1
|
Kim SH, Kim CJ, Lee EY, Son YM, Hwang YH, Joo ST. Optimal Pre-Plating Method of Chicken Satellite Cells for Cultured Meat Production. Food Sci Anim Resour 2022; 42:942-952. [PMID: 36415580 PMCID: PMC9647181 DOI: 10.5851/kosfa.2022.e61] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2023] Open
Abstract
To establish a pre-plating method of chicken satellite cells with high purity, pre-plating was performed under culture conditions of 37°C and 41°C, and the pre-plating time was set from a total of 3 hours to 6 hours in consideration of the cell attachment time. The purity of the cells was confirmed by staining paired box protein 7 (Pax7) after proliferation, and Pax7 expression was the highest in culture flasks shaken for 2 hours after incubation at 41°C for 2 hours to prevent the attachment of satellite cells (p<0.05). Also, when pre-plating and proliferation were performed at 37°C and 41°C, the Pax7 expression rate was higher at 41°C. The differentiation capabilities of the three groups (T3, T6, and T7) with high Pax7 expression were compared and the fusion index (%) and myotube formation area (%) determined by myosin heavy chain (MHC) staining was calculated. The T6 and T7 groups, which were cultured at 41°C, showed significantly higher values than the T3 group (p<0.05). There was no significant difference in the expression of Pax7 and MHC between the T6 and T7 groups (p>0.05). These results suggest that pre-plating at 41°C for a total of 4 hours was the most efficient in terms of cost and time for purifying chicken satellite cells for cultured meat.
Collapse
Affiliation(s)
- So-Hee Kim
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52852,
Korea
| | - Chan-Jin Kim
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52852,
Korea
| | - Eun-Yeong Lee
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52852,
Korea
| | - Yu-Min Son
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52852,
Korea
| | - Young-Hwa Hwang
- Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52852,
Korea
| | - Seon-Tea Joo
- Division of Applied Life Science (BK21
Four), Gyeongsang National University, Jinju 52852,
Korea
- Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52852,
Korea
| |
Collapse
|
2
|
Ravikrishnan A, Fowler EW, Stuffer AJ, Jia X. Hydrogel-Supported, Engineered Model of Vocal Fold Epithelium. ACS Biomater Sci Eng 2021; 7:4305-4317. [PMID: 33635635 DOI: 10.1021/acsbiomaterials.0c01741] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is a critical need for the establishment of an engineered model of the vocal fold epithelium that can be used to gain understanding of its role in vocal fold health, disease, and facilitate the development of new treatment options. Toward this goal, we isolated primary vocal fold epithelial cells (VFECs) from healthy porcine larynxes and used them within passage 3. Culture-expanded VFECs expressed the suprabasal epithelial marker cytokeratin 13 and intercellular junctional proteins occludin, E-cadherin, and zonula occludens-1. To establish the engineered model, we cultured VFECs on a hyaluronic acid-derived synthetic basement membrane displaying fibronectin-derived integrin-binding peptide (RGDSP) and/or laminin 111-derived syndecan-binding peptide AG73 (RKRLQVQLSIRT). Our results show that matrix stiffness and composition cooperatively regulate the adhesion, proliferation, and stratification of VFECs. Cells cultured on hydrogels with physiological stiffness (elastic shear modulus, G' = 1828 Pa) adopted a cobblestone morphology with close cell-cell contacts, whereas those on softer matrices (G' = 41 Pa) were spindle shaped with extensive intracellular stress fibers. The development of stratified epithelium with proliferating basal cells and additional (1-2) suprabasal layers requires the presence of both RGDSP and AG73 peptide signals. Supplementation of cytokines produced by vimentin positive primary porcine vocal fold fibroblasts in the VFEC culture led to the establishment of 4-5 distinct cell layers. The engineered vocal fold epithelium resembled native tissue morphologically; expressed cytokeratin 13, mucin 1, and tight/adherens junction markers; and secreted basement membrane proteins collagen IV and laminin 5. Collectively, our results demonstrate that stiffness matching, cell-matrix engagement, and paracrine signaling cooperatively contribute to the stratification of VFECs. The engineered epithelium can be used as a versatile tool for investigations of genetic and molecular mechanisms in vocal fold health and disease.
