1
|
Flechsler J, Heimerl T, Pickl C, Rachel R, Stierhof YD, Klingl A. 2D and 3D immunogold localization on (epoxy) ultrathin sections with and without osmium tetroxide. Microsc Res Tech 2020; 83:691-705. [PMID: 32057162 DOI: 10.1002/jemt.23459] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/13/2020] [Accepted: 02/04/2020] [Indexed: 11/07/2022]
Abstract
For nearly 50 years immunogold labeling on ultrathin sections has been successfully used for protein localization in laboratories worldwide. In theory and in practice, this method has undergone continual improvement over time. In this study, we carefully analyzed circulating protocols for postembedding labeling to find out if they are still valid under modern laboratory conditions, and in addition, we tested unconventional protocols. For this, we investigated immunolabeling of Epon-embedded cells, immunolabeling of cells treated with osmium, and the binding behavior of differently sized gold particles. Here we show that (in contrast to widespread belief) immunolabeling of Epon-embedded cells and of cells treated with osmium tetroxide is actually working. Furthermore, we established a "speed protocol" for immunolabeling by reducing antibody incubation times. Finally, we present our results on three-dimensional immunogold labeling.
Collapse
Affiliation(s)
- Jennifer Flechsler
- Plant Development and Electron Microscopy, Department of Biology I, Munchen, Germany
| | - Thomas Heimerl
- LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Carolin Pickl
- Plant Development and Electron Microscopy, Department of Biology I, Munchen, Germany
| | - Reinhard Rachel
- Institute of Microbiology and Centre for Electron Microscopy, University of Regensburg, Regensburg, Germany
| | - York-Dieter Stierhof
- Microscopy, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Andreas Klingl
- Plant Development and Electron Microscopy, Department of Biology I, Munchen, Germany
| |
Collapse
|
2
|
Jurisic A, Robin C, Tarlykov P, Siggens L, Schoell B, Jauch A, Ekwall K, Sørensen CS, Lipinski M, Shoaib M, Ogryzko V. Topokaryotyping demonstrates single cell variability and stress dependent variations in nuclear envelope associated domains. Nucleic Acids Res 2019; 46:e135. [PMID: 30215776 PMCID: PMC6294560 DOI: 10.1093/nar/gky818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 08/31/2018] [Indexed: 01/03/2023] Open
Abstract
Analysis of large-scale interphase genome positioning with reference to a nuclear landmark has recently been studied using sequencing-based single cell approaches. However, these approaches are dependent upon technically challenging, time consuming and costly high throughput sequencing technologies, requiring specialized bioinformatics tools and expertise. Here, we propose a novel, affordable and robust microscopy-based single cell approach, termed Topokaryotyping, to analyze and reconstruct the interphase positioning of genomic loci relative to a given nuclear landmark, detectable as banding pattern on mitotic chromosomes. This is accomplished by proximity-dependent histone labeling, where biotin ligase BirA fused to nuclear envelope marker Emerin was coexpressed together with Biotin Acceptor Peptide (BAP)-histone fusion followed by (i) biotin labeling, (ii) generation of mitotic spreads, (iii) detection of the biotin label on mitotic chromosomes and (iv) their identification by karyotyping. Using Topokaryotyping, we identified both cooperativity and stochasticity in the positioning of emerin-associated chromatin domains in individual cells. Furthermore, the chromosome-banding pattern showed dynamic changes in emerin-associated domains upon physical and radiological stress. In summary, Topokaryotyping is a sensitive and reliable technique to quantitatively analyze spatial positioning of genomic regions interacting with a given nuclear landmark at the single cell level in various experimental conditions.
