1
|
Tsuzuki A, Fujioka Y, Yoshida A, Kashiwagi S, Amano M, Hira T, Nakamura A, Miyoshi H, Atsumi T, Ohba Y. Direct visualization of GLP-1 secretion by fluorescent fusion proteins. J Diabetes Investig 2022; 13:1134-1139. [PMID: 35377537 PMCID: PMC9248420 DOI: 10.1111/jdi.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022] Open
Abstract
Live‐cell imaging with fluorescent proteins (FPs) is a powerful tool for investigating the exocytosis processes of hormones. However, the secretion process of glucagon‐like peptide‐1 (GLP‐1) has not been visualized by FPs, which might be because tagging FPs inhibits GLP‐1 synthesis through the post‐translational processing from proglucagon. Here, we have developed FP‐tagged GLP‐1 by inserting FPs into the middle of GLP‐1 and adding the proglucagon signal peptide. Confocal imaging confirmed that GLP‐1 fused to FPs with high folding efficiency showed granular structure, in which secretory vesicle markers colocalized. The fluorescence intensity of FP in the culture supernatant from cells treated with KCl or forskolin was significantly increased compared with those from untreated cells. Furthermore, FP‐tagged GLP‐1 enables direct visualization of stimulation‐dependent exocytosis of GLP‐1 at a single granule resolution with total internal reflection fluorescence microscopy. FP‐tagged GLP‐1 might facilitate the screening of GLP‐1 secretagogues and the discovery of new antidiabetic drugs.
Collapse
Affiliation(s)
- Atsushi Tsuzuki
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoichiro Fujioka
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
| | - Aiko Yoshida
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
| | - Sayaka Kashiwagi
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
| | - Maho Amano
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tohru Hira
- Research Group of Bioscience and Chemistry, Division of Fundamental AgriScience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Akinobu Nakamura
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideaki Miyoshi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Division of Diabetes and Obesity, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yusuke Ohba
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan.,AMED- CREST, Japan Agency for Medical Research and Development, Sapporo, Japan
| |
Collapse
|
2
|
Neumann LM, Beseoglu K, Slotty PJ, Senger B, Kamp MA, Hänggi D, Steiger HJ, Cornelius JF. Efficacy of 5-aminolevulinic acid based photodynamic therapy in pituitary adenomas-experimental study on rat and human cell cultures. Photodiagnosis Photodyn Ther 2016; 14:77-83. [PMID: 26906188 DOI: 10.1016/j.pdpdt.2016.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/13/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Incomplete resection of pituitary adenomas may result in recurrence. As adjuvant irradiation is not riskless, alternative treatment options should be investigated. 5-aminolevulinic acid based photodynamic therapy (5-ALA based PDT) showed promising results for malignant gliomas. The present study examined the efficacy of 5-ALA PDT in vitro on benign pituitary adenoma cell cultures. METHODS In group I experiments were performed on immortalized rat pituitary adenoma cells (GH3). The cultured cells were treated with different 5-ALA concentrations ranging from 7.5-16.5μg/ml. In Group II human pituitary adenoma cell cultures were obtained from surgically resected adenoma tissue (n=15). These were incubated with 5-ALA concentrations from 12.5-100μg/ml. The concentration ranges had been determined in preliminary dose-finding tests. For both groups incubation time was four hours and PDT was performed by exposition to laser light (635nm, 625s, 18.75J/cm(2)). Cell viability was examined by WST-1 assay. RESULTS In both groups PDT showed a 5-ALA concentration-dependent effect on cell death. In group I lower 5-ALA concentrations were necessary to destroy all cells as compared to group II. Moreover, in group II, the different subtypes of human adenomas showed different sensitivities to 5-ALA-based PDT (secreting vs. non-secreting). Especially corticotroph adenomas were highly sensitive to 5-ALA PDT. CONCLUSIONS The GH3 cell line was an useful in vitro model to optimize different PDT parameters. Human pituitary adenoma cells could also be killed by 5-ALA PDT, however this required higher 5-ALA concentrations. Furthermore, the results suggested different 5-ALA sensitivities between different human adenoma cell types. More experiments are necessary to confirm these preliminary results.
