1
|
Olufsen ME, Hannibal J, Soerensen NB, Christiansen AT, Christensen UC, Pertile G, Steel DH, Heegaard S, Kiilgaard JF. Autologous Neurosensory Retinal Flap Transplantation in a Porcine Model of Retinal Hole. OPHTHALMOLOGY SCIENCE 2025; 5:100644. [PMID: 39758132 PMCID: PMC11699102 DOI: 10.1016/j.xops.2024.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/29/2024] [Indexed: 01/07/2025]
Abstract
Purpose Autologous retinal transplantation has been successfully employed in the treatment of large and myopic macular holes that are refractory to standard surgical treatments. Patients transplanted with a peripheral neurosensory retinal graft have shown unexpected improvements in visual acuity. The study aims to investigate if neural integration of the graft takes place in a porcine model of retinal hole. Design Experimental animal study. Subjects Left eyes of 10 Danish landrace pigs. Methods The pigs underwent vitrectomy under general anesthesia, and a subretinal bleb was created within the visual streak on both sites of the optic disc. A retinal hole, approximately 1900 to 4000 microns in size, was cut temporally using a vitrector. A graft of matching size was harvested from the nasal retina. The graft was gently moved toward the retinal hole under perfluoro-n-octane and placed within it. Endolaser was applied around the donor site, and either air or oil tamponade was used. OCT and color fundus photography were performed 2 and 6 weeks after surgery. At the end of follow-up, the eyes were enucleated for histological examination, including immunohistochemical analysis with antibodies against retinal glial cells, photoreceptors, and inner retinal neurons. Main Outcome Measures The primary outcome measures were the morphology of the graft and the junctional area between the host and the graft. Results Retinal hole closure was achieved in 9 of 10 cases, with the graft remaining in situ in 6 cases. In 4 cases, OCT scans indicated preservation of the outer retinal layers, and in 2 of these cases, there was apparent integration with the adjacent host retina. Corresponding histology confirmed the preservation of the photoreceptor layer in 3 cases, but there was no evidence of graft integration with degeneration of the inner retina in all cases. The distance between the margins of the retinal hole decreased during follow-up, suggesting that the graft contracts and drags the surrounding retina toward the center. Conclusions The outer retina of a retinal graft can be preserved, while the inner retina degenerates. No evidence of neuroretinal integration of the graft was observed. The retinal graft serves as a scaffold, promoting the centripetal migration of the edges of the hole, resulting in closure of large retinal holes. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Madeline E. Olufsen
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Hannibal
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health Sciences, Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Nina B. Soerensen
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders T. Christiansen
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik C. Christensen
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Grazia Pertile
- Department of Ophthalmology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - David H. Steel
- Bioscience Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens F. Kiilgaard
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Olufsen ME, Hannibal J, Sørensen NB, Christiansen AT, Christensen UC, Pertile G, Steel DH, Heegaard S, Kiilgaard JF. Subretinal Amniotic Membrane Transplantation in a Porcine Model of Retinal Hole. Invest Ophthalmol Vis Sci 2024; 65:52. [PMID: 39585676 PMCID: PMC11601133 DOI: 10.1167/iovs.65.13.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/02/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose To investigate the histopathological changes following subretinal amniotic membrane transplantation in an in vivo porcine model of retinal holes. Methods Left eyes of 12 Danish Landrace pigs were vitrectomized under full anesthesia. A subretinal bleb was created before excising a retinal hole (1154-2934 µm) using a 23-gauge vitrector. The pigs underwent transplantation of human freeze-dried amniotic membrane into the subretinal space, with no tamponade applied. Optical coherence tomography and color fundus photography were performed just after surgery and at 2 and 4 weeks post-surgery. At the end of follow-up, the eyes were enucleated for hematoxylin and eosin staining and fluorescence immunohistochemistry, using antibodies against retinal glial cells and inner retinal neurons. Results The amniotic membrane sheets facilitated hole closure by gliosis and centripetal migration of the edges of the hole. Immunohistochemical examination showed that the cells within the closed hole expressed anti-glial fibrillary acidic protein (GFAP) and anti-S100B, but not anti-glutamine synthetase (GS), suggesting that astrocytes were the predominant glial cells involved in hole closure. Gliosis was observed between the amniotic membrane sheet and the overlying photoreceptors of the surrounding retina. Morphological restoration of the retinal layers within the closed retinal hole was not observed. Conclusions The amniotic membrane acted as a stimulator for retinal hole closure by inducing glial cell proliferation and providing a scaffold for the centripetal migration of the edges of the hole. No morphological restoration was observed.
Collapse
Affiliation(s)
- Madeline E Olufsen
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Hannibal
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Nina B Sørensen
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders T Christiansen
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik C Christensen
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - David H Steel
- Bioscience Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens F Kiilgaard
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Lim RR, Thomas A, Ramasubramanian A, Chaurasia SS. Retinal microglia-derived S100A9 incite NLRP3 inflammasome in a Western diet fed Ossabaw pig retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621160. [PMID: 39554084 PMCID: PMC11565851 DOI: 10.1101/2024.10.30.621160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Purpose We established S100A9 as a myeloid-derived damage-associated molecular pattern (DAMPs) protein associated with increasing severity of diabetic retinopathy (DR) in type 2 diabetic subjects. The present study investigates the retinal localization, expression, and mechanisms of action for S100A9 in the young obese Ossabaw pig retina. Methods Retinae from Ossabaw pigs fed a Western diet for 10 weeks were evaluated for S100 and inflammatory mediator expression using quantitative PCR and Western blot. Double immunohistochemistry was performed to identify the cellular sources of S100A9 in the pig retina. Primary pig retinal microglial cells (pMicroglia) were examined for S100A9 production. S100A9-induced responses were also investigated, and inhibitor studies elucidated the mechanism of action via the NLRP3 inflammasome. A specific inhibitor, Paquinimod (ABR-215757), was administered in vitro to assess the rescue of S100A9-induced NLRP3 inflammasome activation in pMicroglia. Results The expression of the S100 family in the obese Ossabaw pig retina showed a significant elevation of S100A9, consistent with increased levels of circulating S100A9. Moreover, the retina had elevated levels of inflammatory mediators IL-6, IL-8, MCP-1, IL-1β and NLRP3. Retinal microglia in obese Ossabaw were activated and accompanied by an increased expression of intracellular S100A9. pMicroglia isolated from pig retina transformed from ramified to amoeboid state when activated with LPS and produced high S100A9 transcript and protein levels. The S100A9 protein, in turn, further activated pMicroglia by heightened production of S100A9 transcripts and secretion of pro-inflammatory IL-1β protein. Inhibition of TLR4 with TAK242 and NLRP3 with MCC950 attenuated the production of IL-1β during S100A9 stimulus. Finally, pre-treatment with Paquinimod successfully reduced S100A9-driven increases of glycosylated-TLR4, NLRP3, ASC, Caspase-1, and IL-1β production. Conclusion We demonstrated that microglial-derived S100A9 perpetuates pro-inflammatory responses via the NLRP3 inflammasome in the retina of young Western-diet-fed Ossabaw pigs exhibiting diabetic retinopathy.
Collapse
|
4
|
Olufsen ME, Hannibal J, Sørensen NB, Christiansen AT, Christensen U, Pertile G, Steel DH, Heegaard S, Kiilgaard JF. Wound Healing in a Porcine Model of Retinal Holes. Invest Ophthalmol Vis Sci 2024; 65:35. [PMID: 39186262 PMCID: PMC11361378 DOI: 10.1167/iovs.65.10.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Purpose To investigate retinal wound healing, we created a new porcine model of retinal hole and identified the cells involved in hole closure. Methods Sixteen landrace pigs underwent vitrectomy, and a subretinal bleb was created before cutting a retinal hole using a 23G vitrector. No tamponade was used. Before surgery and one, two, and four weeks after surgery, the eyes were examined by optical coherence tomography and color fundus photos. At the end of follow-up, the eyes were enucleated for histology. Tissue sections of 5 µm were prepared for hematoxylin-eosin staining and immunohistochemical analysis with antibodies to retinal glial and epithelial cells. Results Retinal holes below 1380 µm in diameter closed spontaneously within four weeks, whereas larger holes remained open. Hole closure was mediated by central movement of the edges of the hole and in most cases the formation of a gliotic plug. Fluorescence microscopy revealed that the plug consisted of cells positive for glial fibrillary acidic protein, indicating the presence of macroglial cell types. Specifically, the plug was positive for S100 calcium-binding protein B, mainly representing astrocytes, while it was negative for anti-glutamine syntethase, representing Müller glia. These findings suggest that astrocytes are the predominating cell type in the plug. Minimal glial reaction was seen in the retinal holes that did not close. Conclusions We present a new porcine model for investigating large retinal holes. The retinal holes closed by approximation of hole edges, and the remnant retinal defect was closed with an astroglial plug.
Collapse
Affiliation(s)
- Madeline Evers Olufsen
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Hannibal
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Nina Buus Sørensen
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Ulrik Christensen
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - David H. Steel
- Bioscience Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Folke Kiilgaard
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Svare F, Ghosh F. Pressure-Related Effects on Homeostatic Müller Cell Proteins in the Adult Porcine in Vitro Retina. Curr Eye Res 2024; 49:303-313. [PMID: 38078662 DOI: 10.1080/02713683.2023.2286932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/18/2023] [Indexed: 02/24/2024]
Abstract
PURPOSE To explore early pressure-related effects on Müller cell homeostatic proteins in the in vitro adult porcine retina. METHODS Retinal explants were subjected to 0-, 10-, 30-, or 60-mmHg of pressure for 24 or 48 h in culture. Retinal explants fixed immediately after enucleation were used as controls. Müller cell proteins were evaluated by GFAP, GS, CRALBP, and bFGF immunohistochemistry. RESULTS GFAP-labeling revealed no differences in fluorescence intensity after 24 or 48 h in any of the pressure groups compared with control retinas. However, a higher intensity was found in the 30- and 60-mmHg groups compared with 0-mmHg counterparts after 24 and 48 h. A higher intensity in GS-labeled sections was found in the 10-and 60-mmHg groups compared with controls and remaining pressure groups after 48 h. Compared with control retinas, CRALBP labeling revealed a higher intensity in the 60-mmHg group after 24 h and in the 10-, 30-, and 60-mmHg groups after 48 h. After 24 and 48 h, a lower intensity was found in bFGF-labeled cells in the 0-, 10-, and 30-mmHg groups compared with controls, while no difference was seen for the 60-mmHg group. CONCLUSIONS Müller cells in the cultured porcine adult retina respond early to pressure by altering the expression of GFAP as well as the homeostatic proteins GS, CRALBP, and bFGF.
