1
|
Almeida-Nunes DL, Nunes M, Osório H, Ferreira V, Lobo C, Monteiro P, Abreu MH, Bartosch C, Silvestre R, Dinis-Oliveira RJ, Ricardo S. Ovarian cancer ascites proteomic profile reflects metabolic changes during disease progression. Biochem Biophys Rep 2024; 39:101755. [PMID: 38974022 PMCID: PMC11225207 DOI: 10.1016/j.bbrep.2024.101755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/27/2024] [Accepted: 06/09/2024] [Indexed: 07/09/2024] Open
Abstract
Ovarian cancer (OC) patients develop ascites, an accumulation of ascitic fluid in the peritoneal cavity anda sign of tumour dissemination within the peritoneal cavity. This body fluid is under-researched, mainly regarding the ascites formed during tumour progression that have no diagnostic value and, therefore, are discarded. We performed a discovery proteomics study to identify new biomarkers in the ascites supernatant of OC patients. In this preliminary study, we analyzed a small amount of OC ascites to highlight the importance of not discarding such biological material during treatment, which could be valuable for OC management. Our findings reveal that OC malignant ascitic fluid (MAF) displays a proliferative environment that promotes the growth of OC cells that shift the metabolic pathway using alternative sources of nutrients, such as the cholesterol pathway. Also, OC ascites drained from patients during treatment showed an immunosuppressive environment, with up-regulation of proteins from the signaling pathways of IL-4 and IL-13 and down-regulation from the MHC-II. This preliminary study pinpointed a new protein (Transmembrane Protein 132A) in the OC context that deserves to be better explored in a more extensive cohort of patients' samples. The proteomic profile of MAF from OC patients provides a unique insight into the metabolic kinetics of cancer cells during disease progression, and this information can be used to develop more effective treatment strategies.
Collapse
Affiliation(s)
- Diana Luísa Almeida-Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135, Porto, Portugal
- Associate Laboratory I4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116, Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
| | - Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135, Porto, Portugal
- Associate Laboratory I4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116, Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313, Porto, Portugal
| | - Hugo Osório
- Proteomics Scientific Platform, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135, Porto, Portugal
- Department of Pathology, Faculty of Medicine from University of Porto (FMUP), 4200-319, Porto, Portugal
| | - Verónica Ferreira
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
| | - Cláudia Lobo
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
| | - Paula Monteiro
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
| | - Miguel Henriques Abreu
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
| | - Carla Bartosch
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
- Cancer Biology & Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (CI-IPO-Porto) / Health Research Network (RISE@CI-IPO-Porto), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine from University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's – PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory I4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116, Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
- UCIBIO - Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
- FOREN – Forensic Science Experts, Dr. Mário Moutinho Avenue, No. 33-A, 1400-136, Lisbon, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135, Porto, Portugal
- Associate Laboratory I4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116, Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
| |
Collapse
|
2
|
Huang S, Jiang Y, Li J, Mao L, Qiu Z, Zhang S, Jiang Y, Liu Y, Liu W, Xiong Z, Zhang W, Liu X, Zhang Y, Bai X, Guo B. Osteocytes/Osteoblasts Produce SAA3 to Regulate Hepatic Metabolism of Cholesterol. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307818. [PMID: 38613835 PMCID: PMC11199997 DOI: 10.1002/advs.202307818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/19/2024] [Indexed: 04/15/2024]
Abstract
Hypercholesterolaemia is a systemic metabolic disease, but the role of organs other than liver in cholesterol metabolism is unappreciated. The phenotypic characterization of the Tsc1Dmp1 mice reveal that genetic depletion of tuberous sclerosis complex 1 (TSC1) in osteocytes/osteoblasts (Dmp1-Cre) triggers progressive increase in serum cholesterol level. The resulting cholesterol metabolic dysregulation is shown to be associated with upregulation and elevation of serum amyloid A3 (SAA3), a lipid metabolism related factor, in the bone and serum respectively. SAA3, elicited from the bone, bound to toll-like receptor 4 (TLR4) on hepatocytes to phosphorylate c-Jun, and caused impeded conversion of cholesterol to bile acids via suppression on cholesterol 7 α-hydroxylase (Cyp7a1) expression. Ablation of Saa3 in Tsc1Dmp1 mice prevented the CYP7A1 reduction in liver and cholesterol elevation in serum. These results expand the understanding of bone function and hepatic regulation of cholesterol metabolism and uncover a potential therapeutic use of pharmacological modulation of SAA3 in hypercholesterolaemia.
Collapse
Affiliation(s)
- Shijiang Huang
- State Key Laboratory of Organ Failure ResearchDepartment of Cell BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Yuanjun Jiang
- State Key Laboratory of Organ Failure ResearchDepartment of Cell BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Jing Li
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Linlin Mao
- State Key Laboratory of Organ Failure ResearchDepartment of Cell BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Zeyou Qiu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
- Equipment Material DepartmentWest China Xiamen Hospital of Sichuan UniversityXiamenFujian361000China
| | - Sheng Zhang
- State Key Laboratory of Organ Failure ResearchDepartment of Cell BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Yuhui Jiang
- State Key Laboratory of Organ Failure ResearchDepartment of Cell BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Yong Liu
- State Key Laboratory of Organ Failure ResearchDepartment of Cell BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Wen Liu
- State Key Laboratory of Organ Failure ResearchDepartment of Cell BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Zhi Xiong
- State Key Laboratory of Organ Failure ResearchDepartment of Cell BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Wuju Zhang
- State Key Laboratory of Organ Failure ResearchDepartment of Cell BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
- Central LaboratoryThe Fifth Affiliated HospitalSouthern Medical UniversityGuangzhouGuangdong510900China
| | - Xiaolin Liu
- State Key Laboratory of Organ Failure ResearchDepartment of Cell BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Yue Zhang
- State Key Laboratory of Organ Failure ResearchDepartment of Cell BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Xiaochun Bai
- State Key Laboratory of Organ Failure ResearchDepartment of Cell BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative DiseasesThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdong510630China
| | - Bin Guo
- State Key Laboratory of Organ Failure ResearchDepartment of Cell BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
- The Tenth Affiliated HospitalSouthern Medical UniversityDongguanGuangdong523018China
| |
Collapse
|
3
|
Li Q, Tang M, Zhao S, Yang J, Meng Y, Meng C, Ren L, Hu W. SAA1 regulated by S1P/S1PR1 promotes the progression of ESCC via β-catenin activation. Discov Oncol 2024; 15:66. [PMID: 38446289 PMCID: PMC10917729 DOI: 10.1007/s12672-024-00923-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/29/2024] [Indexed: 03/07/2024] Open
Abstract
Serum amyloid A1 (SAA1), an inflammation-related molecule, is associated with the malignant progression of many tumors. This study aimed to investigate the role of SAA1 in the progression of esophageal squamous cell carcinoma (ESCC) and its molecular mechanisms. The expression of SAA1 in ESCC tissues and cell lines was analyzed using bioinformatics analysis, western blotting, and reverse transcription-quantitative PCR (RT‒qPCR). SAA1-overexpressing or SAA1-knockdown ESCC cells were used to assess the effects of SAA1 on the proliferation, migration, apoptosis of cancer cells and the growth of xenograft tumors in nude mice. Western blotting, immunofluorescence and RT‒qPCR were used to investigate the relationship between SAA1 and β-catenin and SAA1 and sphingosine 1-phosphate (S1P)/sphingosine 1-phosphate receptor 1 (S1PR1). SAA1 was highly expressed in ESCC tissues and cell lines. Overexpression of SAA1 significantly promoted the proliferation, migration and the growth of tumors in nude mice. Knockdown of SAA1 had the opposite effects and promoted the apoptosis of ESCC cells. Moreover, SAA1 overexpression promoted the phosphorylation of β-catenin at Ser675 and increased the expression levels of the β-catenin target genes MYC and MMP9. Knockdown of SAA1 had the opposite effects. S1P/S1PR1 upregulated SAA1 expression and β-catenin phosphorylation at Ser675 in ESCC cells. In conclusion, SAA1 promotes the progression of ESCC by increasing β-catenin phosphorylation at Ser675, and the S1P/S1PR1 pathway plays an important role in its upstream regulation.
Collapse
Affiliation(s)
- Qianqian Li
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
- Department of Immunology, North Sichuan Medical College, Nanchong, 637100, China
| | - Maolin Tang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
- Department of Immunology, North Sichuan Medical College, Nanchong, 637100, China
| | - Shisheng Zhao
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
- Department of Immunology, North Sichuan Medical College, Nanchong, 637100, China
| | - Junjie Yang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Yuanlin Meng
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Chunmei Meng
- Department of Immunology, North Sichuan Medical College, Nanchong, 637100, China
| | - Ling Ren
- Department of Immunology, North Sichuan Medical College, Nanchong, 637100, China
| | - Weimin Hu
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China.
- Department of Immunology, North Sichuan Medical College, Nanchong, 637100, China.
| |
Collapse
|
4
|
Zhao Y, Chen Y, Wan Q, Xiao C, Guo Z, Du X, Hu Y, Zheng A, Cao Z. Identification of SAA1 as a novel metastasis marker in ovarian cancer and development of a graphene-based detection platform for early assessment. J Cancer Res Clin Oncol 2023; 149:16391-16406. [PMID: 37707574 DOI: 10.1007/s00432-023-05296-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Ovarian cancer (OC) is a prevalent gynecological malignancy with the highest mortality rate, which generally diagnosed at late stages due to the lack of effective early screening methods and the nonspecific symptoms. Hence, here we aim to identify new metastasis markers and develop a novel detection method with the characteristics of high sensitivity, rapid detection, high specificity, and low cost when compared with other conventional detection technologies. METHODS Blood from OC patients with or without metastasis were collected and analyzed by 4D Label free LC - MS/MS. Surgically resect samples from OC patients were collected for Single cell RNA sequencing (sc-RNA seq). Short hairpin RNA (shRNA) was used to silence SAA1 expression in SKOV3 and ID8 to verify the relationship between endogenous SAA1 and tumor invasion or metastasis. The functional graphene chips prepared by covalent binding were used for SAA1 detection. RESULTS In our study, we identified Serum Amyloid A1 (SAA1) as a hematological marker of OC metastasis by comprehensive analysis of proteins in plasma from OC patients with or without metastasis using 4D Label free LC - MS/MS and gene expression patterns from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Further validation using tumor tissues and plasma from human OC and mouse OC model confirmed the correlation between SAA1 and tumor metastasis. Importantly, sc-RNA seq of human OC samples revealed that SAA1 was specifically expressed in tumor cells and upregulated in the metastasis group. The functional role of SAA1 in metastasis was demonstrated through experiments in vitro and in vivo. Based on these findings, we designed and investigated a graphene-based platform for SAA1 detection to predict the risk of metastasis of OC patients. CONCLUSION Our study suggests that SAA1 is a biomarker of OC metastasis, and we have developed a rapid and highly sensitive platform using graphene chips to detection of plasma SAA1 for the early assessment of metastasis in OC patients.
Collapse
Affiliation(s)
- Yilin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 Section 3, Renmin South Road, Chengdu, 610041, People's Republic of China
| | - Yao Chen
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qi Wan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 Section 3, Renmin South Road, Chengdu, 610041, People's Republic of China
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Chengju Xiao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 Section 3, Renmin South Road, Chengdu, 610041, People's Republic of China
| | - Zhiqing Guo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 Section 3, Renmin South Road, Chengdu, 610041, People's Republic of China
| | - Xinjie Du
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 Section 3, Renmin South Road, Chengdu, 610041, People's Republic of China
| | - Yan Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 Section 3, Renmin South Road, Chengdu, 610041, People's Republic of China.
| | - Ai Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 Section 3, Renmin South Road, Chengdu, 610041, People's Republic of China.