Collapse
Affiliation(s)
- Anamarija Jurisic
- UMR8126, Université Paris-Sud 11, CNRS, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France
| | - Chloé Robin
- UMR8126, Université Paris-Sud 11, CNRS, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France
| | - Pavel Tarlykov
- National Center for Biotechnology, 01000, Astana, Kazakhstan
| | - Lee Siggens
- Department of Biosciences and Nutrition, NOVUM, Karolinska Institutet, Huddinge 141 83, Sweden
| | - Brigitte Schoell
- Institute of Human Genetics, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Karl Ekwall
- Department of Biosciences and Nutrition, NOVUM, Karolinska Institutet, Huddinge 141 83, Sweden
| | - Claus Storgaard Sørensen
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Marc Lipinski
- UMR8126, Université Paris-Sud 11, CNRS, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France
| | - Muhammad Shoaib
- UMR8126, Université Paris-Sud 11, CNRS, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France.,Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Vasily Ogryzko
- UMR8126, Université Paris-Sud 11, CNRS, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France
| |
Collapse
|
3
|
Aguilera-Rojas M, Badewien-Rentzsch B, Plendl J, Kohn B, Einspanier R. Exploration of serum- and cell culture-derived exosomes from dogs. BMC Vet Res 2018; 14:179. [PMID: 29884196 PMCID: PMC5994050 DOI: 10.1186/s12917-018-1509-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/30/2018] [Indexed: 12/21/2022] Open
Abstract
Background Exosomes are defined as extracellular membrane vesicles, 30–150 nm in diameter, derived from all types of cells. They originate via endocytosis and then they are released through exocytosis to the extracellular space, being found in various biological fluids as well as in cell culture medium. In the last few years, exosomes have gained considerable scientific interest due to their potential use as biomarkers, especially in the field of cancer research. This report describes a method to isolate, quantify and identify serum- and cell culture-derived exosomes from dog samples, using small volumes (100 μL and 1 mL, respectively). Results Quantification and sizing of exosomes contained in serum and cell culture samples were assessed by utilizing nanoparticle tracking analysis, transmission electron microscopy and immunoelectron microscopy. Detected particles showed the normal size (30–150 nm) and morphology described for exosomes, as well as presence of the transmembrane protein CD63 known as exosomal marker. Conclusions Based on a validated rapid isolation procedure of nanoparticles from small volumes of different types of dog samples, a characterization and exploration of intact exosomes, as well as facilitation for their analysis in downstream applications was introduced.
Collapse
Affiliation(s)
- Matias Aguilera-Rojas
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Brit Badewien-Rentzsch
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Johanna Plendl
- Institute of Veterinary Anatomy, Department of Veterinary Medicine, Freie Universität Berlin, 14195, Berlin, Germany
| | - Barbara Kohn
- Small Animal Clinic, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany.
| |
Collapse
|
4
|
Moghaddam-Taaheri P, Karlsson AJ. Protein Labeling in Live Cells for Immunological Applications. Bioconjug Chem 2018; 29:680-685. [DOI: 10.1021/acs.bioconjchem.7b00722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Mazuela J, Antonsson T, Johansson MJ, Knerr L, Marsden SP. Direct Synthesis of N-Alkyl Arylglycines by Organocatalytic Asymmetric Transfer Hydrogenation of N-Alkyl Aryl Imino Esters. Org Lett 2017; 19:5541-5544. [PMID: 28981292 DOI: 10.1021/acs.orglett.7b02627] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The organocatalytic asymmetric transfer hydrogenation of N-alkyl aryl imino esters for the direct synthesis of N-alkylated arylglycinate esters is reported. High yields and enantiomeric ratios were obtained, and tolerance to a diverse set of functional groups facilitated the preparation of more complex molecules as well as intermediates for active pharmaceuticals. A simple recycling protocol was developed for the Brønsted acid catalyst which could be reused through five cycles with no loss of activity or selectivity.