Collapse
Affiliation(s)
- Anitha Ravikrishnan
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Eric W Fowler
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Alexander J Stuffer
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States.,Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States.,Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States.,Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, United States
| |
Collapse
|
3
|
Jain A, Behera M, Ravi V, Mishra S, Sundaresan NR, Chatterjee K. Recapitulating pathophysiology of skeletal muscle diseases in vitro using primary mouse myoblasts on a nanofibrous platform. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 32:102341. [PMID: 33227539 DOI: 10.1016/j.nano.2020.102341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 01/10/2023]
Abstract
Tissue engineering approaches are used to mimic the microenvironment of the skeletal muscle in vitro. However, the validation of a bioengineered muscle as a model to study diseases is inadequate. Here, we present polycaprolactone nanofibers as a robust platform that mimics cellular organization and recapitulates critical functions of the myotubes observed in vivo. We isolated myoblasts from mice following a simplified protocol and cultured them on aligned nanofibers. Myotubes grown on aligned nanofibers maintained alignment for 14 days and exhibited a time-dependent increase in levels of p-AKT upon insulin stimulation. Treatment with matrix-assisted integrin inhibitor led to reduction in p-AKT levels, underscoring the critical role of environment on the biological processes. We demonstrate the suitability of myotubes grown on nanofibrous platform to study corticosteroid-induced muscle degeneration. This study, thus, demonstrates that aligned nanofibers retain myotubes in culture for longer duration and recapitulate the functions of skeletal muscle under pathophysiological conditions.
Collapse
Affiliation(s)
- Aditi Jain
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Manisha Behera
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India
| | - Venkatraman Ravi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sneha Mishra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Nagalingam R Sundaresan
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India; Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.
| | - Kaushik Chatterjee
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India; Department of Materials Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
4
|
Post MJ, Levenberg S, Kaplan DL, Genovese N, Fu J, Bryant CJ, Negowetti N, Verzijden K, Moutsatsou P. Scientific, sustainability and regulatory challenges of cultured meat. ACTA ACUST UNITED AC 2020. [DOI: 10.1038/s43016-020-0112-z] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Yoshimoto T, Serikawa M, Higa K, Kitamura K, Kasahara M, Yamamoto M, Abe S. Effect of Mesenchymal Cells on Myoblast Sheets Embedded in Collagen Gel. THE BULLETIN OF TOKYO DENTAL COLLEGE 2018; 59:87-95. [DOI: 10.2209/tdcpublication.2017-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Kazunari Higa
- Department of Ophthalmology/Cornea Center, Tokyo Dental College Ichikawa General Hospital
| | | | | | | | | |
Collapse
|
6
|
Lorant J, Saury C, Schleder C, Robriquet F, Lieubeau B, Négroni E, Leroux I, Chabrand L, Viau S, Babarit C, Ledevin M, Dubreil L, Hamel A, Magot A, Thorin C, Guevel L, Delorme B, Péréon Y, Butler-Browne G, Mouly V, Rouger K. Skeletal Muscle Regenerative Potential of Human MuStem Cells following Transplantation into Injured Mice Muscle. Mol Ther 2017; 26:618-633. [PMID: 29221805 DOI: 10.1016/j.ymthe.2017.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/15/2017] [Accepted: 10/18/2017] [Indexed: 01/18/2023] Open
Abstract
After intra-arterial delivery in the dystrophic dog, allogeneic muscle-derived stem cells, termed MuStem cells, contribute to long-term stabilization of the clinical status and preservation of the muscle regenerative process. However, it remains unknown whether the human counterpart could be identified, considering recent demonstrations of divergent features between species for several somatic stem cells. Here, we report that MuStem cells reside in human skeletal muscle and display a long-term ability to proliferate, allowing generation of a clinically relevant amount of cells. Cultured human MuStem (hMuStem) cells do not express hematopoietic, endothelial, or myo-endothelial cell markers and reproducibly correspond to a population of early myogenic-committed progenitors with a perivascular/mesenchymal phenotypic signature, revealing a blood vessel wall origin. Importantly, they exhibit both myogenesis in vitro and skeletal muscle regeneration after intramuscular delivery into immunodeficient host mice. Together, our findings provide new insights supporting the notion that hMuStem cells could represent an interesting therapeutic candidate for dystrophic patients.