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zhongwei Cao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 Section 3, Renmin South Road, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
5
|
Haberecht-Müller S, Krüger E, Fielitz J. Out of Control: The Role of the Ubiquitin Proteasome System in Skeletal Muscle during Inflammation. Biomolecules 2021; 11:biom11091327. [PMID: 34572540 PMCID: PMC8468834 DOI: 10.3390/biom11091327] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
The majority of critically ill intensive care unit (ICU) patients with severe sepsis develop ICU-acquired weakness (ICUAW) characterized by loss of muscle mass, reduction in myofiber size and decreased muscle strength leading to persisting physical impairment. This phenotype results from a dysregulated protein homeostasis with increased protein degradation and decreased protein synthesis, eventually causing a decrease in muscle structural proteins. The ubiquitin proteasome system (UPS) is the predominant protein-degrading system in muscle that is activated during diverse muscle atrophy conditions, e.g., inflammation. The specificity of UPS-mediated protein degradation is assured by E3 ubiquitin ligases, such as atrogin-1 and MuRF1, which target structural and contractile proteins, proteins involved in energy metabolism and transcription factors for UPS-dependent degradation. Although the regulation of activity and function of E3 ubiquitin ligases in inflammation-induced muscle atrophy is well perceived, the contribution of the proteasome to muscle atrophy during inflammation is still elusive. During inflammation, a shift from standard- to immunoproteasome was described; however, to which extent this contributes to muscle wasting and whether this changes targeting of specific muscular proteins is not well described. This review summarizes the function of the main proinflammatory cytokines and acute phase response proteins and their signaling pathways in inflammation-induced muscle atrophy with a focus on UPS-mediated protein degradation in muscle during sepsis. The regulation and target-specificity of the main E3 ubiquitin ligases in muscle atrophy and their mode of action on myofibrillar proteins will be reported. The function of the standard- and immunoproteasome in inflammation-induced muscle atrophy will be described and the effects of proteasome-inhibitors as treatment strategies will be discussed.
Collapse
Affiliation(s)
- Stefanie Haberecht-Müller
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany;
- Correspondence: (E.K.); (J.F.)
| | - Jens Fielitz
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, 17475 Greifswald, Germany
- Correspondence: (E.K.); (J.F.)
| |
Collapse
|
6
|
Yamamoto H, Yokota A, Suzuki N, Tachibana M, Tsutsumi Y. Gastric perforation caused by secondary systemic amyloidosis. Clin Case Rep 2021; 9:e04254. [PMID: 34084518 PMCID: PMC8142406 DOI: 10.1002/ccr3.4254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 11/06/2022] Open
Abstract
Amyloid A amyloidosis secondary to chronic inflammation involves systemic organs and tissues, including the gastrointestinal tract. In the present case, massive amyloid deposit caused gastric perforation. IgM co-deposition in the glomeruli was another finding of note.
Collapse
Affiliation(s)
- Hiroto Yamamoto
- Department of General MedicineShimada Municipal HospitalShimadaJapan
- Department of Diagnostic PathologyShimada Municipal HospitalShimadaJapan
| | - Akihiko Yokota
- Department of GastroenterologyShimada Municipal HospitalShimadaJapan
| | - Noriyuki Suzuki
- Department of NephrologyShimada Municipal HospitalShimadaJapan
| | | | - Yutaka Tsutsumi
- Department of Diagnostic PathologyShimada Municipal HospitalShimadaJapan
- Diagnostic Pathology ClinicPathos TsutsumiInazawaJapan
| |
Collapse
|
7
|
Janciauskiene S, Wrenger S, Günzel S, Gründing AR, Golpon H, Welte T. Potential Roles of Acute Phase Proteins in Cancer: Why Do Cancer Cells Produce or Take Up Exogenous Acute Phase Protein Alpha1-Antitrypsin? Front Oncol 2021; 11:622076. [PMID: 33680966 PMCID: PMC7933442 DOI: 10.3389/fonc.2021.622076] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/06/2021] [Indexed: 01/08/2023] Open
Abstract
An association between acute-phase proteins (APPs) and cancer has long been established and there are numerous reports correlating altered levels and/or molecular forms of APPs with different types of cancers. Many authors have shown a positive correlation between high levels of APPs, like alpha1-antitrypsin (AAT), and unfavorable clinical outcome in cancers. Conversely, others proposed that high levels of APPs are probably just a part of nonspecific inflammatory response to cancer development. However, this might not be always true, because many cancerous cells produce or take up exogenous APPs. What is the biological significance of this and what benefit do cancer cells have from these proteins remains largely unknown. Recent data revealed that some APPs, including AAT, are able to enhance cancer cell resistance against anticancer drug-induced apoptosis and autophagy. In this review, we specifically discuss our own findings and controversies in the literature regarding the role of AAT in cancer.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Sabine Wrenger
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Steffen Günzel
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Anna Ricarda Gründing
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Heiko Golpon
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
8
|
Algarra MA, Fita MJJ, Sandiego S, Aguilar HA, Álvarez P, Quispe M, Salvador A, Egido A, Lavernia J, Machado I, Rubio-Briones J, Climent MÁ. Advanced systemic amyloidosis secondary to metastatic renal cell carcinoma. Ecancermedicalscience 2020; 14:1156. [PMID: 33574901 PMCID: PMC7864688 DOI: 10.3332/ecancer.2020.1156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 01/05/2023] Open
Abstract
Secondary amyloidosis is a rare complex complication related to chronic inflammatory disease. This complication is sparsely associated to malignant neoplasms. Renal cell carcinoma (RCC) is the most common solid organ malignancy related with this paraneoplastic syndrome. Some case reports have described stabilisation or even remission of amyloidosis with cytoreductive nephrectomy. Majority of those reports were based on locally advanced RCC. We report the first case of early aggressive systemic secondary amyloidosis in high-volume metastatic RCC. The subject was diagnosed with metastatic RCC within 6 months of secondary amyloidosis; on month 5 of initiation of targeted therapy (pazopanib) developed nephrotic syndrome with a heavy proteinuria (>18 g/day), severe hypoalbuminaemia (1.53 g/dL), intense and progressive oedema, severe pancolitis and mild dyspnoea with hypotension. A colon biopsy and the immunohistochemistry confirmed the histological diagnosis of a secondary amyloidosis. The multidisciplinary tumour board decided to perform cytoreductive nephrectomy in order to reduce the pro-inflammatory status. Pathology report showed a complete resection of clear cell RCC plus renal amyloid deposits. The patient died within 4 days of surgery due to multiorgan failure.
Collapse
Affiliation(s)
- Maria Asunción Algarra
- Servicio de Oncología Médica, Fundación Instituto Valenciano de Oncología (IVO), Calle Profesor Beltrán Báguena, 8, 46009, Valencia, Spain.,https://orcid.org/0000-0003-2105-8597
| | - Maria José Juan Fita
- Servicio de Oncología Médica, Fundación Instituto Valenciano de Oncología (IVO), Calle Profesor Beltrán Báguena, 8, 46009, Valencia, Spain
| | - Sergio Sandiego
- Servicio de Oncología Médica, Fundación Instituto Valenciano de Oncología (IVO), Calle Profesor Beltrán Báguena, 8, 46009, Valencia, Spain
| | - Héctor Augusto Aguilar
- Servicio de Oncología Médica, Fundación Instituto Valenciano de Oncología (IVO), Calle Profesor Beltrán Báguena, 8, 46009, Valencia, Spain
| | - Pablo Álvarez
- Servicio de Oncología Médica, Fundación Instituto Valenciano de Oncología (IVO), Calle Profesor Beltrán Báguena, 8, 46009, Valencia, Spain
| | - Mateo Quispe
- Servicio de Oncología Médica, Fundación Instituto Valenciano de Oncología (IVO), Calle Profesor Beltrán Báguena, 8, 46009, Valencia, Spain
| | - Antonio Salvador
- Servicio de Cardiología, Fundación Instituto Valenciano de Oncología (IVO), Calle Profesor Beltrán Báguena, 8, 46009, Valencia, Spain
| | - Adoración Egido
- Servicio de Medicina Interna, Fundación Instituto Valenciano de Oncología (IVO), Calle Profesor Beltrán Báguena, 8, 46009, Valencia, Spain
| | - Javier Lavernia
- Servicio de Oncología Médica, Fundación Instituto Valenciano de Oncología (IVO), Calle Profesor Beltrán Báguena, 8, 46009, Valencia, Spain
| | - Isidro Machado
- Servicio de Anatomía Patológica, Fundación Instituto Valenciano de Oncología (IVO), Calle Profesor Beltrán Báguena, 8, 46009, Valencia, Spain
| | - José Rubio-Briones
- Servicio de Urología, Fundación Instituto Valenciano de Oncología (IVO), Calle Profesor Beltrán Báguena, 8, 46009, Valencia, Spain
| | - Miguel Ángel Climent
- Servicio de Oncología Médica, Fundación Instituto Valenciano de Oncología (IVO), Calle Profesor Beltrán Báguena, 8, 46009, Valencia, Spain
| |
Collapse
|
9
|
Zhang W, Kong HF, Gao XD, Dong Z, Lu Y, Huang JG, Li H, Yang YP. Immune infiltration-associated serum amyloid A1 predicts favorable prognosis for hepatocellular carcinoma. World J Gastroenterol 2020; 26:5287-5301. [PMID: 32994688 PMCID: PMC7504249 DOI: 10.3748/wjg.v26.i35.5287] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Serum amyloid A1 (SAA1) is an acute-phase protein involved in acute or chronic hepatitis. Its function is still controversial. In addition, the effect of the expression of SAA1 and its molecular function on the progression in hepatocellular carcinoma (HCC) is still unclear.
AIM To demonstrate the expression of SAA1 and its effect on the prognosis in HCC and explain further the correlation of SAA1 and immunity pathways.
METHODS SAA1 expression in HCC was conducted with The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) in GEPIA tool, and the survival analysis based on the SAA1 expression level was achieved in the Kaplan-Meier portal. The high or low expression group was then drawn based on the median level of SAA1 expression. The correlation of SAA1 and the clinical features were conducted in the UALCAN web-based portal with TCGA-LIHC, including tumor grade, patient disease stage, and the TP53 mutation. The correlation analysis between SAA1 expression and TP53 mutation was subjected to the TCGA portal. The tumor purity score and the immune score were analyzed with CIBERSORT. The correlation of SAA1 expression and tumor-infiltrating lymphocytes was achieved in TISIDB web-based integrated repository portal for tumor-immune system interactions. GSE125336 dataset was used to test the SAA1 expression in the responsive or resistant group with anti-PD1 therapy. Gene set enrichment analysis was applied to evaluate the gene enrichment signaling pathway in HCC. The similar genes of SAA1 in HCC were identified in GEPIA, and the protein-protein interaction of SAA1 was conducted in the Metascape tool. The expression of C-X-C motif chemokine ligand 2, C-C motif chemokine ligand 23, and complement C5a receptor 1 was studied and overall survival analysis in HCC was conducted in GEPIA and Kaplan-Meier portal, respectively.