Collapse
Affiliation(s)
- Lisa Margarete Neumann
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Kerim Beseoglu
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Philipp Joerg Slotty
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Brigitte Senger
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Marcel Alexander Kamp
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Daniel Hänggi
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstraße 5, 40225 Düsseldorf, Germany; Department of Neurosurgery, Medical Faculty, Ruprecht-Karls-University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Hans Jakob Steiger
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Jan Frederick Cornelius
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstraße 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
3
|
Matsuno A, Mizutani A, Okinaga H, Takano K, Yamada S, Yamada SM, Nakaguchi H, Hoya K, Murakami M, Takeuchi M, Sugaya M, Itoh J, Takekoshi S, Osamura RY. Functional molecular morphology of anterior pituitary cells, from hormone production to intracellular transport and secretion. Med Mol Morphol 2011; 44:63-70. [PMID: 21717308 DOI: 10.1007/s00795-011-0545-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/11/2011] [Indexed: 10/18/2022]
Abstract
Combined in situ hybridization (ISH) and immunohistochemistry (IHC) under electron microscopy (EM-ISH & IHC) has sufficient ultrastructural resolution to provide two-dimensional images of subcellular localization of pituitary hormone and its mRNA in a pituitary cell. The advantages of semiconductor nanocrystals (Quantum dots; Qdots) and confocal laser scanning microscopy (CLSM) enable us to obtain three-dimensional images of the subcellular localization of pituitary hormone and its mRNA. Both EM-ISH & IHC and ISH & IHC using Qdots and CLSM are useful for understanding the relationship between protein and mRNA simultaneously in two or three dimensions. CLSM observation of rab3B and SNARE proteins such as SNAP-25 and syntaxin revealed that both rab3B and SNARE system proteins play an important role and work together as the exocytotic machinery in anterior pituitary cells. Another important issue is the intracellular transport and secretion of pituitary hormone. An experimental pituitary cell line, the GH3 cell, in which growth hormone (GH) is linked to enhanced yellow fluorescein protein (EYFP), has been developed. This stable GH3 cell secretes GH linked to EYFP upon being stimulated by Ca(2+) influx or Ca(2+) release from storage. This GH3 cell is useful for real-time visualization of the intracellular transport and secretion of GH. These three methods enable us to visualize consecutively the processes of transcription, translation, transport, and secretion of pituitary hormone.
Collapse
Affiliation(s)
- Akira Matsuno
- Department of Neurosurgery, Teikyo University Chiba Medical Center, 3426-3 Anesaki, Ichihara, Chiba, 299-0111, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Molecular morphology of pituitary cells, from conventional immunohistochemistry to fluorescein imaging. Molecules 2011; 16:3618-35. [PMID: 21540793 PMCID: PMC6263291 DOI: 10.3390/molecules16053618] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/25/2011] [Accepted: 04/26/2011] [Indexed: 11/16/2022] Open
Abstract
In situ hybridization (ISH) at the electron microscopic (EM) level is essential for elucidating the intracellular distribution and role of mRNA in protein synthesis. EM-ISH is considered to be an important tool for clarifying the intracellular localization of mRNA and the exact site of pituitary hormone synthesis on the rough endoplasmic reticulum. A combined ISH and immunohistochemistry (IHC) under EM (EM-ISH&IHC) approach has sufficient ultrastructural resolution, and provides two-dimensional images of the subcellular localization of pituitary hormone and its mRNA in a pituitary cell. The advantages of semiconductor nanocrystals (quantum dots, Qdots) and confocal laser scanning microscopy (CLSM) enable us to obtain three-dimensional images of the subcellular localization of pituitary hormone and its mRNA. Both EM-ISH&IHC and ISH & IHC using Qdots and CLSM are useful for understanding the relationships between protein and mRNA simultaneously in two or three dimensions. CLSM observation of rab3B and SNARE proteins such as SNAP-25 and syntaxin has revealed that both rab3B and SNARE system proteins play important roles and work together as the exocytotic machinery in anterior pituitary cells. Another important issue is the intracellular transport and secretion of pituitary hormone. We have developed an experimental pituitary cell line, GH3 cell, which has growth hormone (GH) linked to enhanced yellow fluorescein protein (EYFP). This stable GH3 cell secretes GH linked to EYFP upon stimulation by Ca2+ influx or Ca2+ release from storage. This GH3 cell line is useful for the real-time visualization of the intracellular transport and secretion of GH. These three methods from conventional immunohistochemistry and fluorescein imaging allow us to consecutively visualize the process of transcription, translation, transport and secretion of anterior pituitary hormone.