Collapse
Affiliation(s)
- Javier Mazuela
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca R&D, Pepparedsleden 1, Mölndal, SE-431 83, Sweden
| | - Thomas Antonsson
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca R&D, Pepparedsleden 1, Mölndal, SE-431 83, Sweden
| | - Magnus J Johansson
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca R&D, Pepparedsleden 1, Mölndal, SE-431 83, Sweden
| | - Laurent Knerr
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca R&D, Pepparedsleden 1, Mölndal, SE-431 83, Sweden
| | | |
Collapse
|
6
|
Chamma I, Rossier O, Giannone G, Thoumine O, Sainlos M. Optimized labeling of membrane proteins for applications to super-resolution imaging in confined cellular environments using monomeric streptavidin. Nat Protoc 2017; 12:748-763. [DOI: 10.1038/nprot.2017.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Dorion-Thibaudeau J, St-Laurent G, Raymond C, De Crescenzo G, Durocher Y. Biotinylation of the Fcγ receptor ectodomains by mammalian cell co-transfection: application to the development of a surface plasmon resonance-based assay. J Mol Recognit 2015; 29:60-9. [PMID: 26762306 DOI: 10.1002/jmr.2495] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/30/2015] [Accepted: 08/02/2015] [Indexed: 11/06/2022]
Abstract
We here report the production of four biotinylated Fcγ receptor (FcγR) ectodomains and their subsequent stable capture on streptavidin-biosensor surfaces. For receptor biotinylation, we first describe an in-cell protocol based on the co-transfection of two plasmids corresponding to one of the FcγR ectodomains and the BirA enzyme in mammalian cells. This strategy is compared with a standard sequential in vitro enzymatic biotinylation with respect to biotinylation level and yield. Biotinylated FcγR ectodomains that have been prepared with both strategies are then compared by analytical ultracentrifugation and surface plasmon resonance (SPR) analyses. Overall, we demonstrate that in-cell biotinylation is an interesting alternative to standard biotinylation protocol, as it requires less purification steps while yielding higher titers. Finally, biotin-tagged FcγRs produced with the in-cell approach are successfully applied to the development of SPR-based assays to evaluate the impact of the glycosylation pattern of monoclonal antibodies on their interaction with CD16a and CD64. In that endeavor, we unambiguously observe that highly galactosylated trastuzumab (TZM-gal), non-glycosylated trastuzumab (TZM-NG), and reference trastuzumab are characterized by different kinetic profiles upon binding to CD16a and CD64 that had been captured at the biosensor surface via their biotin tag. More precisely, while TZM-NG binding to CD16a was not detected, TZM-gal formed a more stable complex with CD16a than our reference TZM. In contrast, both glycosylated TZM bound to captured CD64 in a stable and similar fashion, whereas the interaction of their non-glycosylated form with CD64 was characterized by a higher dissociation rate.
Collapse
Affiliation(s)
- July Dorion-Thibaudeau
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales, Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-ville, Montreal, QC, Canada, H3C 3A7.,Human Health Therapeutics Portfolio, National Research Council Canada, Montreal, QC, Canada, H4P 2R2
| | - Gilles St-Laurent
- Human Health Therapeutics Portfolio, National Research Council Canada, Montreal, QC, Canada, H4P 2R2
| | - Céline Raymond
- Human Health Therapeutics Portfolio, National Research Council Canada, Montreal, QC, Canada, H4P 2R2.,Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, Montreal, QC, Canada, H3C 3 J7
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales, Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-ville, Montreal, QC, Canada, H3C 3A7
| | - Yves Durocher
- Human Health Therapeutics Portfolio, National Research Council Canada, Montreal, QC, Canada, H4P 2R2.,Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, Montreal, QC, Canada, H3C 3 J7
| |
Collapse
|
8
|
Abstract
The binding between biotin and streptavidin or avidin is one of the strongest known non-covalent biological interactions. The (strept)avidin-biotin interaction has been widely used for decades in biological research and biotechnology. Therefore labeling of purified proteins by biotin is a powerful way to achieve protein capture, immobilization, and functionalization, as well as multimerizing or bridging molecules. Chemical biotinylation often generates heterogeneous products, which may have impaired function. Enzymatic biotinylation with E. coli biotin ligase (BirA) is highly specific in covalently attaching biotin to the 15 amino acid AviTag peptide, giving a homogeneous product with high yield. AviTag can conveniently be added genetically at the N-terminus, C-terminus, or in exposed loops of a target protein. We describe here procedures for AviTag insertion by inverse PCR, purification of BirA fused to glutathione-S-transferase (GST-BirA) from E. coli, BirA biotinylation of purified protein, and gel-shift analysis by SDS-PAGE to quantify the extent of biotinylation.