RESULTS SAA1 expression was decreased in HCC, and lower SAA1 expression predicted poorer overall survival, progression-free survival, and disease-specific survival. Furthermore, SAA1 expression was further decreased with increased tumor grade and patient disease stage. Also, SAA1 expression was further downregulated in patients with TP53 mutation compared with patients with wild type TP53. SAA1 expression was negatively correlated with the TP53 mutation. Lower SAA1 predicted poorer survival rate, especially in the patients with no hepatitis virus infection, other than those with hepatitis virus infection. Moreover, the SAA1 expression was negatively correlated with tumor purity. In contrast, SAA1 expression was positively correlated with the immune score in HCC, and the correlation analysis between SAA1 expression and tumor-infiltrating lymphocytes also showed a positive correlation in HCC. Decreased SAA1 was closely associated with the immune tolerance of HCC. C-X-C motif chemokine ligand 2 and C-C motif chemokine ligand 23 genes were identified as the hub genes associated with SAA1, which could also serve as favorable prognosis markers for HCC.
CONCLUSION SAA1 is downregulated in the liver tumor, and it is closely involved in the progression of HCC. Lower SAA1 expression indicates lower survival rate, especially for those patients without hepatitis virus infection. Lower SAA1 expression also suggests lower immune infiltrating cells, especially for those with immune cells exerting anti-tumor immune function. SAA1 expression is closely associated with the anti-tumor immune pathways.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Diagnosis and Research of Liver Tumor, Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100191, China
| | - Hui-Fang Kong
- Center for Diagnosis and Research of Liver Tumor, Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100191, China
| | - Xu-Dong Gao
- Center for Diagnosis and Research of Liver Tumor, Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100191, China
| | - Zheng Dong
- Center for Diagnosis and Research of Liver Tumor, Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100191, China
| | - Ying Lu
- Center for Diagnosis and Research of Liver Tumor, Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100191, China
| | - Jia-Gan Huang
- Center for Diagnosis and Research of Liver Tumor, Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100191, China
| | - Hong Li
- Department of Infectious Diseases, the Affiliated Hospital of Guizhou Medical University, Guiyang 550001, Guizhou Province, China
| | - Yong-Ping Yang
- Center for Diagnosis and Research of Liver Tumor, Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100191, China
| |
Collapse
|
10
|
Li Z, Hou Y, Zhao M, Li T, Liu Y, Chang J, Ren L. Serum amyloid a, a potential biomarker both in serum and tissue, correlates with ovarian cancer progression. J Ovarian Res 2020; 13:67. [PMID: 32517794 PMCID: PMC7285470 DOI: 10.1186/s13048-020-00669-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/27/2020] [Indexed: 12/24/2022] Open
Abstract
Background Ovarian cancer is the most fatal gynecologic malignancy worldwide due to its vagueness, delay in diagnosis, recurrence, and drug resistance. Therefore, a new type of ovarian cancer treatment prediction biomarker is urgently needed to supplement existing tools. A total of 230 people participated in this study. Out of this figure, 100 participants were patients who underwent an ovarian tumor operation, another 100 participants were ovarian benign patients, and the remaining 30 participants were healthy women. Cancer (experimental) group were 100 patients who underwent ovarian tumor operation, while the control groups were 130 participants consisting of 100 ovarian benign patients and 30 healthy women. Levels of SAA, carbohydrate antigen-125 (CA-125), and human epididymis protein 4 (HE4) were assessed using standard laboratory protocols. A total of 5 ovarian cancer tissues and paracancerous tissues were collected and then stored at − 80 °C until the qRT-PCR assay was conducted. Results The ROC curve of SAA concentration in ovarian cancer was plotted to obtain the area under the curve AUC = 0.889, the cut-off value 17.05 mg/L, the sensitivity 78.4% and specificity 86.5%. Compared with pretreatment, the level of serum SAA decreased significantly after treatment. The results revealed that there was a significant correlation between the level of serum SAA and advanced FIGO stage, histology subtype, lymphatic invasion, and distant metastasis (p = 0.003,0.002,0.000 and 0.001). The quantitative Reverse transcription polymerase chain reaction (qRT-PCR) assay revealed that the Messenger RNA (mRNA) of SAA-1 and SAA-4 was much higher in cancer tissues than in adjacent tissues, and MMPs was up-regulation including MMP-1, MMP-9 and MMP- 12 in OVCAR-3 cell stimulated by SAA. The transwell assay revealed that SAA could promote OVCAR-3 cell migration. Moreover, SAA can regulate EMT markers and promote AKT pathway activation. Conclusions In summary, our results demonstrated that SAA may be a potential diagnosis and treatment prediction biomarker. The SAA promotes OVCAR-3 cell migration by regulating MMPs and EMT which may correlate with AKT pathway activation.
Collapse
Affiliation(s)
- Ze Li
- Department of Laboratory, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Human Genetic Resources Sharing Service Platform, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yongwang Hou
- Department of Laboratory, the First Affiliated Hospital of Hebei North University, Hebei, China
| | - Meng Zhao
- Department of Laboratory, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Human Genetic Resources Sharing Service Platform, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tianning Li
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Yahui Liu
- Department of Laboratory, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Human Genetic Resources Sharing Service Platform, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jiao Chang
- Department of Laboratory, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Human Genetic Resources Sharing Service Platform, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Li Ren
- Department of Laboratory, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Human Genetic Resources Sharing Service Platform, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| |
Collapse
|
11
|
Systemic Amyloidosis in a Patient With Familial Mediterranean Fever and Hodgkin Lymphoma: A Case Report. J Pediatr Hematol Oncol 2020; 42:234-237. [PMID: 31094904 DOI: 10.1097/mph.0000000000001504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Systemic amyloidosis is a clinical manifestation of the accumulation of amyloid fibrils in tissues because of persistent acute phase elevation and chronic inflammation. Its most common causes are inflammatory diseases and malignancies. Here, we present a 12-year-old girl diagnosed with systemic amyloidosis and Hodgkin lymphoma (HL) who was also previously diagnosed with familial Mediterranean fever (FMF). Despite colchicine treatment for FMF, the patient had a persistent elevation of acute phase reactants and AA-type amyloid deposits were observed in a kidney biopsy. Anakinra, an interleukin-1 antagonist, was added to the treatment. Shortly after the diagnosis of amyloidosis, mediastinal lymphadenopathy was recognized, and she was also diagnosed with HL. A chemotherapy protocol of doxorubicin, bleomycin, vinblastine, and dacarbazine was initiated. After 6 cycles of the chemotherapy and 8 months of the anakinra treatment, no recurrence or residual malignancy was observed and proteinuria was decreased. To the authors' knowledge, this is the first reported case of systemic amyloidosis in the literature associated with both FMF and HL.
Collapse
|
12
|
Hahn A, Kny M, Pablo-Tortola C, Todiras M, Willenbrock M, Schmidt S, Schmoeckel K, Jorde I, Nowak M, Jarosch E, Sommer T, Bröker BM, Felix SB, Scheidereit C, Weber-Carstens S, Butter C, Luft FC, Fielitz J. Serum amyloid A1 mediates myotube atrophy via Toll-like receptors. J Cachexia Sarcopenia Muscle 2020; 11:103-119. [PMID: 31441598 PMCID: PMC7015249 DOI: 10.1002/jcsm.12491] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/28/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Critically ill patients frequently develop muscle atrophy and weakness in the intensive-care-unit setting [intensive care unit-acquired weakness (ICUAW)]. Sepsis, systemic inflammation, and acute-phase response are major risk factors. We reported earlier that the acute-phase protein serum amyloid A1 (SAA1) is increased and accumulates in muscle of ICUAW patients, but its relevance was unknown. Our objectives were to identify SAA1 receptors and their downstream signalling pathways in myocytes and skeletal muscle and to investigate the role of SAA1 in inflammation-induced muscle atrophy. METHODS We performed cell-based in vitro and animal in vivo experiments. The atrophic effect of SAA1 on differentiated C2C12 myotubes was investigated by analysing gene expression, protein content, and the atrophy phenotype. We used the cecal ligation and puncture model to induce polymicrobial sepsis in wild type mice, which were treated with the IкB kinase inhibitor Bristol-Myers Squibb (BMS)-345541 or vehicle. Morphological and molecular analyses were used to investigate the phenotype of inflammation-induced muscle atrophy and the effects of BMS-345541 treatment. RESULTS The SAA1 receptors Tlr2, Tlr4, Cd36, P2rx7, Vimp, and Scarb1 were all expressed in myocytes and skeletal muscle. Treatment of differentiated C2C12 myotubes with recombinant SAA1 caused myotube atrophy and increased interleukin 6 (Il6) gene expression. These effects were mediated by Toll-like receptors (TLR) 2 and 4. SAA1 increased the phosphorylation and activity of the transcription factor nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NF-κB) p65 via TLR2 and TLR4 leading to an increased binding of NF-κB to NF-κB response elements in the promoter region of its target genes resulting in an increased expression of NF-κB target genes. In polymicrobial sepsis, skeletal muscle mass, tissue morphology, gene expression, and protein content were associated with the atrophy response. Inhibition of NF-κB signalling by BMS-345541 increased survival (28.6% vs. 91.7%, P < 0.01). BMS-345541 diminished inflammation-induced atrophy as shown by a reduced weight loss of the gastrocnemius/plantaris (vehicle: -21.2% and BMS-345541: -10.4%; P < 0.05), tibialis anterior (vehicle: -22.7% and BMS-345541: -17.1%; P < 0.05) and soleus (vehicle: -21.1% and BMS-345541: -11.3%; P < 0.05) in septic mice. Analysis of the fiber type specific myocyte cross-sectional area showed that BMS-345541 reduced inflammation-induced atrophy of slow/type I and fast/type II myofibers compared with vehicle-treated septic mice. BMS-345541 reversed the inflammation-induced atrophy program as indicated by a reduced expression of the atrogenes Trim63/MuRF1, Fbxo32/Atrogin1, and Fbxo30/MuSA1. CONCLUSIONS SAA1 activates the TLR2/TLR4//NF-κB p65 signalling pathway to cause myocyte atrophy. Systemic inhibition of the NF-κB pathway reduced muscle atrophy and increased survival of septic mice. The SAA1/TLR2/TLR4//NF-κB p65 atrophy pathway could have utility in combatting ICUAW.