Collapse
|
5
|
Akieda-Asai S, Zaima N, Ikegami K, Kahyo T, Yao I, Hatanaka T, Iemura SI, Sugiyama R, Yokozeki T, Eishi Y, Koike M, Ikeda K, Chiba T, Yamaza H, Shimokawa I, Song SY, Matsuno A, Mizutani A, Sawabe M, Chao MV, Tanaka M, Kanaho Y, Natsume T, Sugimura H, Date Y, McBurney MW, Guarente L, Setou M. SIRT1 Regulates Thyroid-Stimulating Hormone Release by Enhancing PIP5Kgamma Activity through Deacetylation of Specific Lysine Residues in Mammals. PLoS One 2010; 5:e11755. [PMID: 20668706 PMCID: PMC2909264 DOI: 10.1371/journal.pone.0011755] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 06/29/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND SIRT1, a NAD-dependent deacetylase, has diverse roles in a variety of organs such as regulation of endocrine function and metabolism. However, it remains to be addressed how it regulates hormone release there. METHODOLOGY/PRINCIPAL FINDINGS Here, we report that SIRT1 is abundantly expressed in pituitary thyrotropes and regulates thyroid hormone secretion. Manipulation of SIRT1 level revealed that SIRT1 positively regulated the exocytosis of TSH-containing granules. Using LC/MS-based interactomics, phosphatidylinositol-4-phosphate 5-kinase (PIP5K)gamma was identified as a SIRT1 binding partner and deacetylation substrate. SIRT1 deacetylated two specific lysine residues (K265/K268) in PIP5Kgamma and enhanced PIP5Kgamma enzyme activity. SIRT1-mediated TSH secretion was abolished by PIP5Kgamma knockdown. SIRT1 knockdown decreased the levels of deacetylated PIP5Kgamma, PI(4,5)P(2), and reduced the secretion of TSH from pituitary cells. These results were also observed in SIRT1-knockout mice. CONCLUSIONS/SIGNIFICANCE Our findings indicated that the control of TSH release by the SIRT1-PIP5Kgamma pathway is important for regulating the metabolism of the whole body.
Collapse
Affiliation(s)
- Sayaka Akieda-Asai
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), Tokyo, Japan
| | - Nobuhiro Zaima
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), Tokyo, Japan
- Department of Molecular Anatomy, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Koji Ikegami
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), Tokyo, Japan
- Department of Molecular Anatomy, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tomoaki Kahyo
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), Tokyo, Japan
- Department of Pathology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Ikuko Yao
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), Tokyo, Japan
- Department of Medical Chemistry, Kansai Medical University, Osaka, Japan
| | | | - Shun-ichiro Iemura
- National Institute of Advanced Industrial Science and Technology, Biomedicinal Information Research Center, Tokyo, Japan
| | - Rika Sugiyama
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki, Japan
| | - Takeaki Yokozeki
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yoshinobu Eishi
- Department of Human Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Morio Koike
- Department of Human Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kyoji Ikeda
- Department of Bone and Joint Disease, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Takuya Chiba
- Department of Investigative Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Haruyoshi Yamaza
- Department of Investigative Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Isao Shimokawa
- Department of Investigative Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Si-Young Song
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), Tokyo, Japan
| | - Akira Matsuno
- Department of Neurosurgery, Teikyo University Chica Medical Center, Chiba, Japan
| | - Akiko Mizutani
- Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Motoji Sawabe
- Department of Pathology and Bioresource Center for Geriatric Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Moses V. Chao
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Masashi Tanaka
- Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki, Japan
| | - Tohru Natsume
- National Institute of Advanced Industrial Science and Technology, Biomedicinal Information Research Center, Tokyo, Japan
| | - Haruhiko Sugimura
- Department of Pathology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Yukari Date
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Michael W. McBurney
- Ottawa Hospital Research Institute and Department of Medicine, University of Ottawa, Ottawa, Canada
| | - Leonard Guarente
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Mitsutoshi Setou
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), Tokyo, Japan
- Department of Molecular Anatomy, Hamamatsu University School of Medicine, Shizuoka, Japan
- * E-mail:
| |
Collapse
|
6
|
Matsuno A, Mizutani A, Takekoshi S, Itoh J, Okinaga H, Nishina Y, Takano K, Nagashima T, Osamura RY, Teramoto A. Analyses of the mechanism of intracellular transport and secretion of pituitary hormone, with an insight of the subcellular localization of pituitary hormone and its mRNA. Brain Tumor Pathol 2009; 23:1-5. [PMID: 18095112 DOI: 10.1007/s10014-005-0189-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Accepted: 08/29/2005] [Indexed: 11/26/2022]
Abstract
Combined in situ hybridization (ISH) and immunohistochemistry (IHC) under electron microscopy (EM-ISH&IHC) has sufficient ultrastructural resolution and provides two-dimensional images of subcellular localization of pituitary hormone and its mRNA in a pituitary cell. The advantages of semiconductor nanocrystals (Quantum dots, Qdots) and confocal laser scanning microscopy (CLSM) enable us to obtain three-dimensional images of subcellular localization of pituitary hormone and its mRNA. Both EM-ISH&IHC and ISH&IHC using Qdots and CLSM are useful for understanding the relation between protein and mRNA simultaneously in two or three dimensions. Another important issue is the intracellular transport and secretion of pituitary hormone. We have developed an experimental pituitary cell line, the GH3 cell, which has growth hormone (GH) linked to enhanced yellow fluorescein protein (EYFP). This stable GH3 cell secretes GH linked to EYFP upon stimulated by Ca2+ influx or Ca2+ release from storage. This GH3 cell is useful for real-time visualization of the intracellular transport and secretion of GH. These three methods enable us to visualize consecutively the process of transcription, translation, transport, and secretion of pituitary hormone.