Collapse
Affiliation(s)
- Frida Svare
- Department of Ophthalmology, Lund University, Lund, Sweden
| | - Fredrik Ghosh
- Department of Ophthalmology, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Zhang C, Lan Y, Guo H, Gao Z, Song J, Chen W. The adhesion behavior of the retina. Exp Eye Res 2023:109541. [PMID: 37321365 DOI: 10.1016/j.exer.2023.109541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/29/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Ocular diseases and treatment related to rhegmatogenous retinal detachment (RRD) are highly correlated with retinal adhesion behavior. Therefore, this paper proposes to study the adhesion behavior of the intact retina. This can provide theoretical guidance for the treatment and research of retinal detachment (RD) related diseases. To systematically analyze this aspect, two experiments were performed on the porcine retina. The pull-off test combined with the modified JKR theory was used to study the adhesion behavior of the vitreoretinal interface, while the peeling test was used to study the adhesion behavior of the chorioretinal interface. In addition, the adhesion phase involved in the pull-off test was simulated and analyzed by building the corresponding finite element method (FEM). The experimental results of adhesion force on the vitreoretinal interface were obtained by pull-off test with five sizes of rigid punch. The experimental value of the pull-off force FPO tends to increase gradually with increasing punch radius in the range of 0.5-4 mm. A comparison of the experimental results with the simulation results shows that they are in a well agreement. And there is no statistical difference between the experimental and theoretical values of the pull-off force FPO. In addition, the values of retinal adhesion work were also obtained by pull-off test. Interestingly, there is a significant scale effect of the retinal work of adhesion. Finally, the peeling test gave a maximum peeling strength TMax of about 13 mN/mm and a stable peeling strength TD of about 11 mN/mm between the retina and the choroid. The pull-off test well shows the process of retinal traction by the diseased vitreous at the beginning of RRD. A comparison of the experimental results with the finite element results verifies the accuracy of the simulation. The peeling test well investigated the adhesion behavior between the retina and the choroid and obtained key biomechanical data (peeling strength, etc.). The combination of the two experiments allows a more systematic study of the whole retina. This research can provide more complete material parameters for finite element modeling of retina-related diseases, and it also can provide the theoretical guidance for individualized design of retinal repair surgery.
Collapse
Affiliation(s)
- Chenxi Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yunfei Lan
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Hongmei Guo
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Third Hospital of Shanxi Medical University (Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital), Taiyuan, 030032, China.
| | - Zhipeng Gao
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jie Song
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Weiyi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
7
|
Nadal-Nicolás FM, Galindo-Romero C, Lucas-Ruiz F, Marsh-Amstrong N, Li W, Vidal-Sanz M, Agudo-Barriuso M. Pan-retinal ganglion cell markers in mice, rats, and rhesus macaques. Zool Res 2023; 44:226-248. [PMID: 36594396 PMCID: PMC9841181 DOI: 10.24272/j.issn.2095-8137.2022.308] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Univocal identification of retinal ganglion cells (RGCs) is an essential prerequisite for studying their degeneration and neuroprotection. Before the advent of phenotypic markers, RGCs were normally identified using retrograde tracing of retinorecipient areas. This is an invasive technique, and its use is precluded in higher mammals such as monkeys. In the past decade, several RGC markers have been described. Here, we reviewed and analyzed the specificity of nine markers used to identify all or most RGCs, i.e., pan-RGC markers, in rats, mice, and macaques. The best markers in the three species in terms of specificity, proportion of RGCs labeled, and indicators of viability were BRN3A, expressed by vision-forming RGCs, and RBPMS, expressed by vision- and non-vision-forming RGCs. NEUN, often used to identify RGCs, was expressed by non-RGCs in the ganglion cell layer, and therefore was not RGC-specific. γ-SYN, TUJ1, and NF-L labeled the RGC axons, which impaired the detection of their somas in the central retina but would be good for studying RGC morphology. In rats, TUJ1 and NF-L were also expressed by non-RGCs. BM88, ERRβ, and PGP9.5 are rarely used as markers, but they identified most RGCs in the rats and macaques and ERRβ in mice. However, PGP9.5 was also expressed by non-RGCs in rats and macaques and BM88 and ERRβ were not suitable markers of viability.
Collapse
Affiliation(s)
- Francisco M Nadal-Nicolás
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia 30120, Spain
- Dpto. Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia 30120, Spain
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-2510, USA
| | - Caridad Galindo-Romero
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia 30120, Spain
- Dpto. Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia 30120, Spain
| | - Fernando Lucas-Ruiz
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia 30120, Spain
- Dpto. Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia 30120, Spain
| | - Nicholas Marsh-Amstrong
- Department of Ophthalmology and Vision Science, University of California, Davis, CA 95817, USA
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-2510, USA
| | - Manuel Vidal-Sanz
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia 30120, Spain
- Dpto. Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia 30120, Spain. E-mail:
| | - Marta Agudo-Barriuso
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia 30120, Spain
- Dpto. Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia 30120, Spain. E-mail:
| |
Collapse
|
8
|
Hadady H, Karamali F, Ejeian F, Soroushzadeh S, Nasr-Esfahani MH. Potential neuroprotective effect of stem cells from apical papilla derived extracellular vesicles enriched by lab-on-chip approach during retinal degeneration. Cell Mol Life Sci 2022; 79:350. [PMID: 35672609 PMCID: PMC11071776 DOI: 10.1007/s00018-022-04375-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/24/2022] [Accepted: 05/12/2022] [Indexed: 11/03/2022]
Abstract
Retinal degeneration (RD) is recognized as a frequent cause of visual impairments, including inherited (Retinitis pigmentosa) and degenerative (age-related macular) eye diseases. Dental stem cells (DSCs) have recently demonstrated a promising neuroprotection potential for ocular diseases through a paracrine manner carried out by extracellular vesicles (EVs). However, effective isolation of EVs is still challenging, and isolation methods determine the composition of enriched EVs and the subsequent biological and functional effects. In the present study, we assessed two enrichment methods (micro-electromechanical systems and ultrafiltration) to isolate the EVs from stem cells from apical papilla (SCAP). The size distribution of the corresponding isolates exhibited the capability of each method to enrich different subsets of EVs, which significantly impacts their biological and functional effects. We confirmed the neuroprotection and anti-inflammatory capacity of the SCAP-EVs in vitro. Further experiments revealed the possible therapeutic effects of subretinal injection of SCAP-EVs in the Royal College of Surgeons (RCS) rat model. We found that EVs enriched by the micro-electromechanical-based device (MEMS-EVs) preserved visual function, reduced retinal cell apoptosis, and prevented thinning of the outer nuclear layer (ONL). Interestingly, the effect of MEMS-EVs was extended to the retinal ganglion cell/retinal nerve fiber layer (GCL/RNFL). This study supports the use of the microfluidics approach to enrich valuable subsets of EVs, together with the choice of SCAP as a source to derive EVs for cell-free therapy of RD.
Collapse
Affiliation(s)
- Hanieh Hadady
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Fereshteh Karamali
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Fatemeh Ejeian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sareh Soroushzadeh
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
9
|
Müller-Bühl AM, Safaei A, Tsai T. [Are organ and co-cultures an alternative to animal models in ophthalmology?]. Ophthalmologe 2022; 119:530-532. [PMID: 35522337 DOI: 10.1007/s00347-021-01565-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ana M Müller-Bühl
- Universitäts-Augenklinik, Ruhr-Universität Bochum, In der Schornau 23-25, 44892, Bochum, Deutschland
| | - Armin Safaei
- Universitäts-Augenklinik, Ruhr-Universität Bochum, In der Schornau 23-25, 44892, Bochum, Deutschland
| | - Teresa Tsai
- Universitäts-Augenklinik, Ruhr-Universität Bochum, In der Schornau 23-25, 44892, Bochum, Deutschland.
| |
Collapse
|
10
|
Tools and Biomarkers for the Study of Retinal Ganglion Cell Degeneration. Int J Mol Sci 2022; 23:ijms23084287. [PMID: 35457104 PMCID: PMC9025234 DOI: 10.3390/ijms23084287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
The retina is part of the central nervous system, its analysis may provide an idea of the health and functionality, not only of the retina, but also of the entire central nervous system, as has been shown in Alzheimer’s or Parkinson’s diseases. Within the retina, the ganglion cells (RGC) are the neurons in charge of processing and sending light information to higher brain centers. Diverse insults and pathological states cause degeneration of RGC, leading to irreversible blindness or impaired vision. RGCs are the measurable endpoints in current research into experimental therapies and diagnosis in multiple ocular pathologies, like glaucoma. RGC subtype classifications are based on morphological, functional, genetical, and immunohistochemical aspects. Although great efforts are being made, there is still no classification accepted by consensus. Moreover, it has been observed that each RGC subtype has a different susceptibility to injury. Characterizing these subtypes together with cell death pathway identification will help to understand the degenerative process in the different injury and pathological models, and therefore prevent it. Here we review the known RGC subtypes, as well as the diagnostic techniques, probes, and biomarkers for programmed and unprogrammed cell death in RGC.
Collapse
|
11
|
Özgümüs T, Sulaieva O, Jain R, Artner I, Lyssenko V. Starvation to Glucose Reprograms Development of Neurovascular Unit in Embryonic Retinal Cells. Front Cell Dev Biol 2021; 9:726852. [PMID: 34869314 PMCID: PMC8636675 DOI: 10.3389/fcell.2021.726852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Perinatal exposure to starvation is a risk factor for development of severe retinopathy in adult patients with diabetes. However, the underlying mechanisms are not completely understood. In the present study, we shed light on molecular consequences of exposure to short-time glucose starvation on the transcriptome profile of mouse embryonic retinal cells. We found a profound downregulation of genes regulating development of retinal neurons, which was accompanied by reduced expression of genes encoding for glycolytic enzymes and glutamatergic signaling. At the same time, glial and vascular markers were upregulated, mimicking the diabetes-associated increase of angiogenesis-a hallmark of pathogenic features in diabetic retinopathy. Energy deprivation as a consequence of starvation to glucose seems to be compensated by upregulation of genes involved in fatty acid elongation. Results from the present study demonstrate that short-term glucose deprivation during early fetal life differentially alters expression of metabolism- and function-related genes and could have detrimental and lasting effects on gene expression in the retinal neurons, glial cells, and vascular elements and thus potentially disrupting gene regulatory networks essential for the formation of the retinal neurovascular unit. Abnormal developmental programming during retinogenesis may serve as a trigger of reactive gliosis, accelerated neurodegeneration, and increased vascularization, which may promote development of severe retinopathy in patients with diabetes later in life.
Collapse
Affiliation(s)
- Türküler Özgümüs
- Department of Clinical Science, Center for Diabetes Research, University of Bergen, Bergen, Norway
| | | | - Ruchi Jain
- Department of Clinical Sciences, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
| | - Isabella Artner
- Department of Clinical Sciences, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
| | - Valeriya Lyssenko
- Department of Clinical Science, Center for Diabetes Research, University of Bergen, Bergen, Norway
- Department of Clinical Sciences, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
12
|
Vrolyk V, Desmarais MJ, Lambert D, Haruna J, Benoit-Biancamano MO. Neonatal and Juvenile Ocular Development in Göttingen Minipigs and Domestic Pigs: A Histomorphological and Immunohistochemical Study. Vet Pathol 2020; 57:889-914. [PMID: 33021158 DOI: 10.1177/0300985820954551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pigs are considered one of the relevant animal models for ocular research as they share several histological and anatomical similarities with the human eye. With the increasing interest in juvenile animal models, this study aimed to describe the postnatal development of ocular structures in 16 Göttingen minipigs and 25 F2 domestic pigs, between birth and 6 months of age, using histopathology and immunohistochemistry against Ki-67, caspase-3, calbindin, glial fibrillary acidic protein, rhodopsin, and synaptophysin. All ocular structures in both pig breeds were incompletely developed at birth and for variable periods postnatally. Noteworthy histological features of immaturity included vascularization in the corneal stroma in neonatal Göttingen minipigs, increased cellularity in different substructures, remnants of the hyaloid vasculature, short and poorly ramified ciliary body processes, and a poorly developed cone inner segment. Increased cellular proliferation, highlighted by abundant Ki-67 immunolabeling, was observed in almost all developing structures of the pig eye for variable periods postnatally. Apoptosis, highlighted with caspase-3 immunolabeling, was observed in the retinal inner nuclear layer at birth and in the regressing hyaloid vasculature remnants. Immunohistochemistry against rhodopsin, synaptophysin, and calbindin demonstrated the short size of the developing photoreceptors and the immature cone inner segment morphology. Calbindin labeling revealed significant differences in the amount of positively labeled cone nuclei between the retinal area centralis and the non-area centralis regions. The elongation of Müller cell processes in the developing retina was shown with glial fibrillary acidic protein. In both pig breeds, the eyes reached histomorphological and immunohistochemical maturity at 6 months of age.