Collapse
Affiliation(s)
- Alexander Hahn
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Melanie Kny
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Cristina Pablo-Tortola
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Mihail Todiras
- Cardiovascular hormones, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Nicolae Testemiţanu State University of Medicine and Pharmacy, Chișinău, Moldova
| | - Michael Willenbrock
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sibylle Schmidt
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Katrin Schmoeckel
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine, Greifswald, Germany
| | - Ilka Jorde
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine, Greifswald, Germany
| | - Marcel Nowak
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Intracellular Proteolysis, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Ernst Jarosch
- Intracellular Proteolysis, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Thomas Sommer
- Intracellular Proteolysis, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute of Biology, Humboldt-University Berlin, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Barbara M Bröker
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine, Greifswald, Germany
| | - Stephan B Felix
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Claus Scheidereit
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Steffen Weber-Carstens
- Department of Anesthesiology and Intensive Care Medicine, Campus Virchow-Klinikum and Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Christian Butter
- Department of Cardiology, Heart Center Brandenburg and Medical University Brandenburg (MHB), Bernau, Germany
| | - Friedrich C Luft
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jens Fielitz
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
13
|
Nys G, Cobraiville G, Servais AC, Malaise MG, de Seny D, Fillet M. Targeted proteomics reveals serum amyloid A variants and alarmins S100A8-S100A9 as key plasma biomarkers of rheumatoid arthritis. Talanta 2019; 204:507-517. [PMID: 31357327 DOI: 10.1016/j.talanta.2019.06.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 01/18/2023]
Abstract
Serum amyloid A (SAA) and S100 (S100A8, S100A9 and S100A12) proteins were previously identified as biomarkers of interest for rheumatoid arthritis (RA). Among SAA family, two closely related isoforms (SAA-1 and SAA-2) are linked to the acute-phase of inflammation. They respectively exist under the form of three (α, β, and γ) and two (α and β) allelic variants. We developed a single run quantitative method for these protein variants and investigated their clinical relevance in the context of RA. The method was developed and validated according to regulations before being applied on plasma coming from RA patients (n = 46), other related inflammatory pathologies (n = 116) and controls (n = 62). Depending on the activity score of RA, SAA1 isoforms (mainly of SAA1α and SAA1β subtypes) were found to be differentially present in plasma revealing their dual role during the development of RA. In addition, the weight of SAA1α in the total SAA response varied from 32 to 80% depending on the pathology studied. A negative correlation between SAA1α and SAA1β was also highlighted for RA early-onset (r = -0.41). SAA2 and S100A8/S100A9 proteins were significantly overexpressed compared to control samples regardless of RA stage. The pathophysiological relevance of these quantitative and qualitative characteristics of the SAA response remains unknown. However, the significant negative correlation observed between SAA1α and SAA1β levels in RA early-onset suggests the existence of still unknown regulatory mechanisms in these diseases.
Collapse
Affiliation(s)
- Gwenaël Nys
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), ULiege, Quartier Hopital, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Gaël Cobraiville
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), ULiege, Quartier Hopital, Avenue Hippocrate 15, 4000 Liege, Belgium; Laboratory of Rheumatology, GIGA-Inflammation, Infection & Immunity, ULiege and CHU de Liege, Quartier Hopital, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Anne-Catherine Servais
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), ULiege, Quartier Hopital, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Michel G Malaise
- Laboratory of Rheumatology, GIGA-Inflammation, Infection & Immunity, ULiege and CHU de Liege, Quartier Hopital, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Dominique de Seny
- Laboratory of Rheumatology, GIGA-Inflammation, Infection & Immunity, ULiege and CHU de Liege, Quartier Hopital, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), ULiege, Quartier Hopital, Avenue Hippocrate 15, 4000 Liege, Belgium.
| |
Collapse
|
14
|
Safety and Outcome Measures of First-in-Human Intraperitoneal α Radioimmunotherapy With 212Pb-TCMC-Trastuzumab. Am J Clin Oncol 2019; 41:716-721. [PMID: 27906723 PMCID: PMC5449266 DOI: 10.1097/coc.0000000000000353] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE One-year monitoring of patients receiving intraperitoneal (IP) Pb-TCMC-trastuzumab to provide long-term safety and outcome data. A secondary objective was to study 7 tumor markers for correlation with outcome. METHODS Eighteen patients with relapsed intra-abdominal human epidermal growth factor receptor-2 expressing peritoneal metastases were treated with a single IP infusion of Pb-TCMC-trastuzumab, delivered <4 h after 4 mg/kg IV trastuzumab. Seven tumor markers were studied for correlation with outcome. RESULTS Six dose levels (7.4, 9.6, 12.6, 16.3, 21.1, 27.4 MBq/m) were well tolerated with early possibly agent-related adverse events being mild, transient, and not dose dependent. These included asymptomatic, abnormal laboratory values. No late renal, liver, cardiac, or other toxicity was noted up to 1 year. There were no clinical signs or symptoms of an immune response to Pb-TCMC-trastuzumab, and assays to detect an immune response to this conjugate were negative for all tested. Tumor marker studies in ovarian cancer patients showed a trend of decreasing Cancer antigen 72-4 (CA 72-4) aka tumor-associated glycoprotein 72 (TAG-72) and tumor growth with increasing administered radioactivity. Other tumor markers, including carbohydrate antigen (CA125), human epididymis protein 4 (HE-4), serum amyloid A (SAA), mesothelin, interleukin-6 (IL-6), and carcinoembryonic antigen (CEA) did not correlate with imaging outcome. CONCLUSIONS IP Pb-TCMC-trastuzumab up to 27 MBq/m seems safe for patients with peritoneal carcinomatosis who have failed standard therapies. Serum TAG-72 levels better correlated to imaging changes in ovarian cancer patients than the more common tumor marker, CA125.
Collapse
|
15
|
Zhang Y, Zhang J, Sheng H, Li H, Wang R. Acute phase reactant serum amyloid A in inflammation and other diseases. Adv Clin Chem 2019; 90:25-80. [PMID: 31122611 DOI: 10.1016/bs.acc.2019.01.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute-phase reactant serum amyloid A (A-SAA) plays an important role in acute and chronic inflammation and is used in clinical laboratories as an indicator of inflammation. Although both A-SAA and C-reactive protein (CRP) are acute-phase proteins, the detection of A-SAA is more conclusive than the detection of CRP in patients with viral infections, severe acute pancreatitis, and rejection reactions to kidney transplants. A-SAA has greater clinical diagnostic value in patients who are immunosuppressed, patients with cystic fibrosis who are treated with corticoids, and preterm infants with late-onset sepsis. Nevertheless, for the assessment of the inflammation status and identification of viral infection in other pathologies, such as bacterial infections, the combinatorial use of A-SAA and other acute-phase proteins (APPs), such as CRP and procalcitonin (PCT), can provide more information and sensitivity than the use of any of these proteins alone, and the information generated is important in guiding antibiotic therapy. In addition, A-SAA-associated diseases and the diagnostic value of A-SAA are discussed. However, the relationship between different A-SAA isotypes and their human diseases are mostly derived from research laboratories with limited clinical samples. Thus, further clinical evaluations are necessary to confirm the clinical significance of each A-SAA isotype. Furthermore, the currently available A-SAA assays are based on polyclonal antibodies, which lack isotype specificity and are associated with many inflammatory diseases. Therefore, these assays are usually used in combination with other biomarkers in the clinic.
Collapse
Affiliation(s)
- Yan Zhang
- Shanghai R&D Center, DiaSys Diagnostic Systems (Shanghai) Co., Ltd., Shanghai, China
| | - Jie Zhang
- Shanghai R&D Center, DiaSys Diagnostic Systems (Shanghai) Co., Ltd., Shanghai, China
| | - Huiming Sheng
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haichuan Li
- C.N. Maternity & Infant Health Hospital, Shanghai, China
| | - Rongfang Wang
- Shanghai R&D Center, DiaSys Diagnostic Systems (Shanghai) Co., Ltd., Shanghai, China.
| |
Collapse
|
16
|
Ignacio RMC, Gibbs CR, Kim S, Lee ES, Adunyah SE, Son DS. Serum amyloid A predisposes inflammatory tumor microenvironment in triple negative breast cancer. Oncotarget 2019; 10:511-526. [PMID: 30728901 PMCID: PMC6355188 DOI: 10.18632/oncotarget.26566] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/29/2018] [Indexed: 12/20/2022] Open
Abstract
Acute-phase proteins (APPs) are associated with a variety of disorders such as infection, inflammatory diseases, and cancers. The signature profile of APPs in breast cancer (BC) is poorly understood. Here, we identified serum amyloid A (SAA) for proinflammatory predisposition in BC through the signature profiles of APPs, interleukin (IL) and tumor necrosis factor (TNF) superfamily using publicly available datasets of tumor samples and cell lines. Triple-negative breast cancer (TNBC) subtype highly expressed SAA1/2 compared to HER2, luminal A (LA) and luminal B (LB) subtypes. IL1A, IL1B, IL8/CXCL8, IL32 and IL27RA in IL superfamily and CD70, TNFSF9 and TNFRSF21 in TNF superfamily were highly expressed in TNBC compared to other subtypes. SAA is restrictedly regulated by nuclear factor (NF)-κB and IL-1β, an NF-κB activator highly expressed in TNBC, increased the promoter activity of SAA1 in human TNBC MDA-MB231 cells. Interestingly, two κB-sites contained in SAA1 promoter were involved, and the proximal region (-96/-87) was more critical than the distal site (-288/-279) in regulating IL-1β-induced SAA1. Among the SAA receptors, TLR1 and TLR2 were highly expressed in TNBC. Cu-CPT22, TLR1/2 antagonist, abrogated IL-1β-induced SAA1 promoter activity. In addition, SAA1 induced IL8/CXCL8 promoter activity, which was partially reduced by Cu-CPT22. Notably, SAA1/2, TLR2 and IL8/CXCL8 were associated with a poor overall survival in mesenchymal-like TNBC. Taken together, IL-1-induced SAA via NF-κB-mediated signaling could potentiate an inflammatory burden, leading to cancer progression and high mortality in TNBC patients.
Collapse
Affiliation(s)
- Rosa Mistica C Ignacio
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Carla R Gibbs
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Soohyun Kim
- Department of Veterinary Sciences, College of Veterinary Medicine, Kon-Kuk University, Seoul, Republic of Korea
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, USA
| | - Samuel E Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Deok-Soo Son
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
17
|
Abstract
Serum amyloid A (SAA) proteins were isolated and named over 50 years ago. They are small (104 amino acids) and have a striking relationship to the acute phase response with serum levels rising as much as 1000-fold in 24 hours. SAA proteins are encoded in a family of closely-related genes and have been remarkably conserved throughout vertebrate evolution. Amino-terminal fragments of SAA can form highly organized, insoluble fibrils that accumulate in “secondary” amyloid disease. Despite their evolutionary preservation and dynamic synthesis pattern SAA proteins have lacked well-defined physiologic roles. However, considering an array of many, often unrelated, reports now permits a more coordinated perspective. Protein studies have elucidated basic SAA structure and fibril formation. Appreciating SAA’s lipophilicity helps relate it to lipid transport and metabolism as well as atherosclerosis. SAA’s function as a cytokine-like protein has become recognized in cell-cell communication as well as feedback in inflammatory, immunologic, neoplastic and protective pathways. SAA likely has a critical role in control and possibly propagation of the primordial acute phase response. Appreciating the many cellular and molecular interactions for SAA suggests possibilities for improved understanding of pathophysiology as well as treatment and disease prevention.
