. The oligonucleotides were introduced using metabolic carbohydrate engineering, which allowed reactive tailoring of the cell surface glycans for chemoselective bioconjugation. While this method is highly effective for cultured mammalian cells, we report here a significant improvement of this technique that allows the direct modification of cell surfaces with NHS-DNA conjugates. This method is rapid and efficient, allowing virtually any mammalian cell to be patterned on surfaces bearing complementary DNA in under 1 h. We demonstrate this technique using several types of cells that are generally incompatible with integrin-targeting approaches, including red blood cells and primary T-cells. Cardiac myoblasts were also captured. The immobilization procedure itself was found not to activate primary T-cells, in contrast to previously reported antibody- and lectin-based methods. Myoblast cells were patterned with high efficiency and remained undifferentiated after surface attachment. Upon changing to differentiation media, myotubes formed in the center of the patterned areas with an excellent degree of edge alignment. The availability of this new protocol greatly expands the applicability of the DNA-based attachment strategy for the generation of artificial tissues and the incorporation of living cells into device settings.
Collapse
Affiliation(s)
- Sonny C. Hsiao
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Betty J. Shum
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Hiroaki Onoe
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Erik S. Douglas
- UCSF/UC Berkeley Joint Graduate Group, in Bioengineering, University of California, Berkeley, California 94720-1460
| | - Zev J. Gartner
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Richard A. Mathies
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Carolyn R. Bertozzi
- Department of Chemistry, University of California, Berkeley, California 94720-1460
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-1460
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720-1460
- Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460
| | - Matthew B. Francis
- Department of Chemistry, University of California, Berkeley, California 94720-1460
- Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460
| |
Collapse
|
36
|
Liao IC, Liu JB, Bursac N, Leong KW. Effect of Electromechanical Stimulation on the Maturation of Myotubes on Aligned Electrospun Fibers. Cell Mol Bioeng 2008; 1:133-145. [PMID: 19774099 DOI: 10.1007/s12195-008-0021-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Tissue engineering may provide an alternative to cell injection as a therapeutic solution for myocardial infarction. A tissue-engineered muscle patch may offer better host integration and higher functional performance. This study examined the differentiation of skeletal myoblasts on aligned electrospun polyurethane (PU) fibers and in the presence of electromechanical stimulation. Skeletal myoblasts cultured on aligned PU fibers showed more pronounced elongation, better alignment, higher level of transient receptor potential cation channel-1 (TRPC-1) expression, upregulation of contractile proteins and higher percentage of striated myotubes compared to those cultured on random PU fibers and film. The resulting tissue constructs generated tetanus forces of 1.1 mN with a 10-ms time to tetanus. Additional mechanical, electrical, or synchronized electromechanical stimuli applied to myoblasts cultured on PU fibers increased the percentage of striated myotubes from 70 to 85% under optimal stimulation conditions, which was accompanied by an upregulation of contractile proteins such as α-actinin and myosin heavy chain. In describing how electromechanical cues can be combined with topographical cue, this study helped move towards the goal of generating a biomimetic microenvironment for engineering of functional skeletal muscle.
Collapse
Affiliation(s)
- I-Chien Liao
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC 27708, USA
| | | | | | | |
Collapse
|