Collapse
Affiliation(s)
- Judith Lorant
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes 44307, France
| | - Charlotte Saury
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes 44307, France; Macopharma, Biotherapy Division, Mouvaux, 59420, France
| | - Cindy Schleder
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes 44307, France
| | - Florence Robriquet
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes 44307, France; Université de Nantes, UBL, Nantes, France
| | | | - Elisa Négroni
- Institut de Myologie, Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Paris 75013, France
| | - Isabelle Leroux
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes 44307, France
| | | | - Sabrina Viau
- Macopharma, Biotherapy Division, Mouvaux, 59420, France
| | - Candice Babarit
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes 44307, France
| | - Mireille Ledevin
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes 44307, France
| | - Laurence Dubreil
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes 44307, France
| | - Antoine Hamel
- Service de Chirurgie Infantile, Centre Hospitalier Universitaire (CHU), Nantes 44093, France
| | - Armelle Magot
- Centre de Référence des maladies neuromusculaires Nantes-Angers, Service des Explorations Fonctionnelles, CHU, Nantes 44093, France
| | - Chantal Thorin
- Laboratoire de Physiopathologie Animale et Pharmacologie fonctionnelle, Oniris, Nantes 44307, France
| | - Laëtitia Guevel
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes 44307, France; Université de Nantes, UBL, Nantes, France
| | - Bruno Delorme
- Macopharma, Biotherapy Division, Mouvaux, 59420, France
| | - Yann Péréon
- Centre de Référence des maladies neuromusculaires Nantes-Angers, Service des Explorations Fonctionnelles, CHU, Nantes 44093, France
| | - Gillian Butler-Browne
- Institut de Myologie, Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Paris 75013, France
| | - Vincent Mouly
- Institut de Myologie, Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Paris 75013, France
| | - Karl Rouger
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes 44307, France.
| |
Collapse
|
7
|
Zhou J, Cui H, Lu H, Xu Z, Feng W, Chen L, Jin X, Yang X, Qi Z. Muscle-derived stem cells in peripheral nerve regeneration: reality or illusion? Regen Med 2017. [PMID: 28621200 DOI: 10.2217/rme-2016-0165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Owing to the complicated and time-consuming regenerative process, the repair of injured peripheral nerves depends largely on ongoing stem-cell therapy. Decades ago, researchers successfully isolated and identified muscle-derived stem cells (MDSCs) and discovered their potential for multidifferentiation. MDSCs play an important role in trauma repair associated with neuromuscular and vascular injury by simultaneously promoting tissue regrowth via direct differentiation and systematic secretion under physiological conditions. However, the isolation, culture, induction and application of MDSCs require further methodological analysis before clinical application. In this review, we comprehensively discuss the challenges associated with neural regeneration and reviewed the progress of stem cell based regenerative medicine, in an effort to realize the potential of MDSCs in nerve regeneration.