Collapse
Affiliation(s)
- George H Sack
- Departments of Biological Chemistry and Medicine, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Physiology 615, Baltimore, MD, 21205, USA.
| |
Collapse
|
18
|
Conti A, Luchini A, Benassi MS, Magagnoli G, Pierini M, Piccinni-Leopardi M, Quattrini I, Pollino S, Picci P, Liotta LA, Pazzaglia L. Circulating Candidate Biomarkers in Giant Cell Tumors of Bone. Proteomics Clin Appl 2018; 12:e1800041. [DOI: 10.1002/prca.201800041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 07/17/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Amalia Conti
- Experimental Oncology Laboratory; IRCCS Rizzoli Orthopaedic Institute; Bologna Italy
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine; George Mason University; Manassas VA USA
| | - Maria Serena Benassi
- Experimental Oncology Laboratory; IRCCS Rizzoli Orthopaedic Institute; Bologna Italy
| | - Giovanna Magagnoli
- Experimental Oncology Laboratory; IRCCS Rizzoli Orthopaedic Institute; Bologna Italy
| | - Michela Pierini
- Chemotherapy Unit; IRCCS Rizzoli Orthopaedic Institute; Bologna Italy
| | | | - Irene Quattrini
- Experimental Oncology Laboratory; IRCCS Rizzoli Orthopaedic Institute; Bologna Italy
| | - Serena Pollino
- Experimental Oncology Laboratory; IRCCS Rizzoli Orthopaedic Institute; Bologna Italy
| | - Piero Picci
- Experimental Oncology Laboratory; IRCCS Rizzoli Orthopaedic Institute; Bologna Italy
| | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine; George Mason University; Manassas VA USA
| | - Laura Pazzaglia
- Experimental Oncology Laboratory; IRCCS Rizzoli Orthopaedic Institute; Bologna Italy
| |
Collapse
|
19
|
Understanding Ovarian Cancer: iTRAQ-Based Proteomics for Biomarker Discovery. Int J Mol Sci 2018; 19:ijms19082240. [PMID: 30065196 PMCID: PMC6121953 DOI: 10.3390/ijms19082240] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023] Open
Abstract
Despite many years of studies, ovarian cancer remains one of the top ten cancers worldwide. Its high mortality rate is mainly due to lack of sufficient diagnostic methods. For this reason, our research focused on the identification of blood markers whose appearance would precede the clinical manifestation of the disease. ITRAQ-tagging (isobaric Tags for Relative and Absolute Quantification) coupled with mass spectrometry technology was applied. Three groups of samples derived from patients with: ovarian cancer, benign ovarian tumor, and healthy controls, were examined. Mass spectrometry analysis allowed for highlighting the dysregulation of several proteins associated with ovarian cancer. Further validation of the obtained results indicated that five proteins (Serotransferrin, Amyloid A1, Hemopexin, C-reactive protein, Albumin) were differentially expressed in ovarian cancer group. Interestingly, the addition of Albumin, Serotransferrin, and Amyloid A1 to CA125 (cancer antigen 125) and HE4 (human epididymis protein4) improved the diagnostic performance of the model discriminating between benign and malignant tumors. Identified proteins shed light on the molecular signaling pathways that are associated with ovarian cancer development and should be further investigated in future studies. Our findings indicate five proteins with a strong potential to use in a multimarker test for screening and detection of ovarian cancer.
Collapse
|
20
|
Pirro M, Ricciuti B, Rader DJ, Catapano AL, Sahebkar A, Banach M. High density lipoprotein cholesterol and cancer: Marker or causative? Prog Lipid Res 2018; 71:54-69. [DOI: 10.1016/j.plipres.2018.06.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/15/2018] [Accepted: 06/02/2018] [Indexed: 12/11/2022]
|
21
|
Saa3 is a key mediator of the protumorigenic properties of cancer-associated fibroblasts in pancreatic tumors. Proc Natl Acad Sci U S A 2018; 115:E1147-E1156. [PMID: 29351990 DOI: 10.1073/pnas.1717802115] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by the presence of abundant desmoplastic stroma primarily composed of cancer-associated fibroblasts (CAFs). It is generally accepted that CAFs stimulate tumor progression and might be implicated in drug resistance and immunosuppression. Here, we have compared the transcriptional profile of PDGFRα+ CAFs isolated from genetically engineered mouse PDAC tumors with that of normal pancreatic fibroblasts to identify genes potentially implicated in their protumorigenic properties. We report that the most differentially expressed gene, Saa3, a member of the serum amyloid A (SAA) apolipoprotein family, is a key mediator of the protumorigenic activity of PDGFRα+ CAFs. Whereas Saa3-competent CAFs stimulate the growth of tumor cells in an orthotopic model, Saa3-null CAFs inhibit tumor growth. Saa3 also plays a role in the cross talk between CAFs and tumor cells. Ablation of Saa3 in pancreatic tumor cells makes them insensitive to the inhibitory effect of Saa3-null CAFs. As a consequence, germline ablation of Saa3 does not prevent PDAC development in mice. The protumorigenic activity of Saa3 in CAFs is mediated by Mpp6, a member of the palmitoylated membrane protein subfamily of the peripheral membrane-associated guanylate kinases (MAGUK). Finally, we interrogated whether these observations could be translated to a human scenario. Indeed, SAA1, the ortholog of murine Saa3, is overexpressed in human CAFs. Moreover, high levels of SAA1 in the stromal component correlate with worse survival. These findings support the concept that selective inhibition of SAA1 in CAFs may provide potential therapeutic benefit to PDAC patients.
Collapse
|
22
|
Yang M, Liu F, Higuchi K, Sawashita J, Fu X, Zhang L, Zhang L, Fu L, Tong Z, Higuchi K. Serum amyloid A expression in the breast cancer tissue is associated with poor prognosis. Oncotarget 2017; 7:35843-35852. [PMID: 27058895 PMCID: PMC5094967 DOI: 10.18632/oncotarget.8561] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 02/28/2016] [Indexed: 12/14/2022] Open
Abstract
Background Serum amyloid A (SAA), an acute-phase protein, is expressed primarily in the liver, and recently found also expressed in cancer tissues. However, its expression and prognostic value in breast cancer have not been described. Results SAA protein was found expressed in tumor cells in 44.2% cases and in TAM in 62.5% cases. FISH showed more frequent SAA mRNA expression in TAM than in tumor cells (76% versus 12%, p < 0.001), and a significant association between the frequencies of SAA mRNA expression in TAM and tumor cells (rs = 0.603, p < 0.001). The immunoreactivities of SAA protein in TAM and tumor cells were both associated with lymphovascular invasion and lymph node metastasis. Moreover, SAA-positivity in TAMs was associated with larger tumor-size, higher histological-grade, negative estrogen-receptor and progesterone-receptor statuses, and HER-2 overexpression. It was also linked to worse recurrence-free survival in a multivariable regression model. Methods Immunohistochemistry was applied on the tumor tissues from 208 breast cancer patients to evaluate the local SAA-protein expression with additional CD68 stain to identify the tumor-associated macrophage (TAM) on the serial tissue sections. Fluorescent in situ hybridization (FISH) was conducted on serial tissue sections from 25 of the 208 tumors to examine the expression and location of SAA mRNA. Conclusions Our results suggested that the TAMs may be a pivotal and main source of SAA production in tumor microenvironment of breast cancer. SAA immunoreactivity in TAM is associated with worse recurrence-free survival, and is therefore a biomarker candidate for postoperative surveillance and perhaps a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Mu Yang
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Fangfang Liu
- Department of Breast Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Kayoko Higuchi
- Department of Pathology, Aizawa Hospital, Matsumoto, Japan
| | - Jinko Sawashita
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan.,Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Xiaoying Fu
- Department of Pathology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li Zhang
- Department of Breast Oncology, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lanjing Zhang
- Department of Pathology, University Medical Center of Princeton, Plainsboro, NJ, USA.,Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Pathology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.,Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Li Fu
- Department of Breast Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhongsheng Tong
- Department of Breast Oncology, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Keiichi Higuchi
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan.,Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| |
Collapse
|
23
|
Xie X, Yang M, Ding Y, Yu L, Chen J. Formyl peptide receptor 2 expression predicts poor prognosis and promotes invasion and metastasis in epithelial ovarian cancer. Oncol Rep 2017; 38:3297-3308. [PMID: 29039544 PMCID: PMC5783575 DOI: 10.3892/or.2017.6034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/31/2017] [Indexed: 12/29/2022] Open
Abstract
Formyl peptide receptor 2 (FPR2) has been identified as a member of the G protein-coupled chemoattractant receptor (GPCR) family and has been implicated as playing a role in both inflammation and cancer development. Epithelial ovarian cancer (EOC) has been suggested to be correlated with both infectious and non-infectious inflammation. To date, the role of FPR2 in EOC remains poorly understood and controversial. In the present study, we aimed to investigate the potential of FPR2 in regulating EOC. We performed immunohistochemistry and RT-qPCR to analyzed expression of FPR2 in EOC tissues and the correlation between FPR2 and EOC clinicopathological characteristics as well as prognosis were also analyzed. To test the role of FPR2 in EOC cell migration, we established FPR2-knockdown SKOV3 cells and performed wound-healing, Transwell and angiogenesis assays to detect the metastatic potential of these EOC cells. Our studies found that FPR2 was overexpressed in EOC tissues and was positively correlated with EOC clinicopathological characteristics including the International Federation of Gynecology and Obstetrics (FIGO) stage, histological grade and ovarian cancer type. Survival analyses suggested that FPR2 overexpression indicated the poorer prognosis of EOC patients and FPR2 may act as an independent risk factor for EOC prognosis. FPR2 knockdown decreased the migration potential of the ovarian cancer cells. Moreover, serum amyloid A (SAA) may stimulate the migration of SKOV3 cells through FPR2. The present study suggested that FPR2 promoted the invasion and metastasis of EOC and it could be a prognostic marker for EOC.
Collapse
Affiliation(s)
- Xiaohui Xie
- Department of Obstetrics and Gynecology, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Mengyuan Yang
- Department of Obstetrics and Gynecology, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yiling Ding
- Department of Obstetrics and Gynecology, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Ling Yu
- Department of Obstetrics and Gynecology, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Jianlin Chen
- Department of Obstetrics and Gynecology, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
24
|
Choi H, Ignacio RMC, Lee ES, Roby KF, Terranova PF, Son DS. Localization of Serum Amyloid A3 in the Mouse Ovary. Immune Netw 2017; 17:261-268. [PMID: 28860955 PMCID: PMC5577303 DOI: 10.4110/in.2017.17.4.261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/30/2017] [Accepted: 08/01/2017] [Indexed: 12/01/2022] Open
Abstract
Tumor necrosis factor-α (TNF-α) induces serum amyloid A (SAA) 3 among acute-phase proteins in mouse granulosa cells by activating NF-κB signaling via p55 TNF-α receptor type 1. However, the localization of SAA3 within the ovary is unknown. Here we investigated ovarian localization of SAA3 in a mouse ovulation model and in response to IL-1β, a proinflammatory mediator. For the ovulation model, equine chorionic gonadotropin (eCG; 2.5 IU) was administered to mice subcutaneously (sc) to stimulate follicular development on day 25 of age and then 50 h after eCG, human chorionic gonadotropin (hCG; 2.5 IU) was administered sc to induce ovulation. The mouse ovulation model was characterized by the localization of CYP19 mRNA expression to granulosa layers of larger follicles. SAA3 mRNA, determined by in situ hybridization, was broadly expressed throughout the whole ovary. Granulosa layers and small follicles expressed higher SAA3 mRNA compared to thecal-interstitial layers and large follicles, respectively. Interestingly, atretic follicles contained cells expressing intense SAA3 mRNA. After ovulation, SAA3 mRNA expression was intensely evident in ruptured follicles and corpora lutea (CL). The intraperitoneal administration of IL-1β revealed the intense and extensive appearance of specific cells expressing SAA3 mRNA around follicles and in CL. In addition, Gene Expression Omnibus (GEO) database analysis supported expression pattern of SAA3 mRNA observed in mouse ovulation model. Taken together, SAA3 was broadly distributed through the whole ovary, but intensely expressed in atretic follicles and CL. Furthermore, proinflammatory mediators could trigger the intense appearance of SAA3 around follicles and in CL.