Collapse
Affiliation(s)
- Vanessa Vrolyk
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Disease Research Center (CRIPA), Faculty of Veterinary Medicine, 70354Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- 67115Charles River Laboratories Montreal ULC, Laval, Quebec, Canada
| | | | - Daniel Lambert
- 67115Charles River Laboratories Montreal ULC, Laval, Quebec, Canada
| | - Julius Haruna
- 67115Charles River Laboratories Montreal ULC, Laval, Quebec, Canada
| | - Marie-Odile Benoit-Biancamano
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Disease Research Center (CRIPA), Faculty of Veterinary Medicine, 70354Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
13
|
Juncheed K, Kohlstrunk B, Friebe S, Dallacasagrande V, Maurer P, Reichenbach A, Mayr SG, Zink M. Employing Nanostructured Scaffolds to Investigate the Mechanical Properties of Adult Mammalian Retinae Under Tension. Int J Mol Sci 2020; 21:ijms21113889. [PMID: 32485972 PMCID: PMC7313470 DOI: 10.3390/ijms21113889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/01/2022] Open
Abstract
Numerous eye diseases are linked to biomechanical dysfunction of the retina. However, the underlying forces are almost impossible to quantify experimentally. Here, we show how biomechanical properties of adult neuronal tissues such as porcine retinae can be investigated under tension in a home-built tissue stretcher composed of nanostructured TiO2 scaffolds coupled to a self-designed force sensor. The employed TiO2 nanotube scaffolds allow for organotypic long-term preservation of adult tissues ex vivo and support strong tissue adhesion without the application of glues, a prerequisite for tissue investigations under tension. In combination with finite element calculations we found that the deformation behavior is highly dependent on the displacement rate which results in Young’s moduli of (760–1270) Pa. Image analysis revealed that the elastic regime is characterized by a reversible shear deformation of retinal layers. For larger deformations, tissue destruction and sliding of retinal layers occurred with an equilibration between slip and stick at the interface of ruptured layers, resulting in a constant force during stretching. Since our study demonstrates how porcine eyes collected from slaughterhouses can be employed for ex vivo experiments, our study also offers new perspectives to investigate tissue biomechanics without excessive animal experiments.
Collapse
Affiliation(s)
- Kantida Juncheed
- Soft Matter Physics Division and Biotechnology & Biomedical Group, Peter-Debye-Institute for Soft Matter Physics, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany; (K.J.); (B.K.); (V.D.)
- Paul Flechsig Institute for Brain Research, Leipzig University, Liebigstr. 19, 04103 Leipzig, Germany;
| | - Bernd Kohlstrunk
- Soft Matter Physics Division and Biotechnology & Biomedical Group, Peter-Debye-Institute for Soft Matter Physics, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany; (K.J.); (B.K.); (V.D.)
| | - Sabrina Friebe
- Division of Surface Physics, Department of Physics and Earth Sciences, Leipzig University and Leibniz Institute of Surface Engineering (IOM), Permoser Str. 15, 04318 Leipzig, Germany; (S.F.); (S.G.M.)
| | - Valentina Dallacasagrande
- Soft Matter Physics Division and Biotechnology & Biomedical Group, Peter-Debye-Institute for Soft Matter Physics, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany; (K.J.); (B.K.); (V.D.)
- Paul Flechsig Institute for Brain Research, Leipzig University, Liebigstr. 19, 04103 Leipzig, Germany;
| | - Patric Maurer
- Institute of Food Hygiene, Faculty of Veterinary Medicine, Leipzig University, Augustusplatz 10, 04109 Leipzig, Germany;
| | - Andreas Reichenbach
- Paul Flechsig Institute for Brain Research, Leipzig University, Liebigstr. 19, 04103 Leipzig, Germany;
| | - Stefan G. Mayr
- Division of Surface Physics, Department of Physics and Earth Sciences, Leipzig University and Leibniz Institute of Surface Engineering (IOM), Permoser Str. 15, 04318 Leipzig, Germany; (S.F.); (S.G.M.)
| | - Mareike Zink
- Soft Matter Physics Division and Biotechnology & Biomedical Group, Peter-Debye-Institute for Soft Matter Physics, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany; (K.J.); (B.K.); (V.D.)
- Correspondence: ; Tel.: +49-(341)-9732573; Fax: +49-(341)-9732479
| |
Collapse
|
14
|
Murali A, Ramlogan-Steel CA, Steel JC, Layton CJ. Characterisation and validation of the 8-fold quadrant dissected human retinal explant culture model for pre-clinical toxicology investigation. Toxicol In Vitro 2019; 63:104716. [PMID: 31706033 DOI: 10.1016/j.tiv.2019.104716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/13/2019] [Accepted: 11/04/2019] [Indexed: 11/30/2022]
Abstract
One of the major challenges in studying ocular toxicology is a lack of clinically-relevant retinal experimental models. In this study we describe the use of an in vitro human retinal explant strategy to generate a reproducible experimental model with utility in neuro-toxicity retinal studies. A retinal dissection strategy, referred to as the 8 fold quadrant dissection, was developed by dissecting human donor retinas into 4 fragments through the fovea in order to obtain 8 experimentally reproducible retinal explants from a single donor. This quadrant dissection gave rise to equivalent proportions of CD73+ photoreceptors and CD90+ ganglion cells in 8 fragments from a single donor and this remained stable for up to 3 days in culture. Major retinal cell types continued to be observed after 8 weeks in culture, despite breakdown of the retinal layers, suggesting the potential to use this model in long-term studies where observation of individual cell types is possible. The utility of this system was examined in a proof of principle neuro-toxicology study. We showed reproducible induction of toxicity in photoreceptors and retinal ganglion cells by glutamate, cobalt chloride and hydrogen peroxide insults, and observed the therapeutic positive effects of the administration of memantine, formononetin and trolox. The quadrant dissected human retinal explants have the potential to be used in toxicology studies in human ocular diseases.
Collapse
Affiliation(s)
- Aparna Murali
- LVF Ophthalmology Research Centre, Translational Research Institute, Woolloongabba, QLD, Australia; Greenslopes Clinical School, Faculty of Medicine, University of Queensland, Greenslopes Hospital, Australia
| | - Charmaine A Ramlogan-Steel
- LVF Ophthalmology Research Centre, Translational Research Institute, Woolloongabba, QLD, Australia; Central Queensland University, School of Health, Medical and Applied Science, Rockhampton, QLD, Australia
| | - Jason C Steel
- Central Queensland University, School of Health, Medical and Applied Science, Rockhampton, QLD, Australia.
| | - Christopher J Layton
- LVF Ophthalmology Research Centre, Translational Research Institute, Woolloongabba, QLD, Australia; Greenslopes Clinical School, Faculty of Medicine, University of Queensland, Greenslopes Hospital, Australia.
| |
Collapse
|
15
|
Schnichels S, Kiebler T, Hurst J, Maliha AM, Löscher M, Dick HB, Bartz-Schmidt KU, Joachim SC. Retinal Organ Cultures as Alternative Research Models. Altern Lab Anim 2019; 47:19-29. [DOI: 10.1177/0261192919840092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ex vivo organ cultures represent unique research models, as they combine the advantages of cell cultures with those of animal models. Being able to mimic in vivo situations through the use of organ cultures provides an excellent opportunity to investigate cellular processes, molecular pathways and cell–cell interactions, as well as structural and synaptic organisation. Human and animal organ cultures are now well established and comprise sensitive, easy-to-manipulate experimental systems that raise minimal ethical concerns. The eye, in particular, is a very complex organ that is not easy to reproduce in vitro. However, a lot of research has been dedicated to the development of suitable ocular organ cultures. This review covers the various ex vivo retinal organ culture systems available for use in ophthalmology research and compares them with commonly used animal models. In particular, bovine and porcine retinal organ culture systems are described, because the size, anatomy, physiology and vessel morphology of bovine and porcine eyes are similar to the human eye in an undisputed way, thus making them good models. In addition, these animals are widely used by the food industry and the eyes are considered surplus material. A short overview of murine, rat, rabbit, cat, canine and simian retinal organ cultures is also provided.
Collapse
Affiliation(s)
- Sven Schnichels
- Centre for Ophthalmology, University Eye Hospital Tübingen, Tübingen, Germany
| | - Tobias Kiebler
- Centre for Ophthalmology, University Eye Hospital Tübingen, Tübingen, Germany
| | - José Hurst
- Centre for Ophthalmology, University Eye Hospital Tübingen, Tübingen, Germany
| | - Ana M. Maliha
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Marina Löscher
- Centre for Ophthalmology, University Eye Hospital Tübingen, Tübingen, Germany
| | - H. Burkhard Dick
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | | | - Stephanie C. Joachim
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
16
|
Lim RR, Hainsworth DP, Mohan RR, Chaurasia SS. Characterization of a functionally active primary microglial cell culture from the pig retina. Exp Eye Res 2019; 185:107670. [PMID: 31103710 DOI: 10.1016/j.exer.2019.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023]
Abstract
Retinal inflammation is an integral component of many retinal diseases including diabetic retinopathy (DR), age-related macular degeneration (AMD) and retinopathy of prematurity (ROP). Inflammation is commonly initiated and perpetuated by myeloid-derived immune cells. In the retina, microglial cells are resident macrophages with myeloid origins, which acts as the first responders involved in the innate immune system. To understand the disease pathogenesis, the use of isolated retinal cell culture model is vital for the examination of multiple cellular responses to injury or trauma. The pig retina resembles human retina in terms of tissue architecture, vasculature, and topography. Additionally, it is a better model than the rodent retina because of the presence of the pseudomacula. In the present study, we sought to establish and characterize pig retinal primary microglial cell (pMicroglia) culture. We used pig eyes from the local abattoir and optimized pMicroglia cultures using multiple cell culture conditions and methods. The best results were obtained by seeding cells in DMEM-high glucose media for 18 days followed by shaking of the culture plate. The resulting pMicroglia were characterized by cellular morphology, phenotype, and immunostaining with Iba-1, CD68, P2Y12, CD163, CD14, and Isolectin GS-IB4. Generated pMicroglia were found functionally active in phagocytosis assay and responsive to lipopolysaccharides (LPS) in dose-dependent production of IL-1β. Furthermore, they showed increased secretion of pro-inflammatory cytokines with LPS treatment. Thus, we report a novel and reproducible method for the isolation of primary microglial cells from pig eyes, which may be useful for studying retinal diseases.