Collapse
Affiliation(s)
- Michael Fairhead
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | |
Collapse
|
9
|
Novel system for in vivo biotinylation and its application to crab antimicrobial protein scygonadin. Biotechnol Lett 2012; 34:1629-35. [PMID: 22566209 DOI: 10.1007/s10529-012-0942-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 04/18/2012] [Indexed: 10/28/2022]
Abstract
BirA is a biotin ligase from Escherichia coli that specifically biotinylates a lysine side-chain within a 15-amino acid acceptor peptide (also known as Avi-tag). We developed a protocol for producing recombinant BirA ligase in E. coli for in vitro biotinylation (Li and Sousa, Prot Expr Purif, 82:162-167, 2012) in which the target protein was expressed as both thioredoxin and MBP fusions, and was released by TEV protease-mediated cleavage. The liberated ligase and the fusion proteins were enzymatically active. Based on that observation, we have now developed a novel system for in vivo biotinylation by co-expressing the Avi-tagged target protein with the MBP-BirA fusion. The effectiveness of this system was demonstrated by the successful in vivo labeling of antimicrobial protein, scygonadin. This new system shows improved efficiency compared with pre-existing one and this is likely attributed to the high expression level and solubility of the co-expressed MBP-BirA.
Collapse
|
10
|
Sirerol-Piquer MS, Cebrián-Silla A, Alfaro-Cervelló C, Gomez-Pinedo U, Soriano-Navarro M, Verdugo JMG. GFP immunogold staining, from light to electron microscopy, in mammalian cells. Micron 2012; 43:589-99. [PMID: 22227011 DOI: 10.1016/j.micron.2011.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/04/2011] [Accepted: 10/04/2011] [Indexed: 01/22/2023]
Abstract
GFP has emerged as an important reporter for monitoring gene expression, protein localization, cell transformation and cell lineage. The development of GFP as a marker in many different biological systems has emphasized the need to image GFP at high resolution. GFP immunogold labeling with colloidal gold particles becomes essential for electron microscopy (EM) ultrastructural detection. Because of the small size, colloidal gold particles require silver enhancement, a procedure to increase the size of the particle as well as gold toning to stabilize the silver layer. GFP preembedding immunogold staining enables high quality cellular-ultrastructural EM analysis mainly for two reasons, on one hand it allows adequate fixation for EM analysis maintaining GFP antigenicity, on the other hand it also enables the epoxy resins inclusion after immunogold staining. Both of them help to preserve better the ultrastructure. However GFP immunogold staining presents some drawbacks, such as the progressive decrease in immunogold labeling with tissue depth. Special attention must be taken when using GFP-tagged protein, since the fusion could interfere with their localization and function. In this review we provide a detailed protocol of the GFP immunogold staining, their main applications for EM and possible troubles.
Collapse
Affiliation(s)
- M Salomé Sirerol-Piquer
- Laboratorio de Morofología Celular, Centro de Investigación Príncipe Felipe, CIBERNED, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Kulyyassov A, Shoaib M, Ogryzko V. Use of in vivo biotinylation for chromatin immunoprecipitation. ACTA ACUST UNITED AC 2011; Chapter 17:Unit17.12. [PMID: 21688254 DOI: 10.1002/0471143030.cb1712s51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This unit describes a system for expression of biotinylated proteins in mammalian cells in vivo, and its application to chromatin immunoprecipitation (ChIP). The system is based on co-expression of the target protein fused to a short biotin acceptor domain, together with the biotinylating enzyme BirA from Escherichia coli. The superior strength of the biotin-avidin interaction in the modified ChIP protocol presented here allows one to employ more stringent washing conditions, resulting in a better signal/noise ratio. Methods for interpreting the data obtained from ChIP samples analyzed by qPCR, and methods for testing the efficiency of biotinylation using a streptavidin gel-shift are also presented. In addition, a complementary method, based on isothermal multiple strand displacement amplification (IMDA) of circular concatemers generated from the DNA fragments obtained after ChIP, is described. This method helps to decrease bias in DNA amplification and is useful for the analysis of complex mixtures of DNA fragments typically generated in miniscale ChIP experiments.