Collapse
Affiliation(s)
- Hyeongjwa Choi
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Rosa Mistica C Ignacio
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA
| | - Katherine F Roby
- Center for Reproductive Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Paul F Terranova
- Center for Reproductive Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.,Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
25
|
Choi H, Ignacio RMC, Lee ES, Wilson AJ, Khabele D, Son DS. Augmented Serum Amyloid A1/2 Mediated by TNF-induced NF-κB in Human Serous Ovarian Epithelial Tumors. Immune Netw 2017; 17:121-127. [PMID: 28458624 PMCID: PMC5407984 DOI: 10.4110/in.2017.17.2.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor-α (TNF) is well known to be involved in the immune system and ovarian inflammation. Ovarian cancer is an inflammation-related malignancy that lacks early screening strategies, resulting in late diagnosis followed by high mortality. Based on our previous data, TNF induced abundant serum amyloid A (SAA), an acute phase protein linked to inflammation, in ovarian granulosal cells. To date, the regulation and expression of SAA in ovarian cancer is not fully elucidated. Here, we investigated the relationship between TNF and SAA by comparing human normal ovarian tissues and serous ovarian tumors. We found that SAA1/2 was significantly expressed in tumor tissues, but no or trace expression levels in normal tissues. TNF was also significantly upregulated in ovarian tumor tissues compared to normal tissues. Moreover, TNF significantly increased SAA1/2 levels in human ovarian cancer cell lines, OVCAR-3 and SKOV-3, in a time-dependent manner. Since the SAA1 promoter contains two nuclear factor (NF)-κB sites, we examined whether TNF regulates SAA1 promoter activity. Deletion analysis revealed that the proximal NF-κB site (-95/-85) played a critical role in regulating TNF-induced SAA1 promoter activity. Within 2 h after intraperitoneal injection of lipopolysaccharide, a product known to stimulate release of TNF, SAA preferably localized to ovarian epithelial cells and the thecal-interstitial layers compared to granulosal cell layers. Based on Gene Expression Omnibus (GEO) database, SAA1/2 and TNF were dominantly expressed in advanced grade ovarian cancer. Taken together, the accumulation of SAA1/2 in ovarian cancer could be mediated by TNF-induced NF-κB activation.
Collapse
Affiliation(s)
- Hyeongjwa Choi
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Rosa Mistica C Ignacio
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA
| | - Andrew J Wilson
- Department of Obstetrics and Gynecology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dineo Khabele
- Department of Obstetrics and Gynecology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
26
|
Zatula A, Dikic A, Mulder C, Sharma A, Vågbø CB, Sousa MML, Waage A, Slupphaug G. Proteome alterations associated with transformation of multiple myeloma to secondary plasma cell leukemia. Oncotarget 2017; 8:19427-19442. [PMID: 28038447 PMCID: PMC5386695 DOI: 10.18632/oncotarget.14294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/30/2016] [Indexed: 01/22/2023] Open
Abstract
Plasma cell leukemia is a rare and aggressive plasma cell neoplasm that may either originate de novo (primary PCL) or by leukemic transformation of multiple myeloma (MM) to secondary PCL (sPCL). The prognosis of sPCL is very poor, and currently no standard treatment is available due to lack of prospective clinical studies. In an attempt to elucidate factors contributing to transformation, we have performed super-SILAC quantitative proteome profiling of malignant plasma cells collected from the same patient at both the MM and sPCL stages of the disease. 795 proteins were found to be differentially expressed in the MM and sPCL samples. Gene ontology analysis indicated a metabolic shift towards aerobic glycolysis in sPCL as well as marked down-regulation of enzymes involved in glycan synthesis, potentially mediating altered glycosylation of surface receptors. There was no significant change in overall genomic 5-methylcytosine or 5-hydroxymethylcytosine at the two stages, indicating that epigenetic dysregulation was not a major driver of transformation to sPCL. The present study constitutes the first attempt to provide a comprehensive map of the altered protein expression profile accompanying transformation of MM to sPCL in a single patient, identifying several candidate proteins that can be targeted by currently available small molecule drugs. Our dataset furthermore constitutes a reference dataset for further proteomic analysis of sPCL transformation.
Collapse
Affiliation(s)
- Alexey Zatula
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Aida Dikic
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Celine Mulder
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,Present address: University of Utrecht, Utrecht, Holland
| | - Animesh Sharma
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, NTNU, Trondheim, and the Central Norway Regional Health Authority, Stjørdal, Norway
| | - Cathrine B Vågbø
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, NTNU, Trondheim, and the Central Norway Regional Health Authority, Stjørdal, Norway
| | - Mirta M L Sousa
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Anders Waage
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,Department of Hematology, Department of Medicine, St. Olav's Hospital, Trondheim, Norway
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, NTNU, Trondheim, and the Central Norway Regional Health Authority, Stjørdal, Norway
| |
Collapse
|
27
|
De Buck M, Gouwy M, Wang JM, Van Snick J, Opdenakker G, Struyf S, Van Damme J. Structure and Expression of Different Serum Amyloid A (SAA) Variants and their Concentration-Dependent Functions During Host Insults. Curr Med Chem 2017; 23:1725-55. [PMID: 27087246 PMCID: PMC5405626 DOI: 10.2174/0929867323666160418114600] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/31/2016] [Accepted: 04/15/2016] [Indexed: 12/23/2022]
Abstract
Serum amyloid A (SAA) is, like C-reactive protein (CRP), an acute phase protein and can be used as a diagnostic, prognostic or therapy follow-up marker for many diseases. Increases in serum levels of SAA are triggered by physical insults to the host, including infection, trauma, inflammatory reactions and cancer. The order of magnitude of increase in SAA levels varies considerably, from a 10- to 100-fold during limited inflammatory events to a 1000-fold increase during severe bacterial infections and acute exacerbations of chronic inflammatory diseases. This broad response range is reflected by SAA gene duplications resulting in a cluster encoding several SAA variants and by multiple biological functions of SAA. SAA variants are single-domain proteins with simple structures and few post-translational modifications. SAA1 and SAA2 are inducible by inflammatory cytokines, whereas SAA4 is constitutively produced. We review here the regulated expression of SAA in normal and transformed cells and compare its serum levels in various disease states. At low concentrations (10-100 ng/ml), early in an inflammatory response, SAA induces chemokines or matrix degrading enzymes via Toll-like receptors and functions as an activator and chemoattractant through a G protein-coupled receptor. When an infectious or inflammatory stimulus persists, the liver continues to produce more SAA (> 1000 ng/ml) to become an antimicrobial agent by functioning as a direct opsonin of bacteria or by interference with virus infection of host cells. Thus, SAA regulates innate and adaptive immunity and this information may help to design better drugs to treat specific diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jo Van Damme
- University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| |
Collapse
|
28
|
Wu YY, Chang CL, Chuang YJ, Wu JE, Tung CH, Chen YC, Chen YL, Hong TM, Hsu KF. CASZ1 is a novel promoter of metastasis in ovarian cancer. Am J Cancer Res 2016; 6:1253-1270. [PMID: 27429842 PMCID: PMC4937731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/05/2016] [Indexed: 06/06/2023] Open
Abstract
Epithelial ovarian cancer (EOC) carries the highest mortality rate of all gynecologic malignancies. This high mortality rate is attributed to the fact that most cases of ovarian cancer are detected at late stages when metastases are already present. Through microarray analysis, we previously demonstrated that castor zinc finger 1 (CASZ1) is up-regulated in EOC cells. In contrast to its role in EOC, CASZ1 functions a tumor suppressor in neuroblastoma. Human CASZ1 is predominantly expressed in 2 alternatively spliced isoforms: CASZ1a and CASZ1b. In the present study, we investigated the role of CASZ1 in ovarian cancer cell migration and invasion and assessed the value of CASZ1 expression as a prognostic indicator of metastasis in human ovarian cancer. We used a lentivirus expressing CASZ1-shRNA and a plasmid expressing CASZ1 from a CMV promoter to knockdown and overexpress CASZ1, respectively, in the MCAS, RMUG-S, TOV21G, and A2780(CP70) ovarian cancer cell lines. mRNA expression levels in tumor tissues and cell lines were measured using quantitative real-time PCR, and CASZ1 protein expression in EOC and paired metastatic tumor tissues was analyzed using immunohistochemistry. We found that CASZ1 was highly expressed in EOC tissues and ovarian cancer cell lines and that CASZ1 knockdown suppressed cell migration and invasion in EOC cells. CASZ1a and CASZ1b exerted similar effects on cell migration and invasion in EOC cells. In addition, CASZ1 promoted the epithelial-mesenchymal transition in EOC cells, and CASZ1 knockdown suppressed cancer metastasis in vivo. Furthermore, CASZ1 protein levels were elevated in human metastatic ovarian tumor tissues. Together, these results indicate that CASZ1 is a novel promoter of EOC metastasis and is highly up-regulated in metastatic EOC tumors.
Collapse
Affiliation(s)
- Yi-Ying Wu
- Graduate Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Chia-Lin Chang
- Graduate Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Yuan-Jhe Chuang
- Graduate Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Jia-En Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Chia-Hao Tung
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Yeong-Chang Chen
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Yuh-Ling Chen
- Institute of Oral Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Tse-Ming Hong
- Graduate Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Keng-Fu Hsu
- Graduate Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| |
Collapse
|
29
|
Rossmann C, Hammer A, Koyani CN, Kovacevic A, Siwetz M, Desoye G, Poehlmann TG, Markert UR, Huppertz B, Sattler W, Malle E. Expression of serum amyloid A4 in human trophoblast-like choriocarcinoma cell lines and human first trimester/term trophoblast cells. Placenta 2014; 35:661-4. [PMID: 24951172 PMCID: PMC4119475 DOI: 10.1016/j.placenta.2014.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/27/2014] [Accepted: 05/29/2014] [Indexed: 11/16/2022]
Abstract
Trophoblast invasion into uterine tissues represents a hallmark of first trimester placental development. As expression of serum amyloid A4 (SAA4) occurs in tumorigenic and invasive tissues we here investigated whether SAA4 is present in trophoblast-like human AC1-M59/Jeg-3 cells and trophoblast preparations of human first trimester and term placenta. SAA4 mRNA was expressed in non-stimulated and cytokine-treated AC1-M59/Jeg-3 cells. In purified trophoblast cells SAA4 mRNA expression was upregulated at weeks 10 and 12 of pregnancy. Western-blot and immunohistochemical staining of first trimester placental tissue revealed pronounced SAA4 expression in invasive trophoblast cells indicating a potential role of SAA4 during invasion. SAA4 mRNA is expressed in Jeg-3 and AC1-M59 cells. SAA4 mRNA is expressed in first trimester/term trophoblast cells. SAA4 mRNA is upregulated at pregnancy week 10 and 12. SAA4 protein is present in interstitial, intramural and intraluminal trophoblast cells.