Collapse
Affiliation(s)
- Rayne R Lim
- Ocular Immunology and Angiogenesis Lab, Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, MO, 65211, USA; Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA; Harry S. Truman Memorial Veteran Hospital, Columbia, MO, 65201, USA
| | - Dean P Hainsworth
- Mason Eye Institute, University of Missouri, Columbia, MO, 65211, USA
| | - Rajiv R Mohan
- Ocular Immunology and Angiogenesis Lab, Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, MO, 65211, USA; Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA; Harry S. Truman Memorial Veteran Hospital, Columbia, MO, 65201, USA; Mason Eye Institute, University of Missouri, Columbia, MO, 65211, USA
| | - Shyam S Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, MO, 65211, USA; Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA; Harry S. Truman Memorial Veteran Hospital, Columbia, MO, 65201, USA.
| |
Collapse
|
17
|
Maliha AM, Kuehn S, Hurst J, Herms F, Fehr M, Bartz-Schmidt KU, Dick HB, Joachim SC, Schnichels S. Diminished apoptosis in hypoxic porcine retina explant cultures through hypothermia. Sci Rep 2019; 9:4898. [PMID: 30894574 PMCID: PMC6427006 DOI: 10.1038/s41598-019-41113-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
Simulation of hypoxic processes in vitro can be achieved through cobalt chloride (CoCl2), which induces strong neurodegeneration. Hypoxia plays an important role in the progression of several retinal diseases. Thus, we investigated whether hypoxia can be reduced by hypothermia. Porcine retinal explants were cultivated for four and eight days and hypoxia was mimicked by adding 300 µM CoCl2 from day one to day three. Hypothermia treatment (30 °C) was applied simultaneously. Retinal ganglion, bipolar and amacrine cells, as well as microglia were evaluated via immunohistological and western blot analysis. Furthermore, quantitative real-time PCR was performed to analyze cellular stress and apoptosis. In addition, the expression of specific marker for the previously described cell types were investigated. A reduction of ROS and stress markers HSP70, iNOS, HIF-1α was achieved via hypothermia. In accordance, an inhibition of apoptotic proteins (caspase 3, caspase 8) and the cell cycle arrest gene p21 was found in hypothermia treated retinae. Furthermore, neurons of the inner retina were protected by hypothermia. In this study, we demonstrate that hypothermia lowers hypoxic processes and cellular stress. Additionally, hypothermia inhibits apoptosis and protects neurons. Hence, this seems to be a promising treatment for retinal neurodegeneration.
Collapse
Affiliation(s)
- Ana M Maliha
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Sandra Kuehn
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - José Hurst
- University Eye Hospital Tübingen, Centre for Ophthalmology Tübingen, Tübingen, Germany
| | - Fenja Herms
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
- Clinic for Small Animals, University of Veterinary Medicine, Hannover, Germany
| | - Michael Fehr
- Clinic for Small Animals, University of Veterinary Medicine, Hannover, Germany
| | - Karl U Bartz-Schmidt
- University Eye Hospital Tübingen, Centre for Ophthalmology Tübingen, Tübingen, Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany.
| | - Sven Schnichels
- University Eye Hospital Tübingen, Centre for Ophthalmology Tübingen, Tübingen, Germany.
| |
Collapse
|
18
|
Christiansen AT, Sørensen NB, Haanes KA, Blixt FW, la Cour M, Warfvinge K, Klemp K, Woldbye DPD, Kiilgaard JF. Neuropeptide Y treatment induces retinal vasoconstriction and causes functional and histological retinal damage in a porcine ischaemia model. Acta Ophthalmol 2018; 96:812-820. [PMID: 30218483 DOI: 10.1111/aos.13806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 04/04/2018] [Indexed: 01/10/2023]
Abstract
PURPOSE To investigate the effects of intravitreal neuropeptide Y (NPY) treatment following acute retinal ischaemia in an in vivo porcine model. In addition, we evaluated the vasoconstrictive potential of NPY on porcine retinal arteries ex vivo. METHODS Twelve pigs underwent induced retinal ischaemia by elevated intraocular pressure clamping the ocular perfusion pressure at 5 mmHg for 2 hr followed by intravitreal injection of NPY or vehicle. After 4 weeks, retinas were evaluated functionally by standard and global-flash multifocal electroretinogram (mfERG) and histologically by thickness of retinal layers and number of ganglion cells. Additionally, the vasoconstrictive effects of NPY and its involved receptors were tested using wire myographs and NPY receptor antagonists on porcine retinal arteries. RESULTS Intravitreal injection of NPY after induced ischaemia caused a significant reduction in the mean induced component (IC) amplitude ratio (treated/normal eye) compared to vehicle-treated eyes. This reduction was accompanied by histological damage, where NPY treatment reduced the mean thickness of inner retinal layers and number of ganglion cells. In retinal arteries, NPY-induced vasoconstriction to a plateau of approximately 65% of potassium-induced constriction. This effect appeared to be mediated via Y1 and Y2, but not Y5. CONCLUSION In seeming contrast to previous in vitro studies, intravitreal NPY treatment caused functional and histological damage compared to vehicle after a retinal ischaemic insult. Furthermore, we showed for the first time that NPY induces Y1- and Y2- but not Y5-mediated vasoconstriction in retinal arteries. This constriction could explain the worsening in vivo effect induced by NPY treatment following an ischaemic insult and suggests that future studies on exploring the neuroprotective effects of NPY might focus on other receptors than Y1 and Y2.
Collapse
Affiliation(s)
- Anders T. Christiansen
- Laboratory of Neural Plasticity; Department of Neuroscience; University of Copenhagen; Copenhagen Denmark
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Nina B. Sørensen
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Kristian A. Haanes
- Department of Clinical Experimental Research; Glostrup Research Institute; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Frank W. Blixt
- Department of Clinical Sciences; Division of Experimental Vascular Research; Lund University; Lund Sweden
| | - Morten la Cour
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Karin Warfvinge
- Department of Clinical Experimental Research; Glostrup Research Institute; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Kristian Klemp
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - David P. D. Woldbye
- Laboratory of Neural Plasticity; Department of Neuroscience; University of Copenhagen; Copenhagen Denmark
| | - Jens F. Kiilgaard
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| |
Collapse
|
19
|
Eriksen AZ, Eliasen R, Oswald J, Kempen PJ, Melander F, Andresen TL, Young M, Baranov P, Urquhart AJ. Multifarious Biologic Loaded Liposomes that Stimulate the Mammalian Target of Rapamycin Signaling Pathway Show Retina Neuroprotection after Retina Damage. ACS NANO 2018; 12:7497-7508. [PMID: 30004669 PMCID: PMC6117751 DOI: 10.1021/acsnano.8b00596] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/13/2018] [Indexed: 05/08/2023]
Abstract
A common event in optic neuropathies is the loss of axons and death of retinal ganglion cells (RGCs) resulting in irreversible blindness. Mammalian target of rapamycin (mTOR) signaling pathway agonists have been shown to foster axon regeneration and RGC survival in animal models of optic nerve damage. However, many challenges remain in developing therapies that exploit cell growth and tissue remodeling including (i) activating/inhibiting cell pathways synergistically, (ii) avoiding tumorigenesis, and (iii) ensuring appropriate physiological tissue function. These challenges are further exacerbated by the need to overcome ocular physiological barriers and clearance mechanisms. Here we present liposomes loaded with multiple mTOR pathway stimulating biologics designed to enhance neuroprotection after retina damage. Liposomes were loaded with ciliary neurotrophic factor, insulin-like growth factor 1, a lipopeptide N-fragment osteopontin mimic, and lipopeptide phosphatase tension homologue inhibitors for either the ATP domain or the c-terminal tail. In a mouse model of N-methyl-d-aspartic acid induced RGC death, a single intravitreal administration of liposomes reduced both RGC death and loss of retina electrophysiological function. Furthermore, combining liposomes with transplantation of induced pluripotent stem cell derived RGCs led to an improved electrophysiological outcome in mice. The results presented here show that liposomes carrying multiple signaling pathway modulators can facilitate neuroprotection and transplant electrophysiological outcome.
Collapse
Affiliation(s)
- Anne Z. Eriksen
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Rasmus Eliasen
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Julia Oswald
- Schepens
Eye Research Institute, Massachusetts Eye and Ear, 20 Staniford Street, Boston, Massachusetts 02114, United States
| | - Paul J. Kempen
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Fredrik Melander
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Thomas L. Andresen
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Michael Young
- Schepens
Eye Research Institute, Massachusetts Eye and Ear, 20 Staniford Street, Boston, Massachusetts 02114, United States
| | - Petr Baranov
- Schepens
Eye Research Institute, Massachusetts Eye and Ear, 20 Staniford Street, Boston, Massachusetts 02114, United States
| | - Andrew J. Urquhart
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
20
|
Xie W, Zhao M, Tsai SH, Burkes WL, Potts LB, Xu W, Payne HR, Hein TW, Kuo L, Rosa RH. Correlation of spectral domain optical coherence tomography with histology and electron microscopy in the porcine retina. Exp Eye Res 2018; 177:181-190. [PMID: 30120928 DOI: 10.1016/j.exer.2018.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
Spectral domain optical coherence tomography (SD-OCT) is used as a non-invasive tool for retinal morphological assessment in vivo. Information on the correlation of SD-OCT with retinal histology in the porcine retina, a model resembling the human retina, is limited. Herein, we correlated the hypo- and hyper-reflective bands on SD-OCT with histology of the lamellar architecture and cellular constituents of the porcine retina. SD-OCT images were acquired with the Heidelberg Spectralis HRA + OCT. Histological analysis was performed using epoxy resin embedded tissue and transmission electron microscopy. Photomicrographs from the histologic sections were linearly scaled to correct for tissue shrinkage and correlated with SD-OCT images. SD-OCT images correlated well with histomorphometric data. A hyper-reflective band in the mid-to-outer inner nuclear layer correlated with the presence of abundant mitochondria in horizontal cell processes and adjacent bipolar cells. A concentration of cone nuclei corresponded to a relative hypo-reflective band in the outer portion of the outer nuclear layer. The presence of 3 hyper-reflective bands in the outer retina corresponded to: 1) the external limiting membrane; 2) the cone and rod ellipsoid zones; and 3) the interdigitation zone of photoreceptor outer segments/retinal pigment epithelium (RPE) apical cell processes and the RPE. These correlative and normative SD-OCT data may be employed to characterize and assess the in vivo histologic changes in retinal vascular and degenerative diseases and the responses to novel therapeutic interventions in this large animal model.
Collapse
Affiliation(s)
- Wankun Xie
- Department of Medical Physiology, Texas A&M University Health Science Center, Temple, TX, USA; Department of Ophthalmology and Ophthalmic Vascular Research Program, Scott & White Eye Institute, Temple, TX, USA
| | - Min Zhao
- Department of Medical Physiology, Texas A&M University Health Science Center, Temple, TX, USA; Department of Ophthalmology and Ophthalmic Vascular Research Program, Scott & White Eye Institute, Temple, TX, USA
| | - Shu-Huai Tsai
- Department of Medical Physiology, Texas A&M University Health Science Center, Temple, TX, USA
| | - William L Burkes
- Department of Medical Physiology, Texas A&M University Health Science Center, Temple, TX, USA
| | - Luke B Potts
- Department of Ophthalmology and Ophthalmic Vascular Research Program, Scott & White Eye Institute, Temple, TX, USA
| | - Wenjuan Xu
- Department of Medical Physiology, Texas A&M University Health Science Center, Temple, TX, USA
| | - H Ross Payne
- Image Analysis Laboratory, Texas A&M University College of Veterinary Medicine, College Station, TX, USA
| | - Travis W Hein
- Department of Medical Physiology, Texas A&M University Health Science Center, Temple, TX, USA; Department of Ophthalmology and Ophthalmic Vascular Research Program, Scott & White Eye Institute, Temple, TX, USA
| | - Lih Kuo
- Department of Medical Physiology, Texas A&M University Health Science Center, Temple, TX, USA; Department of Ophthalmology and Ophthalmic Vascular Research Program, Scott & White Eye Institute, Temple, TX, USA
| | - Robert H Rosa
- Department of Medical Physiology, Texas A&M University Health Science Center, Temple, TX, USA; Department of Ophthalmology and Ophthalmic Vascular Research Program, Scott & White Eye Institute, Temple, TX, USA.