Collapse
|
12
|
Kulyyassov A, Shoaib M, Pichugin A, Kannouche P, Ramanculov E, Lipinski M, Ogryzko V. PUB-MS: a mass spectrometry-based method to monitor protein-protein proximity in vivo. J Proteome Res 2011; 10:4416-27. [PMID: 21842862 DOI: 10.1021/pr200189p] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The common techniques to study protein-protein proximity in vivo are not well adapted to the capabilities and the expertise of a standard proteomics laboratory, typically based on the use of mass spectrometry. With the aim of closing this gap, we have developed PUB-MS (for proximity utilizing biotinylation and mass spectrometry), an approach to monitor protein-protein proximity, based on biotinylation of a protein fused to a biotin-acceptor peptide (BAP) by a biotin-ligase, BirA, fused to its interaction partner. The biotinylation status of the BAP can be further detected by either Western analysis or mass spectrometry. The BAP sequence was redesigned for easy monitoring of the biotinylation status by LC-MS/MS. In several experimental models, we demonstrate that the biotinylation in vivo is specifically enhanced when the BAP- and BirA-fused proteins are in proximity to each other. The advantage of mass spectrometry is demonstrated by using BAPs with different sequences in a single experiment (allowing multiplex analysis) and by the use of stable isotopes. Finally, we show that our methodology can be also used to study a specific subfraction of a protein of interest that was in proximity with another protein at a predefined time before the analysis.
Collapse
Affiliation(s)
- Arman Kulyyassov
- Institut Gustave Roussy , 39 Rue Camilles Desmoulin, 94805, Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
13
|
In vivo biotinylation of bacterial magnetic particles by a truncated form of Escherichia coli biotin ligase and biotin acceptor peptide. Appl Environ Microbiol 2010; 76:5785-90. [PMID: 20622127 DOI: 10.1128/aem.00916-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli biotin ligase can attach biotin molecules to a lysine residue of biotin acceptor peptide (BAP), and biotinylation of particular BAP-fused proteins in cells was carried out by coexpression of E. coli biotin ligase (in vivo biotinylation). This in vivo biotinylation technology has been applied for protein purification, analysis of protein localization, and protein-protein interaction in eukaryotic cells, while such studies have not been reported in bacterial cells. In this study, in vivo biotinylation of bacterial magnetic particles (BacMPs) synthesized by Magnetospirillum magneticum AMB-1 was attempted by heterologous expression of E. coli biotin ligase. To biotinylate BacMPs in vivo, BAP was fused to a BacMP surface protein, Mms13, and E. coli biotin ligase was simultaneously expressed in the truncated form lacking the DNA-binding domain. This truncation-based approach permitted the growth of AMB-1 transformants when biotin ligase was heterologously expressed. In vivo biotinylation of BAP on BacMPs was confirmed using an alkaline phosphatase-conjugated antibiotin antibody. The biotinylated BAP-displaying BacMPs were then exposed to streptavidin by simple mixing. The streptavidin-binding capacity of BacMPs biotinylated in vivo was 35-fold greater than that of BacMPs biotinylated in vitro, where BAP-displaying BacMPs purified from bacterial cells were biotinylated by being mixed with E. coli biotin ligase. This study describes not only a simple method to produce biotinylated nanomagnetic particles but also a possible expansion of in vivo biotinylation technology for bacterial investigation.
Collapse
|