Collapse
Affiliation(s)
- Akira Matsuno
- Department of Neurosurgery, Teikyo University Ichihara Hospital, 3426-3 Anesaki, Ichihara City, Chiba, 299-0111, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Co-transfection of EYFP-GH and ECFP-rab3B in an experimental pituitary GH3 cell: a role of rab3B in secretion of GH through porosome. Folia Histochem Cytobiol 2009; 46:419-21. [PMID: 19141391 DOI: 10.2478/v10042-008-0069-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, in order to elucidate the role of rab3B in porosome, we have observed the incorporation of rab3B in the secretion of GH through porosome under confocal laser scanning microscopy (CLSM). Transfected cells with GH-EYFP fusion protein and rab3B-ECFP fusion protein were observed under CLSM, which showed the colocalization of EYFP-GH and ECFP-rab3B in the budding configuration of secretory process. These structural and functional images of rab3B imply the incorporation of rab3B in the secretion of GH through porosome.
Collapse
|
8
|
Takaya A, Kamio T, Masuda M, Mochizuki N, Sawa H, Sato M, Nagashima K, Mizutani A, Matsuno A, Kiyokawa E, Matsuda M. R-Ras regulates exocytosis by Rgl2/Rlf-mediated activation of RalA on endosomes. Mol Biol Cell 2007; 18:1850-60. [PMID: 17344481 PMCID: PMC1855010 DOI: 10.1091/mbc.e06-08-0765] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
R-Ras is a Ras-family small GTPase that regulates various cellular functions such as apoptosis and cell adhesion. Here, we demonstrate a role of R-Ras in exocytosis. By the use of specific anti-R-Ras antibody, we found that R-Ras was enriched on both early and recycling endosomes in a wide range of cell lines. Using a fluorescence resonance energy transfer-based probe for R-Ras activity, R-Ras activity was found to be higher on endosomes than on the plasma membrane. This high R-Ras activity on the endosomes correlated with the accumulation of an R-Ras effector, the Rgl2/Rlf guanine nucleotide exchange factor for RalA, and also with high RalA activity. The essential role played by R-Ras in inducing high levels of RalA activity on the endosomes was evidenced by the short hairpin RNA (shRNA)-mediated suppression of R-Ras and by the expression of R-Ras GAP. In agreement with the reported role of RalA in exocytosis, the shRNA of either R-Ras or RalA was found to suppress calcium-triggered exocytosis in PC12 pheochromocytoma cells. These data revealed that R-Ras activates RalA on endosomes and that it thereby positively regulates exocytosis.
Collapse
Affiliation(s)
- Akiyuki Takaya
- *Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Osaka 565-0871, Japan
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takahiro Kamio
- *Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Osaka 565-0871, Japan
| | - Michitaka Masuda
- Department of Structural Analysis, National Cardiovascular Center Research Institute, Osaka 565-8565, Japan
| | - Naoki Mochizuki
- Department of Structural Analysis, National Cardiovascular Center Research Institute, Osaka 565-8565, Japan
| | - Hirofumi Sawa
- Laboratory of Molecular and Cellular Pathology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Mami Sato
- Laboratory of Molecular and Cellular Pathology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Kazuo Nagashima
- Laboratory of Molecular and Cellular Pathology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Akiko Mizutani
- Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Kanagawa 259-1193, Japan; and
| | - Akira Matsuno
- Department of Neurosurgery, Teikyo University Ichihara Hospital, Chiba 299-0111, Japan
| | - Etsuko Kiyokawa
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Michiyuki Matsuda
- *Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Osaka 565-0871, Japan
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|