| |
Collapse
|
21
|
Christiansen AT, Kiilgaard JF, Klemp K, Woldbye DPD, Hannibal J. Localization, distribution, and connectivity of neuropeptide Y in the human and porcine retinas-A comparative study. J Comp Neurol 2018; 526:1877-1895. [DOI: 10.1002/cne.24455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/24/2022]
Affiliation(s)
| | - Jens Folke Kiilgaard
- Department of Ophthalmology; Copenhagen University Hospital, Rigshospitalet; Denmark
| | - Kristian Klemp
- Department of Ophthalmology; Copenhagen University Hospital, Rigshospitalet; Denmark
| | - David Paul Drucker Woldbye
- Laboratory of Neural Plasticity; Center for Neuroscience, Faculty of Health Sciences, University of Copenhagen; Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry; Copenhagen University Hospital, Bispebjerg Hospital; Copenhagen Denmark
| |
Collapse
|
22
|
Tshilenge KT, Ameline B, Weber M, Mendes-Madeira A, Nedellec S, Biget M, Provost N, Libeau L, Blouin V, Deschamps JY, Le Meur G, Colle MA, Moullier P, Pichard V, Rolling F. Vitrectomy Before Intravitreal Injection of AAV2/2 Vector Promotes Efficient Transduction of Retinal Ganglion Cells in Dogs and Nonhuman Primates. Hum Gene Ther Methods 2017; 27:122-34. [PMID: 27229628 DOI: 10.1089/hgtb.2016.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recombinant adeno-associated virus (AAV) has emerged as a promising vector for retinal gene delivery to restore visual function in certain forms of inherited retinal dystrophies. Several studies in rodent models have shown that intravitreal injection of the AAV2/2 vector is the optimal route for efficient retinal ganglion cell (RGC) transduction. However, translation of these findings to larger species, including humans, is complicated by anatomical differences in the eye, a key difference being the comparatively smaller volume of the vitreous chamber in rodents. Here, we address the role of the vitreous body as a potential barrier to AAV2/2 diffusion and transduction in the RGCs of dogs and macaques, two of the most relevant preclinical models. We intravitreally administered the AAV2/2 vector carrying the CMV-eGFP reporter cassette in dog and macaque eyes, either directly into the vitreous chamber or after complete vitrectomy, a surgical procedure that removes the vitreous body. Our findings suggest that the vitreous body appears to trap the injected vector, thus impairing the diffusion and transduction of AAV2/2 to inner retinal neurons. We show that vitrectomy before intravitreal vector injection is an effective means of overcoming this physical barrier, improving the transduction of RGCs in dog and macaque retinas. These findings support the use of vitrectomy in clinical trials of intravitreal gene transfer techniques targeting inner retinal neurons.
Collapse
Affiliation(s)
| | - Baptiste Ameline
- 1 Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Michel Weber
- 2 CHU de Nantes, Service d'Ophtalmologie, Nantes, France
| | | | - Steven Nedellec
- 3 Cellular and Tissular Imaging Core Facility of Nantes University, SFR Santé Francois Bonamy INSERM UMS016/CNRS UMS3556, Nantes, France
| | - Marine Biget
- 1 Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Nathalie Provost
- 1 Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Lyse Libeau
- 1 Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Véronique Blouin
- 1 Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Jack-Yves Deschamps
- 4 Emergency and Critical Care Unit, ONIRIS, Nantes-Atlantic College of Veterinary Medicine Food Science and Engineering, Nantes, France
| | | | - Marie-Anne Colle
- 5 UMR 703 PAnTher INRA/ONIRIS, Nantes-Atlantic College of Veterinary Medicine Food Science and Engineering, Nantes, France
| | - Philippe Moullier
- 1 Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France.,6 Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida , Gainesville, Florida
| | - Virginie Pichard
- 1 Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Fabienne Rolling
- 1 Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| |
Collapse
|
23
|
Kuehn S, Hurst J, Jashari A, Ahrens K, Tsai T, Wunderlich IM, Dick HB, Joachim SC, Schnichels S. The novel induction of retinal ganglion cell apoptosis in porcine organ culture by NMDA - an opportunity for the replacement of animals in experiments. Altern Lab Anim 2017; 44:557-568. [PMID: 28094536 DOI: 10.1177/026119291604400608] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Some of the advantages of retina organ culture models include their efficient and easy handling and the ability to standardise relevant parameters. Additionally, when porcine eyes are obtained from the food industry, no animals are killed solely for research purposes. To induce retinal degeneration, a commonly used toxic substance, N-methyl-D-aspartate (NMDA), was applied to the cultures. To this end, organotypic cultures of porcine retinas were cultured and treated with different doses of NMDA (0 [control], 50, 100 and 200μM) on day 2 for 48 hours. On day 7, the retinas were cryo-conserved for histological, Western blot and quantitative rt-PCR (qrt-PCR) analyses. NMDA treatment was found to significantly increase retinal ganglion cell (RGC) apoptosis in all the treated groups, without a profound RGC loss. In addition, the intrinsic apoptotic pathway was activated in the 50μM and 100μM NMDA groups, whereas induced nitric oxide synthase (iNOS) expression was increased in the 200μM group. A slight microglial response was detectable, especially in the 100μM group. NMDA treatment induced apoptosis, oxidative stress and a slight microglia activation. All these effects mimic a chronic slow progressive disease that especially affects RGCs, such as glaucoma. A particular advantage of this model is that mediators that can interact in the very early stages of the onset of RGC death, can be easily detected and potential therapies can be tested.
Collapse
Affiliation(s)
- Sandra Kuehn
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Jose Hurst
- University Eye Hospital Tübingen, Centre for Ophthalmology, Tübingen, Germany
| | - Adelina Jashari
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Kathrin Ahrens
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Teresa Tsai
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Ilan M Wunderlich
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - H Burkhard Dick
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie C Joachim
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Sven Schnichels
- University Eye Hospital Tübingen, Centre for Ophthalmology, Tübingen, Germany
| |
Collapse
|
24
|
Hurst J, Kuehn S, Jashari A, Tsai T, Bartz-Schmidt KU, Schnichels S, Joachim SC. A novel porcine ex vivo retina culture model for oxidative stress induced by H₂O₂. Altern Lab Anim 2017; 45:11-25. [PMID: 28409994 DOI: 10.1177/026119291704500105] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Oxidative stress is a key player in many ophthalmic diseases. However, the role of oxidative stress in most degenerative processes is not yet known. Therefore, accurate and practical models are required to efficiently screen for therapeutics. Porcine eyes are closely related to the human eye, and can be obtained from the abattoir as a by-product of the food industry. Therefore, they offer excellent opportunities for the development of culture models with which to pre-screen potential therapies, while reducing the use of laboratory animals. To induce oxidative stress, organotypic cultures of porcine retina were treated with different doses of hydrogen peroxide (H₂O₂; 100, 300 and 500μM) for three hours. On days 3 and 8, the retinas were conserved for histological and Western blotting analyses and for evaluation of gene expression, which determined the number of retinal ganglion cells (RGCs), the activation state of glial cells, and the expression levels of several oxidative stress markers. H₂O₂ treatment led to a reduction in the number of RGCs and to an increase in apoptotic RGCs. In addition, a dose-dependent increase of microglia and an elevation of CD11b expression was observed. On day 3, a reduction of IL-1β, and an increase of iNOS, as well as of HSP70 mRNA were found. On day 8, an increase in TNF-α and IL-1β mRNA expression was detected. In conclusion, this ex vivo model offers an opportunity to study the molecular mechanisms underlying certain eye disorders and to test new therapeutic approaches to diminish the effects of oxidative stress.
Collapse
Affiliation(s)
- José Hurst
- University Eye Hospital Tübingen, Centre for Ophthalmology Tübingen, Tübingen, Germany
| | - Sandra Kuehn
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Adelina Jashari
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Teresa Tsai
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | | | - Sven Schnichels
- University Eye Hospital Tübingen, Centre for Ophthalmology Tübingen, Tübingen, Germany
| | - Stephanie C Joachim
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
25
|
Scott PA, de Castro JPF, DeMarco PJ, Ross JW, Njoka J, Walters E, Prather RS, McCall MA, Kaplan HJ. Progression of Pro23His Retinopathy in a Miniature Swine Model of Retinitis Pigmentosa. Transl Vis Sci Technol 2017; 6:4. [PMID: 28316877 PMCID: PMC5354474 DOI: 10.1167/tvst.6.2.4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 02/02/2017] [Indexed: 02/01/2023] Open
Abstract
Purpose We characterize the progression of retinopathy in Filial 1 (F1) progeny of a transgenic (Tg) founder miniswine exhibiting severe Pro23His (P23H) retinopathy. Methods The F1 TgP23H miniswine progeny were created by crossing TgP23H founder miniswine 53-1 with wild type (WT) inbred miniature swine. Scotopic (rod-driven) and photopic (cone-driven) retinal functions were evaluated in F1 TgP23H and WT littermates using full field electroretinograms (ffERGs) at 1, 2, 3, 6, 9, 12, and 18 months of age, as well as the Tg founder miniswine at 6 years of age. Miniswine were euthanized and their retinas processed for morphologic evaluation at the light and electron microscopic level. Retinal morphology of a 36-month-old Tg miniswine also was examined. Results Wild type littermates reached mature scotopic and photopic retinal function by 3 months, while TgP23H miniswine showed abnormal scotopic ffERGs at the earliest time point, 1 month, and depressed photopic ffERGs after 2 months. Rod and cone photoreceptors (PR) exhibited morphologic abnormalities and dropout from the outer nuclear layer at 1 month, with only a monolayer of cone PR somata remaining after 2 months. The retinas showed progressive neural remodeling of the outer retina that included dendritic retraction of rod bipolar cells and glial seal formation by Müller cells. The TgP23H founder miniswine showed cone PR with relatively intact morphology exclusive to the area centralis. Conclusions The F1 Tg miniswine and the TgP23H founder miniswine exhibit similar retinopathy. Translational Relevance TgP23H miniswine are a useful large-eye model to study pathogenesis and preservation cone PRs in humans with retinitis pigmentosa.
Collapse
Affiliation(s)
- Patrick A Scott
- Department of Ophthalmology & Visual Sciences, University of Louisville, Louisville, KY, USA ; Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | | | - Paul J DeMarco
- Department of Ophthalmology & Visual Sciences, University of Louisville, Louisville, KY, USA ; Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Josephat Njoka
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Eric Walters
- Division of Animal Science, University of Missouri-Columbia, Columbia, MO, USA ; Department of National Swine Resource and Research Center, University of Missouri-Columbia, Columbia, MO, USA
| | - Randall S Prather
- Division of Animal Science, University of Missouri-Columbia, Columbia, MO, USA ; Department of National Swine Resource and Research Center, University of Missouri-Columbia, Columbia, MO, USA
| | - Maureen A McCall
- Department of Ophthalmology & Visual Sciences, University of Louisville, Louisville, KY, USA ; Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - Henry J Kaplan
- Department of Ophthalmology & Visual Sciences, University of Louisville, Louisville, KY, USA ; Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
26
|
Zalis MC, Johansson S, Englund-Johansson U. Immunocytochemical Profiling of Cultured Mouse Primary Retinal Cells. J Histochem Cytochem 2017; 65:223-239. [PMID: 28151698 PMCID: PMC5407564 DOI: 10.1369/0022155416689675] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Primary retinal cell cultures and immunocytochemistry are important experimental platforms in ophthalmic research. Translation of retinal cells from their native environment to the in vitro milieu leads to cellular stress, jeopardizing their in vivo phenotype features. Moreover, the specificity and stability of many retinal immunochemical markers are poorly evaluated in retinal cell cultures. Hence, we here evaluated the expression profile of 17 retinal markers, that is, recoverin, rhodopsin, arrestin, Chx10, PKC, DCX, CRALBP, GS, vimentin, TPRV4, RBPMS, Brn3a, β-tubulin III, NeuN, MAP2, GFAP, and synaptophysin. At 7 and 18 days of culture, the marker expression profiles of mouse postnatal retinal cells were compared with their age-matched in vivo retinas. We demonstrate stable in vitro expression of all markers, except for arrestin and CRALBP. Differences in cellular expression and location of some markers were observed, both over time in culture and compared with the age-matched retina. We hypothesize that these differences are likely culture condition dependent. Taken together, we suggest a thorough evaluation of the antibodies in specific culture settings, before extrapolating the in vitro results to an in vivo setting. Moreover, the identification of specific cell types may require a combination of different genes expressed or markers with structural information.