Collapse
Affiliation(s)
- C Rossmann
- Medical University of Graz, Institute of Molecular Biology and Biochemistry, Graz A-8010, Austria
| | - A Hammer
- Medical University of Graz, Institute of Cell Biology, Histology and Embryology, Graz, Austria
| | - C N Koyani
- Medical University of Graz, Institute of Molecular Biology and Biochemistry, Graz A-8010, Austria
| | - A Kovacevic
- Medical University of Graz, Institute of Molecular Biology and Biochemistry, Graz A-8010, Austria
| | - M Siwetz
- Medical University of Graz, Institute of Cell Biology, Histology and Embryology, Graz, Austria
| | - G Desoye
- Medical University of Graz, Department of Obstetrics and Gynecology, Graz, Austria
| | - T G Poehlmann
- Placenta-Laboratory, Department of Obstetrics, University Hospital Jena, Jena, Germany
| | - U R Markert
- Placenta-Laboratory, Department of Obstetrics, University Hospital Jena, Jena, Germany
| | - B Huppertz
- Medical University of Graz, Institute of Cell Biology, Histology and Embryology, Graz, Austria
| | - W Sattler
- Medical University of Graz, Institute of Molecular Biology and Biochemistry, Graz A-8010, Austria
| | - E Malle
- Medical University of Graz, Institute of Molecular Biology and Biochemistry, Graz A-8010, Austria.
| |
Collapse
|
30
|
Tamamoto T, Ohno K, Goto-Koshino Y, Tsujimoto H. Serum amyloid A promotes invasion of feline mammary carcinoma cells. J Vet Med Sci 2014; 76:1183-8. [PMID: 24829082 PMCID: PMC4155205 DOI: 10.1292/jvms.14-0108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The serum amyloid A (SAA)
concentration is higher in mammary tumors with metastases in both humans and animals. In
the present study, the direct effects of recombinant feline SAA (rfSAA) protein on
invasiveness of feline mammary carcinoma cells were evaluated. As an indicator of
invasiveness, matrix metalloproteinase-9 (MMP-9) expression was investigated in 4 feline
mammary carcinoma cell lines of different origins. In 3 of 4 cell lines, MMP-9 expression
was significantly increased by rfSAA stimulation. The invasive capacities of feline
mammary carcinoma cells were also stimulated by rfSAA. The findings of this study have
identified a novel role for SAA in mammary tumorigenesis and suggest that therapeutic
strategies targeting SAA may provide new alternatives in treating tumor invasion and
metastasis.
Collapse
Affiliation(s)
- Takashi Tamamoto
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
31
|
Ren Y, Wang H, Lu D, Xie X, Chen X, Peng J, Hu Q, Shi G, Liu S. Expression of serum amyloid A in uterine cervical cancer. Diagn Pathol 2014; 9:16. [PMID: 24447576 PMCID: PMC3907664 DOI: 10.1186/1746-1596-9-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 12/03/2013] [Indexed: 01/14/2023] Open
Abstract
Background As an acute-phase protein, serum amyloid A (SAA) is expressed primarily in the liver. However, its expression in extrahepatic tissues, especially in tumor tissues, was also demonstrated recently. In our study, we investigated the expression of SAA in uterine cervical carcinomas, and our results suggested its potential as a serum biomarker. Methods Quantitative real-time polymerase chain reaction (RT-PCR), immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA) were used to evaluate the SAA gene and protein expression levels in the tissues and sera of patients with non-neoplastic lesions (NNLs), cervical intraepithelial neoplasia (CIN) and cervical carcinoma (CC). Results Compared with NNLs, the SAA gene (SAA1 and SAA4) expression levels were significantly higher in uterine CC (mean copy numbers: 138.7 vs. 5.01, P < 0.000; and 1.8 vs. 0.079, P = 0.001, respectively) by real-time PCR. IHC revealed cytoplasmic SAA protein staining in tissues from adenocarcinoma and squamous cell carcinoma of the cervix. The median serum concentrations (μg/ml) of SAA were 6.02 in patients with NNLs and 10.98 in patients with CIN (P = 0.31). In contrast, the median serum SAA concentration was 23.7 μg/ml in uterine CC patients, which was significantly higher than the SAA concentrations of the NNL group (P = 0.002) and the CIN group (P = 0.024). Conclusions Our data suggested that SAA might be a uterine CC cell product. High SAA concentrations in the serum of CC patients may have a role in monitoring disease occurrence and could have therapeutic applications. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1433263219102962.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gang Shi
- Department of Obstetrics&Gynecology, West China Second University Hospital, Sichuan University, No, 20, 3rd Section of Ren Min Nan Road, Chengdu 610041, China.
| | | |
Collapse
|
32
|
Shevchenko VE, Makarov DE, Kovalev SV, Arnotskaya NE, Pogosian NR, Zhordania KI. Tumor pleural effusion proteome profiling for ovarian cancer biomarkers mining. JOURNAL OF ANALYTICAL CHEMISTRY 2013. [DOI: 10.1134/s1061934813130091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Majidzadeh-A K, Gharechahi J. Plasma proteomics analysis of tamoxifen resistance in breast cancer. Med Oncol 2013; 30:753. [DOI: 10.1007/s12032-013-0753-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/15/2013] [Indexed: 02/08/2023]
|
34
|
Nguyen L, Cardenas-Goicoechea SJ, Gordon P, Curtin C, Momeni M, Chuang L, Fishman D. Biomarkers for early detection of ovarian cancer. ACTA ACUST UNITED AC 2013; 9:171-85; quiz 186-7. [PMID: 23477323 DOI: 10.2217/whe.13.2] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ovarian cancer is the most lethal gynecological malignancy. However, effective screening strategies have not been established and continue to be elusive. A good screening test must adequately address validity, reliability, yield, cost, acceptance and follow-up services. An ideal screening test for ovarian cancer must have a high sensitivity in order to correctly diagnose all women with the disease and a high specificity to avoid false-positive results. The current screening modalities of bimanual examination, CA-125 and transvaginal ultrasonography together allow us to detect only 30-45% of women with early-stage disease. Recent developments in proteomic and genomic research have identified a number of potential biomarkers. Although panels of tumor markers and proteomic-based technologies may improve the positive predictive value, all markers require validation and interfacing with newly developed diagnostic imaging technologies. While a large amount of information on miRNAs has been promising, much remains to be elucidated. This review will examine the current status of biomarkers and technologies of interest in the effort of early detection of ovarian cancer.
Collapse
Affiliation(s)
- Long Nguyen
- Mount Sinai Medical Center, New York, NY 10029, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Kristjansdottir B, Levan K, Partheen K, Carlsohn E, Sundfeldt K. Potential tumor biomarkers identified in ovarian cyst fluid by quantitative proteomic analysis, iTRAQ. Clin Proteomics 2013; 10:4. [PMID: 23557354 PMCID: PMC3637236 DOI: 10.1186/1559-0275-10-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 03/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epithelial-derived ovarian adenocarcinoma (EOC) is the most deadly gynecologic tumor, and the principle cause of the poor survival rate is diagnosis at a late stage. Screening and diagnostic biomarkers with acceptable specificity and sensitivity are lacking. Ovarian cyst fluid should harbor early ovarian cancer biomarkers because of its closeness to the tumor. We investigated ovarian cyst fluid as a source for discovering biomarkers for use in the diagnosis of EOC. RESULTS Using quantitative mass spectrometry, iTRAQ MS, we identified 837 proteins in cyst fluid from benign, EOC stage I, and EOC stage III. Only patients of serous histology were included in the study. Comparing the benign (n = 5) with the malignant (n = 10) group, 87 of the proteins were significantly (p < 0.05) differentially expressed. Two proteins, serum amyloid A-4 (SAA4) and astacin-like metalloendopeptidase (ASTL), were selected for verification of the iTRAQ method and external validation with immunoblot in a larger cohort with mixed histology, in plasma (n = 68), and cyst fluid (n = 68). The protein selections were based on either high significance and high fold change or abundant appearance and several peptide recognitions in the sample sets (p = 0.04, FC = 1.95) and (p < 0.001, FC = 8.48) for SAA4 and ASTL respectively. Both were found to be significantly expressed (p < 0.05), but the methods did not correlate concerning ASTL. CONCLUSIONS Fluid from ovarian cysts connected directly to the primary tumor harbor many possible new tumor-specific biomarkers. We have identified 87 differentially expressed proteins and validated two candidates to verify the iTRAQ method. However several of the proteins are of interest for validation in a larger setting.
Collapse
Affiliation(s)
- Björg Kristjansdottir
- Institute of Clinical Sciences, Department of Obstetrics and Gynecology, University of Gothenburg, Gothenburg S-413 45, Sweden.
| | | | | | | | | |
Collapse
|
36
|
Kristjansdottir B, Partheen K, Fung ET, Marcickiewicz J, Yip C, Brännström M, Sundfeldt K. Ovarian cyst fluid is a rich proteome resource for detection of new tumor biomarkers. Clin Proteomics 2012; 9:14. [PMID: 23268721 PMCID: PMC3552982 DOI: 10.1186/1559-0275-9-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 12/19/2012] [Indexed: 11/18/2022] Open
Abstract
Background We aimed to investigate the use of ovarian cyst fluid as a source for biomarker discovery and to find novel biomarkers for use in the diagnosis of epithelial ovarian tumors. Results Ovarian cyst fluids from 218 women were collected and 192 (benign n = 129, malignant n = 63) were analyzed using mass spectrometry. 1180 peaks were detected, 221 of which were differently expressed between benign and malignant ovarian tumors. Seventeen peaks had receiver operating curve and area under the curve values >0.70; the majority of these represented peaks for apolipoproteins C-III and C-I (ApoC-I), transthyretin (TTR), serum amyloid A4 (SAA4), and protein C inhibitor (PCI). ApoC-III, PCI, and serum CA125, with an ROC AUC 0.94 was the best combination for diagnosing epithelial ovarian cancer. ApoC-III and PCI was analyzed with ELISA in the original cohort (n = 40) and in 40 new cyst fluid samples for confirmation with an independent method and validation. Results from MS and ELISA for ApoC-III correlated well (p = 0.04). In the validation set, ApoC-III was significantly (p = 0.001) increased in the malignant epithelial ovarian cancers. Conclusions Fluid from ovarian cysts connected directly to the primary tumor harbor many possible new tumor-specific biomarkers. Biomarkers found in ovarian cyst fluid may be used as molecular imaging targets for early diagnostics and prediction of therapy. Plasma abundant proteins are also influencing the cystic fluid proteome. Methods for isolating less frequent cyst fluid proteins are needed.
Collapse
Affiliation(s)
- Björg Kristjansdottir
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, University of Gothenburg, S-413 45, Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
37
|
Nobata H, Suga N, Itoh A, Miura N, Kitagawa W, Morita H, Yokoi T, Banno S, Imai H. Systemic AA amyloidosis in a patient with lung metastasis from renal cell carcinoma. Amyloid 2012; 19:197-200. [PMID: 22928906 DOI: 10.3109/13506129.2012.712926] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AA amyloidosis occurs in patients with high levels of serum amyloid A protein (SAA), which is produced by liver cells in response to signals from several pro-inflammatory cytokines. Chronic inflammatory disease is a major cause of AA amyloidosis; however, malignant neoplasms are rarely reported to be associated with AA amyloidosis. We report herein a case of a solitary lung metastasis of renal cell carcinoma associated with systemic AA amyloidosis. Pathological specimens of the resected lung tumor demonstrated renal cell carcinoma, and the presence of IL-1β, IL-6, and TNF-α in the lymphocytes and plasma cells surrounding the tumor cells, and AA amyloid in the vascular area, but not in metastatic clear cells. Four weeks after surgery, serum IL-6, SAA, and CRP levels normalized. Although this case is very rare, it is full of interesting suggestions about the pathogenesis of malignancy-related systemic amyloidosis.