Collapse
Affiliation(s)
- Marina C Zalis
- Division of Ophthalmology, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden (MCZ, SJ, UEJ)
| | - Sebastian Johansson
- Division of Ophthalmology, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden (MCZ, SJ, UEJ)
| | - Ulrica Englund-Johansson
- Division of Ophthalmology, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden (MCZ, SJ, UEJ)
| |
Collapse
|
27
|
Zalis MC, Johansson S, Johansson F, Johansson UE. Exploration of physical and chemical cues on retinal cell fate. Mol Cell Neurosci 2016; 75:122-32. [DOI: 10.1016/j.mcn.2016.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 06/29/2016] [Accepted: 07/25/2016] [Indexed: 12/28/2022] Open
|
28
|
Human neural progenitor cells decrease photoreceptor degeneration, normalize opsin distribution and support synapse structure in cultured porcine retina. Brain Res 2016; 1646:522-534. [PMID: 27369448 DOI: 10.1016/j.brainres.2016.06.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/27/2016] [Accepted: 06/27/2016] [Indexed: 11/24/2022]
Abstract
Retinal neurodegenerative disorders like retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy and retinal detachment decrease retinal functionality leading to visual impairment. The pathological events are characterized by photoreceptor degeneration, synaptic disassembly, remodeling of postsynaptic neurons and activation of glial cells. Despite intense research, no effective treatment has been found for these disorders. The current study explores the potential of human neural progenitor cell (hNPC) derived factors to slow the degenerative processes in adult porcine retinal explants. Retinas were cultured for 3 days with or without hNPCs as a feeder layer and investigated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), immunohistochemical, western blot and quantitative real time-polymerase chain reaction (qRT-PCR) techniques. TUNEL showed that hNPCs had the capacity to limit photoreceptor cell death. Among cone photoreceptors, hNPC coculture resulted in better maintenance of cone outer segments and reduced opsin mislocalization. Additionally, maintained synaptic structural integrity and preservation of second order calbindin positive horizontal cells was also observed. However, Müller cell gliosis only seemed to be alleviated in terms of reduced Müller cell density. Our observations indicate that at 3 days of coculture, hNPC derived factors had the capacity to protect photoreceptors, maintain synaptic integrity and support horizontal cell survival. Human neural progenitor cell applied treatment modalities may be an effective strategy to help maintain retinal functionality in neurodegenerative pathologies. Whether hNPCs can independently hinder Müller cell gliosis by utilizing higher concentrations or by combination with other pharmacological agents still needs to be determined.
Collapse
|
29
|
Taylor L, Arnér K, Ghosh F. N-methyl-N-nitrosourea-induced neuronal cell death in a large animal model of retinal degeneration in vitro. Exp Eye Res 2016; 148:55-64. [PMID: 27237409 DOI: 10.1016/j.exer.2016.05.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/16/2016] [Accepted: 05/25/2016] [Indexed: 11/29/2022]
Abstract
N-methyl-N-nitrosourea (MNU) has been reported to induce photoreceptor-specific degeneration with minimal inner retinal impact in small animals in vivo. Pending its use within a retinal transplantation paradigm, we here explore the effects of MNU on outer and inner retinal neurons and glia in an in vitro large animal model of retinal degeneration. The previously described degenerative culture explant model of adult porcine retina was used and compared with explants receiving 10 or 100 μg/ml MNU (MNU10 and MNU100) supplementation. All explants were kept for 5 days in vitro, and examined for morphology as well as for glial and neuronal immunohistochemical markers. Rhodopsin-labeled photoreceptors were present in all explants. The number of cone photoreceptors (transducin), rod bipolar cells (PKC) and horizontal cells (calbindin) was significantly lower in MNU treated explants (p < 0.001). Gliosis was attenuated in MNU10 treated explants, with expression of vimentin, glial fibrillary protein (GFAP), glutamine synthetase (GS), and bFGF comparable to in vivo controls. In corresponding MNU100 counterparts, the expression of Müller cell proteins was almost extinguished. We here show that MNU causes degeneration of outer and inner retinal neurons and glia in the adult porcine retina in vitro. MNU10 explants display attenuation of gliosis, despite decreased neuronal survival compared with untreated controls. Our results have impact on the use of MNU as a large animal photoreceptor degeneration model, on tissue engineering related to retinal transplantation, and on our understanding of gliosis related neuronal degenerative cell death.
Collapse
Affiliation(s)
- Linnéa Taylor
- Department of Ophthalmology, Lund University, SE 22184, Lund, Sweden.
| | - Karin Arnér
- Department of Ophthalmology, Lund University, SE 22184, Lund, Sweden
| | - Fredrik Ghosh
- Department of Ophthalmology, Lund University, SE 22184, Lund, Sweden
| |
Collapse
|
30
|
Taylor L, Arnér K, Kolewe M, Pritchard C, Hendy G, Langer R, Ghosh F. Seeing through the interface: poly(ε-Caprolactone) surface modification of poly(glycerol-co-sebacic acid) membranes in adult porcine retinal explants. J Tissue Eng Regen Med 2016; 11:2349-2358. [PMID: 27098673 DOI: 10.1002/term.2135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 12/10/2015] [Accepted: 12/10/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Linnéa Taylor
- Department of Ophthalmology, Lund University Hospital, Lund, Sweden
| | - Karin Arnér
- Department of Ophthalmology, Lund University Hospital, Lund, Sweden
| | - Martin Kolewe
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christopher Pritchard
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gillian Hendy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fredrik Ghosh
- Department of Ophthalmology, Lund University Hospital, Lund, Sweden
| |
Collapse
|
31
|
Inhibiting Matrix Metalloproteinase 3 Ameliorates Neuronal Loss in the Ganglion Cell Layer of Rats in Retinal Ischemia/Reperfusion. Neurochem Res 2016; 41:1107-18. [PMID: 26830289 DOI: 10.1007/s11064-015-1800-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 01/24/2023]
Abstract
It has been demonstrated that matrix metalloproteinase 3 (MMP3) is integrally involved in the neuronal degeneration of the central nervous system by promoting glial activation, neuronal apoptosis and damage to the brain-blood barrier. However, whether MMP3 also contributes to the neuronal degeneration induced by retinal ischemia/reperfusion is still uncertain. In the present study, we detected the cellular localization of MMP3 in adult rat retinae and explored the relationship of its expression with neuronal loss in the ganglion cell layer (GCL) in retinal ischemia/reperfusion. We found that MMP3 was widely expressed in many cells throughout the layers of the rat retinae, including Vertebrate neuron-specific nuclear protein (NeuN)-, parvalbumin-, calbindin-, protein kinase C-α-, glial fibrillary acidic protein-, glutamine synthetase- and CD11b-positive cells. Furthermore, all rats were treated with high intraocular pressure (HIOP) for 1 h (h) and sacrificed at 6 h, 1 day (d), 3 d, and 7 d after HIOP. Compared to the normal control, the expression of both proenzyme MMP3 and active MMP3 were significantly up-regulated after HIOP treatment without alteration of the laminar distribution pattern. Moreover, inhibiting MMP3 ameliorated the loss of NeuN-positive cells in the GCL following HIOP. In summary, our data demonstrates that MMP3 is expressed in multiple types of neurons and glial cells in normal rat retinae. Simultaneously, the up-regulation of its expression and activity are closely involved in neuronal loss in the GCL in retinal ischemia/reperfusion.
Collapse
|
32
|
Atzpodien EA, Jacobsen B, Funk J, Altmann B, Silva Munoz MA, Singer T, Gyger C, Hasler P, Maloca P. Advanced Clinical Imaging and Tissue-based Biomarkers of the Eye for Toxicology Studies in Minipigs. Toxicol Pathol 2015; 44:398-413. [PMID: 26680760 DOI: 10.1177/0192623315615553] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is increased interest to use minipigs in ocular toxicology studies due to their anatomical similarities with human eyes and as a substitute for nonhuman primates. This requires adaptation of enhanced optical coherence tomography (OCT) techniques and of ocular relevant immunohistochemistry (IHC) or in situ hybridization (ISH) markers to porcine eyes. In this study, OCT and OCT angiography (AngioOCT) were performed on adult Göttingen minipigs. To increase structural information on retinal and choroidal vasculature, OCT data were speckle denoized and choroidal blood vessels were segmented with threshold filtering. In addition, we established a set of IHC and ISH markers on Davidson's fixed paraffin-embedded minipig eyes: neurofilament-160, neuronal nuclei, calretinin, protein kinase C-α, vimentin, glial fibrillary acidic protein, glutamine synthetase, ionized calcium-binding adaptor molecule-1, rhodopsin, synaptophysin, postsynaptic density protein-95, retinal pigment epithelium (RPE)-specific protein-65, von Willebrand factor, α-smooth muscle actin, desmin, and Ki-67, thus enabling visualization of retinal neuronal and glial cells, photoreceptors, synapses, RPE, blood vessels, myocytes, macrophages, or cell proliferation. Using ISH, transcripts of vascular endothelial growth factor A, angiopoietin-2, and endothelial tyrosine kinase were visualized. This article describes for the first time in minipig eyes speckle noise-free OCT, AngioOCT, and a set of IHC/ISH markers on Davidson's fixed paraffin-embedded tissues and helps to establish the minipig for ocular toxicology and pharmacology studies.
Collapse
Affiliation(s)
| | | | - Juergen Funk
- Roche Innovation Center Basel, Basel, Switzerland
| | | | | | | | - Cyrill Gyger
- OCT Research Laboratory, Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Pascal Hasler
- OCT Research Laboratory, Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Peter Maloca
- OCT Research Laboratory, Department of Ophthalmology, University of Basel, Basel, Switzerland
| |
Collapse
|
33
|
Heller JP, Kwok JCF, Vecino E, Martin KR, Fawcett JW. A Method for the Isolation and Culture of Adult Rat Retinal Pigment Epithelial (RPE) Cells to Study Retinal Diseases. Front Cell Neurosci 2015; 9:449. [PMID: 26635529 PMCID: PMC4654064 DOI: 10.3389/fncel.2015.00449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/02/2015] [Indexed: 12/22/2022] Open
Abstract
Diseases such as age-related macular degeneration (AMD) affect the retinal pigment epithelium (RPE) and lead to the death of the epithelial cells and ultimately blindness. RPE transplantation is currently a major focus of eye research and clinical trials using human stem cell-derived RPE cells are ongoing. However, it remains to be established to which extent the source of RPE cells for transplantation affects their therapeutic efficacy and this needs to be explored in animal models. Autotransplantation of RPE cells has attractions as a therapy, but existing protocols to isolate adult RPE cells from rodents are technically difficult, time-consuming, have a low yield and are not optimized for long-term cell culturing. Here, we report a newly devised protocol which facilitates reliable and simple isolation and culture of RPE cells from adult rats. Incubation of a whole rat eyeball in 20 U/ml papain solution for 50 min yielded 4 × 10(4) viable RPE cells. These cells were hexagonal and pigmented upon culture. Using immunostaining, we demonstrated that the cells expressed RPE cell-specific marker proteins including cytokeratin 18 and RPE65, similar to RPE cells in vivo. Additionally, the cells were able to produce and secrete Bruch's membrane matrix components similar to in vivo situation. Similarly, the cultured RPE cells adhered to isolated Bruch's membrane as has previously been reported. Therefore, the protocol described in this article provides an efficient method for the rapid and easy isolation of high quantities of adult rat RPE cells. This provides a reliable platform for studying the therapeutic targets, testing the effects of drugs in a preclinical setup and to perform in vitro and in vivo transplantation experiments to study retinal diseases.
Collapse
Affiliation(s)
- Janosch P. Heller
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridge, UK
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College LondonLondon, UK
| | - Jessica C. F. Kwok
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridge, UK
| | - Elena Vecino
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridge, UK
- Department of Cellular Biology, University of the Basque CountryLeioa, UPV/EHU, Bizkaia, Spain
| | - Keith R. Martin
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridge, UK
- Department of Ophthalmology, NIHR Biomedical Research Centre and Wellcome Trust—Medical Research Council Cambridge Stem Cell Institute, University of CambridgeCambridge, UK
| | - James W. Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridge, UK
| |
Collapse
|
34
|
|
35
|
Taylor L, Arnér K, Ghosh F. First Responders: Dynamics of Pre-Gliotic Müller Cell Responses in The Isolated Adult Rat Retina. Curr Eye Res 2014; 40:1245-60. [DOI: 10.3109/02713683.2014.988360] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Rodriguez AR, de Sevilla Müller LP, Brecha NC. The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina. J Comp Neurol 2014; 522:1411-43. [PMID: 24318667 DOI: 10.1002/cne.23521] [Citation(s) in RCA: 351] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 11/27/2013] [Accepted: 12/03/2013] [Indexed: 12/12/2022]
Abstract
There are few neurochemical markers that reliably identify retinal ganglion cells (RGCs), which are a heterogeneous population of cells that integrate and transmit the visual signal from the retina to the central visual nuclei. We have developed and characterized a new set of affinity-purified guinea pig and rabbit antibodies against RNA-binding protein with multiple splicing (RBPMS). On western blots these antibodies recognize a single band at 〜24 kDa, corresponding to RBPMS, and they strongly label RGC and displaced RGC (dRGC) somata in mouse, rat, guinea pig, rabbit, and monkey retina. RBPMS-immunoreactive cells and RGCs identified by other techniques have a similar range of somal diameters and areas. The density of RBPMS cells in mouse and rat retina is comparable to earlier semiquantitative estimates of RGCs. RBPMS is mainly expressed in medium and large DAPI-, DRAQ5-, NeuroTrace- and NeuN-stained cells in the ganglion cell layer (GCL), and RBPMS is not expressed in syntaxin (HPC-1)-immunoreactive cells in the inner nuclear layer (INL) and GCL, consistent with their identity as RGCs, and not displaced amacrine cells. In mouse and rat retina, most RBPMS cells are lost following optic nerve crush or transection at 3 weeks, and all Brn3a-, SMI-32-, and melanopsin-immunoreactive RGCs also express RBPMS immunoreactivity. RBPMS immunoreactivity is localized to cyan fluorescent protein (CFP)-fluorescent RGCs in the B6.Cg-Tg(Thy1-CFP)23Jrs/J mouse line. These findings show that antibodies against RBPMS are robust reagents that exclusively identify RGCs and dRGCs in multiple mammalian species, and they will be especially useful for quantification of RGCs.
Collapse
Affiliation(s)
- Allen R Rodriguez
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | | | | |
Collapse
|
37
|
Scott PA, Fernandez de Castro JP, Kaplan HJ, McCall MA. A Pro23His mutation alters prenatal rod photoreceptor morphology in a transgenic swine model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 2014; 55:2452-9. [PMID: 24618321 DOI: 10.1167/iovs.13-13723] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Functional studies have detected deficits in retinal signaling in asymptomatic children from families with inherited autosomal dominant retinitis pigmentosa (RP). Whether retinal abnormalities are present earlier during gestation or shortly after birth in a subset of children with autosomal dominant RP is unknown and no appropriate animal RP model possessing visual function at birth has been available to examine this possibility. In a recently developed transgenic P23H (TgP23H) rhodopsin swine model of RP, we tracked changes in pre- and early postnatal retinal morphology, as well as early postnatal retinal function. METHODS Domestic swine inseminated with semen from a TgP23H miniswine founder produced TgP23H hybrid and wild type (Wt) littermates. Outer retinal morphology was assessed at light and electron microscopic levels between embryonic (E) and postnatal (P) day E85 to P3. Retinal function was evaluated using the full field electroretinogram at P3. RESULTS Embryonic TgP23H rod photoreceptors are malformed and their rhodopsin expression pattern is abnormal. Consistent with morphological abnormalities, rod-driven function is absent at P3. In contrast, TgP23H and Wt cone photoreceptor morphology (E85-P3) and cone-driven retinal function (P3) are similar. CONCLUSIONS Prenatal expression of mutant rhodopsin alters the normal morphological and functional development of rod photoreceptors in TgP23H swine embryos. Despite this significant change, cone photoreceptors are unaffected. Human infants with similarly aggressive RP might never have rod vision, although cone vision would be unaffected. Such aggressive forms of RP in preverbal children would require early intervention to delay or prevent functional blindness.
Collapse
Affiliation(s)
- Patrick A Scott
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, United States
| | | | | | | |
Collapse
|
38
|
Taylor L, Arnér K, Taylor IH, Ghosh F. Feet on the ground: Physical support of the inner retina is a strong determinant for cell survival and structural preservation in vitro. Invest Ophthalmol Vis Sci 2014; 55:2200-13. [PMID: 24595389 DOI: 10.1167/iovs.13-13535] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The purpose of this study was to explore the importance of local physical tissue support for homeostasis in the isolated retina. METHODS Full-thickness retinal sheets were isolated from adult porcine eyes. Retinas were cultured for 5 or 10 days using the previously established explant protocol with photoreceptors positioned against the culture membrane (porous polycarbonate) or the Müller cell endfeet and inner limiting membrane (ILM) apposed against the membrane. The explants were analyzed morphologically using hematoxylin and eosin staining, immunohistochemistry, TUNEL labeling, and transmission electron microscopy (TEM). RESULTS Standard cultures displayed a progressive loss of retinal lamination and extensive cell death, with activated, hypertrophic Müller cells. In contrast, explants cultured with the ILM facing the membrane displayed a maintenance of the retinal laminar architecture, and a statistically significant attenuation of photoreceptor and ganglion cell death. Transmission electron microscopy revealed intact synapses as well as preservation of normal cellular membrane structures. Immunohistochemistry showed no signs of Müller cell activation (glial fibrillary acidic protein [GFAP]), with maintained expression of important metabolic markers (glutamine synthetae [GS], bFGF). CONCLUSIONS Providing physical support to the inner but not the outer retina appears to prevent the tissue collapse resulting from perturbation of the normal biomechanical milieu in the isolated retinal sheet. Using this novel paradigm, gliotic reactions are attenuated and metabolic processes vital for tissue health are preserved, which significantly increases neuronal cell survival. This finding opens up new avenues of adult retinal tissue culture research and increases our understanding of pathological reactions in biomechanically related conditions in vivo.
Collapse
Affiliation(s)
- Linnéa Taylor
- Department of Ophthalmology, Lund University Hospital, Lund, Sweden
| | | | | | | |
Collapse
|
39
|
Kucharska J, Del Río P, Arango-Gonzalez B, Gorza M, Feuchtinger A, Hauck SM, Ueffing M. Cyr61 activates retinal cells and prolongs photoreceptor survival in rd1 mouse model of retinitis pigmentosa. J Neurochem 2014; 130:227-40. [PMID: 24593181 DOI: 10.1111/jnc.12704] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 01/08/2023]
Abstract
Subretinal injections with glial cell line-derived neurotrophic factor (GDNF) rescue morphology as well as function of rod cells in mouse and rat animal models of retinitis pigmentosa. At the same time, it is postulated that this effect is indirect, mediated by activation of retinal Müller glial (RMG) cells. Here, we show that Cyr61/CCN1, one of the secreted proteins up-regulated in primary RMG after glial cell line-derived neurotrophic factor stimulation, provides neuroprotective and pro-survival capacities: Recombinant Cyr61 significantly reduced photoreceptor (PR) cells death in organotypic cultures of Pde6b(rd1) retinas. To identify stimulated pathways in the retina, we treated Pde6b(rd1) retinal explants with Cyr61 and observed an overall increase in activated Erk1/2 and Stat3 signalling molecules characterized by activation-site-specific phosphorylation. To identify Cyr61 retinal target cells, we isolated primary porcine PR, RMG and retinal pigment epithelium (RPE) cells and exposed them separately to Cyr61. Here, RMG as well as RPE cells responded with induced phosphorylation of Erk1/2, Stat3 and Akt. In PR, no increase in phosphorylation in any of the studied proteins was detected, suggesting an indirect neuroprotective effect of Cyr61. Cyr61 may thus act as an endogenous pro-survival factor for PR, contributing to the complex repertoire of neuroprotective activities generated by RMG and RPE cells. We propose the following model of Cyr61 neuroprotection within the retina: Cyr61 stimulates retinal Müller glial (RMG) and retinal pigment epithelium (RPE) cells and activates PI3K/Akt, mitogen-activated protein kinase(MAPK)/Erk and Janus kinase(JAK)/Stat-signalling pathways in these cells. Phosphorylated Stat3 and Erk1/2 presumably translocate to the nucleus, induce transcriptional changes, which increase secretion of neuroprotective agents that protect photoreceptors (PR) from mutation-induced death.
Collapse
Affiliation(s)
- Joanna Kucharska
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany; Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
This review outlines the pearls and pitfalls of calcitonin-gene related protein (CGRP) immunohistochemistry of the brain. Pearls In 1985, CGRP was first described in cerebral arteries using immunohistochemistry. Since then, cerebral CGRP (and, using novel antibodies, its receptor components) has been widely scrutinized. Here, we describe the distribution of cerebral CGRP and pay special attention to the surprising reliability of results over time. Pitfalls Pitfalls might include a fixation procedure, antibody clone and dilution, and interpretation of results. Standardization of staining protocols and true quantitative methods are lacking. The use of computerized image analysis has led us to believe that our examination is objective. However, in the steps of performing such an analysis, we make subjective choices. By pointing out these pitfalls, we aim to further improve immunohistochemical quality. Recommendations Having a clear picture of the tissue/cell morphology is a necessity. A primary morphological evaluation with, for example, hematoxylin-eosin, helps to ensure that small changes are not missed and that background and artifactual changes, which may include vacuoles, pigments, and dark neurons, are not over-interpreted as compound-related changes. The antigen-antibody reaction appears simple and clear in theory, but many steps might go wrong. Remember that methods including the antigen-antibody complex rely on handling/fixation of tissues or cells, antibody shipping/storing issues, antibody titration, temperature/duration of antibody incubation, visualization of the antibody and interpretation of the results. Optimize staining protocols to the material you are using.