Collapse
Affiliation(s)
- Hironobu Nobata
- Division of Nephrology and Rheumatology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang JY, Zheng YZ, Yang J, Lin YH, Dai SQ, Zhang G, Liu WL. Elevated levels of serum amyloid A indicate poor prognosis in patients with esophageal squamous cell carcinoma. BMC Cancer 2012; 12:365. [PMID: 22917173 PMCID: PMC3492207 DOI: 10.1186/1471-2407-12-365] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 08/17/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Increase of Serum amyloid A (SAA) level has been observed in patients with a variety of cancers. The objective of this study was to determined whether SAA level could be used as a prognostic parameter in patients with esophageal squamous cell carcinoma (ESCC). METHODS SAA levels were measured by rate nephelometry immunoassay in 167 healthy controls and 167 ESCC patients prior to surgical resection. Statistical associations between clinicopathological observations and SAA levels were determined using the Mann-Whitney U test. The clinical value of SAA level as a prognostic parameter was evaluated using the Cox's proportional hazards model. RESULTS SAA levels were significantly higher in patients with ESCC compared to levels in healthy controls (13.88 ± 15.19 mg/L vs. 2.26 ± 1.66 mg/L, P < 0.001). Elevation of SAA levels (≥ 8.0 mg/L) was observed in 54.5% (91/167) of patients with ESCC but not in healthy controls. SAA levels were associated with tumor size (P < 0.001), histological differentiation (P = 0.015), T classification (P < 0.001), clinical stage (P < 0.001), lymph node metastasis (P < 0.001) and distant metastasis (P < 0.001), but not with the age and gender of the patients or tumor location. Multivariate analysis revealed that patients with an elevated level of SAA (≥ 8.0 mg/L) had significantly lower 5-year survival rate than those with non-elevated SAA (< 8.0 mg/L, log-rank P < 0.0001). CONCLUSIONS An elevated level of preoperative SAA was found to associate with tumor progression and poor survival in patients with ESCC.
Collapse
Affiliation(s)
- Jun-Ye Wang
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Zhong DN, Ning QY, Wu JZ, Zang N, Wu JL, Hu DF, Luo SY, Huang AC, Li LL, Li GJ. Comparative proteomic profiles indicating genetic factors may involve in hepatocellular carcinoma familial aggregation. Cancer Sci 2012; 103:1833-8. [PMID: 22726459 DOI: 10.1111/j.1349-7006.2012.02368.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/03/2012] [Accepted: 06/14/2012] [Indexed: 12/23/2022] Open
Abstract
Familial aggregation of hepatocellular carcinoma (HCC), the third leading cause of cancer death worldwide, has shown to be a common phenomenon. We investigated the association between the genetic background and HCC familial aggregation. Serum samples were collected from HCC family members and normal control family members for screening the differentially expressed protein peaks with the approach of surface-enhanced laser desorption ionization time-of-flight mass spectrometry. Potential genetically associated protein peaks were selected and further identified by matrix assisted laser desorption ionization-time of flight mass spectrometry. A panel of six protein peaks (m/z 6432.94, 8478.35, 9381.91, 17284.67, 17418.34, and 18111.04) were speculated to reflect the genetic susceptibility of HCC familial aggregation. Three of them (m/z 6432.94, 8478.35, and 9381.91) were selected to identify as the candidate proteins. Nine identified proteins, including mostly apolipoprotein family (ApoA1, ApoA2, ApoC3, ApoE) and serum amyloid A protein (SAA), were found overexpressed in the multiple HCC cases family members. The comparative proteomic profiles have suggested that genetic factors ought to be taken into account for familial aggregation of HCC.
Collapse
Affiliation(s)
- Da-Ni Zhong
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
On Typing Amyloidosis Using Immunohistochemistry. Detailled Illustrations, Review and a Note on Mass Spectrometry. ACTA ACUST UNITED AC 2012; 47:61-132. [DOI: 10.1016/j.proghi.2012.03.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Shaikhibrahim Z, Lindstrot A, Buettner R, Wernert N. Regulation of prostate cancer immunity-related genes in PC3 prostate cancer cells by ETS-1. Oncol Lett 2012; 3:513-516. [PMID: 22740941 DOI: 10.3892/ol.2011.509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/21/2011] [Indexed: 11/05/2022] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent forms of cancer affecting males worldwide, and knowledge of the immune defenses involved in PCa remains incomplete. Since the identification of immunity-related genes may have enormous implications for the understanding of PCa immunology, we recently reported the identification of immunity-related genes in PCa tissues and found potential binding sites for the ETS family prototype, ETS-1, in the majority of genes identified. Therefore, as a continuation of our previous study, we investigated whether ETS-1 regulates these genes in an in vitro PCa cell line model, PC3 cells. We specifically blocked ETS-1 in PC3 cells by transfection with an ETS-1 inverse antisense expression vector or a mock control vector. We then assessed the effect of the blockade on the expression of the recently identified PCa immunity-related genes using a comprehensive oligo gene expression microarray analysis. The results showed that ETS-1 is involved in the activation or repression of the recently identified immunity-related genes in PCa. These findings provide insights into the regulation of immunity-related genes in PCa, and emphasize the importance of ETS-1 in prostate cancer immunology.
Collapse
|
42
|
Moshkovskii SA. Why do cancer cells produce serum amyloid a acute-phase protein? BIOCHEMISTRY (MOSCOW) 2012; 77:339-41. [DOI: 10.1134/s0006297912040037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Autelitano DJ, Raineri L, Knight K, Bannister K, Rice GE. Performance of a multianalyte test as an aid for the diagnosis of ovarian cancer in symptomatic women. J Transl Med 2012; 10:45. [PMID: 22410202 PMCID: PMC3340315 DOI: 10.1186/1479-5876-10-45] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 03/12/2012] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Concomitant with the development of in vitro diagnostic multivariate index assays (IVDMIAs) to improve the diagnostic efficiency of ovarian cancer detection is the need to identify appropriate biostatistical approaches to assess improvements in risk predication. In this study, we assessed the utility of three different approaches for comparing diagnostic efficiency of an ovarian cancer multivariate assay in a retrospective case--control phase 2 biomarker trial. The control cohort included both disease-free women and women with benign gynecological conditions to more accurately reflect the target population of symptomatic women. METHODS The study cohort comprised plasma samples from 244 healthy controls, 223 women with benign gynecological conditions, 53 borderline ovarian cancer cases and 222 women with malignant epithelial ovarian cancer. A multivariate classification model was developed that incorporated plasma concentrations of CA125, C-reactive protein (CRP), serum amyloid-A (SAA), interleukin-6 (IL6) and interleukin-8 (IL8) that were measured using in vitro diagnostics assays on medical device approved clinical analysers. The posterior probability values derived from the implemented algorithm were used for comparisons of the diagnostic performance between the multianalyte panel and CA125 using multiple methods; area under the curve (AUC) of the receiver operating characteristics curve, integrated discrimination improvement (IDI) and net reclassification improvement (NRI). RESULTS Each of the biomarkers displayed significantly elevated plasma concentrations in malignant ovarian cancer patients compared with either benign or control subjects. For the discrimination of borderline and malignant ovarian cancer from control and benign subjects, the multivariate classification model showed a significantly greater AUC than that for CA125 alone (88.4% versus 84.3%, respectively, p < 0.001). At a posterior probability threshold of 0.5, the IVDMIA delivered a specificity of 92.3% and a sensitivity of 76.4%. When set at a specificity of 95%, the multimarker diagnostic delivered a sensitivity of 69.5% compared with 62.5% for CA125. Enhanced diagnostic performance of the IVDMIA over the use of CA125 alone was confirmed statistically by alternative comparisons using IDI and NRI. CONCLUSIONS This study confirms in an independent sample set that a blood-based multianalyte assay has significant advantages over CA125 for distinguishing symptomatic women with borderline and malignant ovarian cancer from controls or those with benign disease.
Collapse
Affiliation(s)
| | - Linda Raineri
- Healthlinx Ltd, 576 Swan St., Richmond, VIC 3121, Australia
| | - Kate Knight
- Healthlinx Ltd, 576 Swan St., Richmond, VIC 3121, Australia
| | | | - Gregory E Rice
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital Campus, Herston, QLD 4029, Australia
| |
Collapse
|
44
|
Serum Amyloid A Levels Associated with Gastrointestinal Manifestations in Henoch-Schönlein Purpura. Inflammation 2012; 35:1251-5. [DOI: 10.1007/s10753-012-9435-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
45
|
Ambeba E, Linkov F. Advancements in the use of blood tests for cancer screening in women at high risk for endometrial and breast cancer. Future Oncol 2011; 7:1399-414. [DOI: 10.2217/fon.11.127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Several years ago, it was argued that the identification of serum biomarkers is one of the most promising approaches for the detection of early-stage malignant or even premalignant lesions. In this review, the need to establish better monitoring protocols is described for obese women who are at higher risk for the development of malignancies commonly associated with excess weight; specifically endometrial and postmenopausal breast cancer. These cancers have been chosen for this review article as our aim was to focus on female cancers that have been linked with obesity. Cancer screening is essential in detecting disease in its earliest stage in order to reduce morbidity and mortality; however, effective screening is not available for many cancer types. Even for cancers that have effective screening protocols available, there are barriers to screening in obese individuals, such as reduced mobility and embarrassment. These barriers often delay screening in these vulnerable population groups, leading to detection of the disease at a more advanced stage and ultimately leading to a poorer prognosis. As of today, biomarkers do not replace but augment imaging and other existing screening approaches. Future development of blood- or urine-based biomarkers as a way to screen individuals at high risk for certain cancers may prove to be an excellent method for overcoming the barriers that individuals at high risk are facing today. The overall purpose of this manuscript is to provide an overview of screening techniques and to identified barriers and alternate biomarker-based approaches for improvement of endometrial and breast cancer screening in obese women.
Collapse
Affiliation(s)
- Erica Ambeba
- Department of Epidemiology, University of Pittsburgh
| | - Faina Linkov
- Department of Obstetrics, Gynecology & Reproductive Science, Magee-Womens Research Institute, University of Pittsburgh 3380 Blvd of Allies, Room 323, Pittsburgh, PA 15213 USA
| |
Collapse
|
46
|
Colocalization of serum amyloid a with microtubules in human coronary artery endothelial cells. J Biomed Biotechnol 2011; 2011:528276. [PMID: 22131810 PMCID: PMC3205747 DOI: 10.1155/2011/528276] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/06/2011] [Indexed: 01/08/2023] Open
Abstract
Serum amyloid A (SAA) acts as a major acute phase protein and represents a sensitive and accurate marker of inflammation. Besides its hepatic origin, as the main source of serum SAA, this protein is also produced extrahepatically. The mRNA levels of SAA become significantly elevated following proinflammatory stimuli, as well as, are induced through their own positive feedback in human primary coronary artery endothelial cells. However, the intracellular functions of SAA are so far unknown. Colocalization of SAA with cytoskeletal filaments has previously been proposed, so we analyzed the colocalization of SAA with all three cytoskeletal elements: actin filaments, vimentin filaments, and microtubules. Immunofluorescent double-labeling analyses confirmed by PLA method revealed a strict colocalization of SAA with microtubules and a very infrequent attachment to vimentin while the distribution of actin filaments appeared clearly separated from SAA staining. Also, no significant colocalization was found between SAA and endomembranes labeled with the fluorescent lipid stain DiO6. However, SAA appears to be located also unbound in the cytosol, as well as inside the nucleus and within nanotubes extending from the cells or bridging neighboring cells. These different locations of SAA in endothelial cells strongly indicate multiple potential functions of this protein.
Collapse
|