Collapse
Affiliation(s)
- Karin Warfvinge
- Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup University Hospital, Denmark
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Sweden
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup University Hospital, Denmark
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Sweden
| |
Collapse
|
41
|
Huang JF, Shang L, Zhang MQ, Wang H, Chen D, Tong JB, Huang H, Yan XX, Zeng LP, Xiong K. Differential neuronal expression of receptor interacting protein 3 in rat retina: involvement in ischemic stress response. BMC Neurosci 2013; 14:16. [PMID: 23374330 PMCID: PMC3570281 DOI: 10.1186/1471-2202-14-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 01/31/2013] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Receptor-interacting protein 3 (RIP3), a member of RIP family proteins, has been shown to participate in programmed necrosis or necroptosis in cell biology studies. Evidence suggests that necroptosis may be a mode of neuronal death in the retina. RESULTS In the present study we determined the expression of RIP3 in normal rat retina and its changes following acute high intraocular pressure (aHIOP). RIP3 immunoreactivity (IR) was largely present in the inner retinal layers, localized to subsets of cells expressing neuron-specific nuclear antigen (NeuN), parvalbumin and calbindin in the ganglion cell layer (GCL) and inner nuclear layer (INL). No double labeling was detected for RIP3 with PKC-α or rhodopsin. RIP3 immunoreactivity was increased in the GCL at 6 hr and 12 hr, but reduced at 24 hr in the retina, without apparent alteration in laminar or cellular distribution pattern. Western blot analysis confirmed the above time-dependent alteration in RIP3 protein expression. RIP3 expressing cells frequently co-localized with propidium iodide (PI). A few co-localized cells were observed between RIP3 and Bax or cleaved caspase-3 in the GCL in 12 hr following aHIOP. CONCLUSIONS The results indicate that RIP3 is expressed differentially in retinal neurons in adult rats, including subsets of ganglion cells, amacrine and horizontal cells. RIP3 protein levels are elevated rapidly following aHIOP. RIP3 labeling co-localized with PI, Bax or cleaved caspase-3 among cells in the ganglion cell layer following aHIOP, which suggest its involvement of RIP3 in neuronal responses to acute ischemic insults.
Collapse
Affiliation(s)
- Ju-Fang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Lei Shang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Meng-Qi Zhang
- Eight-year Clinical Medicine Program, Class 2002, Central South University Xiangya School of Medicine, Changsha, Hunan, 410013, China
| | - Hui Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Jian-Bin Tong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - He Huang
- Department of Histology and Embrology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Le-Ping Zeng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
42
|
Taylor L, Arnér K, Engelsberg K, Ghosh F. Effects of glial cell line-derived neurotrophic factor on the cultured adult full-thickness porcine retina. Curr Eye Res 2013; 38:503-15. [PMID: 23373824 DOI: 10.3109/02713683.2013.763989] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The tissue culture system offers a possibility to study factors involved in neuronal survival which may be important in a transplantation paradigm. The use of adult tissue in this setting poses specific challenges since traditionally mature neurons survive poorly in vitro. In the current paper, we have explored effects of glial cell line-derived neurotrophic factor (GDNF) on cultures of adult porcine retina. METHODS Full-thickness retinal sheets were isolated from adult porcine eyes and were cultured for 5 or 10 days under standard culture conditions with or without GDNF added to the culture medium. The grafts were analyzed morphologically using hematoxylin and eosin staining, immunohistochemistry and transferase dUTP nick end labeling (TUNEL) labeling. Retinas derived from normal adult porcine eyes were used as controls. RESULTS After 5 d in vitro (DIV), cultures without GDNF showed dissolving retinal lamination while specimens cultured with GDNF displayed the normal laminated morphology. At 10 DIV, the untreated cultures had been reduced to a degenerated cell mass, while the GDNF-cultured specimens retained thin but distinguishable retinal layers. TUNEL labeling confirmed these results. Immunohistochemical labelings and outer nuclear layer thickness measurements showed an increased preservation of photoreceptors and horizontal cells in the GDNF-treated group. CONCLUSIONS The procedure of culturing retina involves several steps causing severe traumatic effects on the tissue, such as ganglion cell axotomy, interruption of the blood flow as well as separation from the retinal pigment epithelium (RPE). In this paper, we have shown that addition of GDNF in the culture medium attenuates the effect of these steps, resulting in enhanced preservation of several retinal neuronal subtypes. The results may be of importance for research in retinal transplantation where storage time of the donor tissue prior to transplantation is a critical issue.
Collapse
Affiliation(s)
- Linnéa Taylor
- Department of Ophthalmology, Lund University Hospital, Lund, Sweden.
| | | | | | | |
Collapse
|
43
|
Yang Y, Mao D, Chen X, Zhao L, Tian Q, Liu C, Zhou BLS. Decrease in retinal neuronal cells in streptozotocin-induced diabetic mice. Mol Vis 2012; 18:1411-20. [PMID: 22690119 PMCID: PMC3369894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 05/29/2012] [Indexed: 10/24/2022] Open
Abstract
PURPOSE Little is known about retinal neuronal loss in the retinas of diabetic mice. The purpose of this study was the quantitative assessment of retinal neural cell number in diabetic mice. METHODS Five-week-old C57BL/6 mice were used as a diabetic model with streptozotocin. Mice were studied over the course of 6 and 12 weeks after the onset of diabetes. Intraocular pressure (IOP) was measured with a noninvasive TonoLab tonometer. The retinal ganglion cells (RGCs) were counted at two different time points after the induction of diabetes and examined using the immunofluorescence technique and quantitative analysis. RESULTS The diabetic mice had significantly elevated IOP levels at 6 and 12 weeks after the onset of diabetes compared with the age-matched control mice (p<0.01 and p<0.001, respectively). The temporal course of Brn3a+ RGC and Neuronal Nuclei+RGC (NeuN+ RGC) loss induced by intraperitoneal injection of streptozotocin followed a similar trend. At 6 and 12 weeks after the onset of diabetes, the number of Brn3a+ RGCs (p<0.05 at 6 weeks; p<0.001 at 12 weeks) and NeuN+ RGCs (p<0.05 at 6 weeks; p<0.001 at 12 weeks) was significantly lower in diabetic mice than age-matched control mice. In the retinal flatmounts, the number of Brn3a+ RGCs (p<0.05 at 6 weeks, p<0.01 at 12 weeks) was also significantly lower in diabetic mice than control mice. The IOP in diabetic mice was negatively related with RGCs in cross sections. The cut-off value of IOP was 14.2 mmHg for diabetes. CONCLUSIONS This is a specific quantitative study of neural cell loss in the retina during diabetes. These data suggest that retinal neural cell reduction occurs in diabetic mice. It indicates that RGC loss may be an important component of diabetic retinopathy.
Collapse
|
44
|
Ghosh F, Johansson K. Neuronal and glial alterations in complex long-term rhegmatogenous retinal detachment. Curr Eye Res 2012; 37:704-11. [PMID: 22578195 DOI: 10.3109/02713683.2012.663856] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To explore neuronal and glial alterations in eyes with complex long-term rhegmatogenous retinal detachment (RRD). METHODS Morphological analysis was performed on eight retinal specimens derived from patients treated with peripheral retinectomy for RRD complicated by retinal shortening or retinal thinning. All eyes had undergone previous surgeries including silicone oil tamponade, and had a median total detachment time of 2.5 months (range 2-12). Specimens were examined with hematoxylin and eosin staining and immunohistochemistry directed against activated Müller cells, ganglion cells, rod bipolar cells, and photoreceptors. RESULTS Retinal specimens displayed severe loss of photoreceptor and rod bipolar cells. Remaining neuronal cells exhibited disorganized perikarya and neurites with disruption of the normal retinal lamination. Müller cell activation was evident in all specimens with subretinal and epiretinal hypertrophy present in tissue derived from shortened retinal detachments. CONCLUSION Long-term RRD leads to retinal remodeling characterized by loss of first and second order retinal neurons, disruption of the entire retinal lamination and gliosis. The severity of histopathological changes indicates that anatomical as well as functional recovery of the involved retina is precarious. The findings may be important when devising surgical strategies to avoid permanent retinal detachment.
Collapse
Affiliation(s)
- Fredrik Ghosh
- Department of Ophthalmology, Lund University Hospital, Sweden.
| | | |
Collapse
|
45
|
Jeong C, Shin T. Immunohistochemical localization of protein kinase C (PKC) beta I in the pig retina during postnatal development. Acta Histochem 2012; 114:18-23. [PMID: 21474165 DOI: 10.1016/j.acthis.2011.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 01/23/2011] [Accepted: 01/24/2011] [Indexed: 01/07/2023]
Abstract
In order to investigate the expression of protein kinase C (PKC) beta I in the retinas of pigs during postnatal development, we analyzed retinas sampled from 3-day-old and 6-month-old pigs by Western blotting and immunohistochemistry. Western blot analysis detected the expression of PKC beta I in the retinas of 3-day-old piglets and it was increased significantly in the retinas of 6-month-old adult pigs. Immunohistochemical staining showed PKC beta I in the retinas of both groups. Immunohistochemistry of 3-day-old retinas revealed weak PKC beta I reactivity in the ganglion cell layer, inner plexiform layer, inner nuclear cell layer, outer plexiform layer and rod and cone cell layer. In the 6-month-old pig retina, the cellular localization of PKC beta I immunostaining was similar to that of the 3-day-old retina, where PKC beta I was localized in some glial fibrillary acidic protein-positive cells, glutamine synthetase-positive cells, parvalbumin-positive cells, and PKC alpha-positive cells in the retina. This is the first study to show the expression and cellular localization of PKC beta I in the retina of pigs with development, and these results suggest that PKC beta I, in accordance with PKC alpha, plays important roles in signal transduction pathways in the pig retina with development.
Collapse
|
46
|
Gesslein B, Håkansson G, Gustafsson L, Ekström P, Malmsjö M. Tumor necrosis factor and its receptors in the neuroretina and retinal vasculature after ischemia-reperfusion injury in the pig retina. Mol Vis 2010; 16:2317-27. [PMID: 21152396 PMCID: PMC2994763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 10/31/2010] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Numerous studies have been performed aimed at limiting the extent of retinal injury after ischemia, but there is still no effective pharmacological treatment available. The aim of the present study was to examine the role of tumor necrosis factor (TNF)α and its receptors (TNF-R1 and TNF-R2), especially considering the neuroretina and the retinal vasculature since the retinal blood vessels are key organs in circulatory failure. METHODS Retinal ischemia was induced in pigs by elevating the intraocular pressure to 80 mmHg in one eye, while the other eye served as a control (sham-operated). One hour of ischemia was followed by 5 or 12 h of reperfusion. Retinal circulation was examined in vivo by fundus imaging and fluorescein angiography. TNF-α levels were measured in the vitreous using an angiogenesis antibody array test. The presence and amounts of TNF-α, TNF-R1, and TNF-R2 were investigated in the neuroretina and in the retinal blood vessels, using immunofluorescence staining and real-time PCR techniques. RESULTS Fundus imaging showed obstructed blood flow when ischemia was induced, and reperfusion was clearly visualized using fluorescein angiography. Ischemia resulted in elevated levels of TNF-α protein in the vitreous and TNF-α mRNA in the neuroretina. TNF-α immunofluorescence staining was localized to the Müller cells and the outer plexiform layer of the neuroretina. The expression of TNF-R1 and TNF-R2 mRNA was increased in both the neuroretina and retinal arteries following ischemia-reperfusion. Immunofluorescence double staining for TNF-R1 and either smooth muscle actin or 4',6-diamidino-2-phenylindole (DAPI) indicated expression in the cell membranes of the vascular smooth muscle cells. Double staining with TNF-R1 and calbindin showed localization to the horizontal cells in the outer plexiform layer of the neuroretina. CONCLUSIONS Retinal ischemia results in increased expression of TNF-α and its receptors (TNF-R1 and TNF-R2). Cellular signaling pathways involving TNF may be important in the development of retinal injury following ischemia and thus an interesting target for future development of pharmacological therapeutics.
Collapse
|