Collapse
Affiliation(s)
- Jing Zhou
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| | - Haiyan Cui
- Department of Plastic & Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Haibin Lu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| | - Zhuqiu Xu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| | - Weifeng Feng
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| | - Lulu Chen
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| | - Xiaolei Jin
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| | - Xiaonan Yang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| | - Zuoliang Qi
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| |
Collapse
|
8
|
Molecular and functional heterogeneity of early postnatal porcine satellite cell populations is associated with bioenergetic profile. Sci Rep 2017; 7:45052. [PMID: 28344332 PMCID: PMC5366807 DOI: 10.1038/srep45052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/20/2017] [Indexed: 12/19/2022] Open
Abstract
During postnatal development, hyperplastic and hypertrophic processes of skeletal muscle growth depend on the activation, proliferation, differentiation, and fusion of satellite cells (SC). Therefore, molecular and functional SC heterogeneity is an important component of muscle plasticity and will greatly affect long-term growth performance and muscle health. However, its regulation by cell intrinsic and extrinsic factors is far from clear. In particular, there is only minor information on the early postnatal period which is critical for muscle maturation and the establishment of adult SC pools. Here, we separated two SC subpopulations (P40/50, P50/70) from muscle of 4-day-old piglets. Our results characterize P40/50 as homogeneous population of committed (high expression of Myf5), fast-proliferating muscle progenitors. P50/70 constituted a slow-proliferating phenotype and contains high numbers of differentiated SC progeny. During culture, P50/70 is transformed to a population with lower differentiation potential that contains 40% Pax7-positive cells. A reversible state of low mitochondrial activity that results from active down-regulation of ATP-synthase is associated with the transition of some of the P50/70 cells to this more primitive fate typical for a reserve cell population. We assume that P40/50 and P50/70 subpopulations contribute unequally in the processes of myofiber growth and maintenance of the SC pool.
Collapse
|
9
|
The superior regenerative potential of muscle-derived stem cells for articular cartilage repair is attributed to high cell survival and chondrogenic potential. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16065. [PMID: 27990446 PMCID: PMC5129874 DOI: 10.1038/mtm.2016.65] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 06/22/2016] [Indexed: 11/08/2022]
Abstract
Three populations of muscle-derived cells (PP1, PP3, and PP6) were isolated from mouse skeletal muscle using modified preplate technique and retrovirally transduced with BMP4/GFP. In vitro, the PP1 cells (fibroblasts) proliferated significantly slower than the PP3 (myoblasts) and PP6 cells (muscle-derived stem cells); the PP1 and PP6 cells showed a superior rate of survival compared with PP3 cells under oxidative stress; and the PP6 cells showed significantly superior chondrogenic capabilities than PP1 and PP3 cells. In vivo, the PP6 cells promoted superior cartilage regeneration compared with the other muscle-derived cell populations. The cartilage defects in the PP6 group had significantly higher histological scores than those of the other muscle-derived cell groups, and GFP detection revealed that the transplanted PP6 cells showed superior in vivo cell survival and chondrogenic capabilities compared with the PP1 and PP3 cells. PP6 cells (muscle-derived stem cells) are superior to other primary muscle-derived cells for use as a cellular vehicle for BMP4-based ex vivo gene therapy to heal full-thickness osteo-chondral defects. The superiority of the PP6/muscle-derived stem cells appears to be attributable to a combination of increased rate of in vivo survival and superior chondrogenic differentiation capacity.
Collapse
|
10
|
Engineered three-dimensional rabbit oral epithelial-mesenchymal-muscular hybrid sheets. Int J Oral Sci 2016; 8:145-54. [PMID: 27341388 PMCID: PMC5113088 DOI: 10.1038/ijos.2016.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2016] [Indexed: 11/09/2022] Open
Abstract
Regenerative muscles are required for swallowing and mastication, and are important for functional recovery from diseases involving oral muscular defects. Therefore, we generated three-layer hybrid sheets, similar to oral mucosal structures containing submucosal muscles, using rabbit oral mucosa epithelial, mesenchymal, and myoblastic progenitor cells, and examined the structural proteins. Each cell type was obtained from rabbit oral mucosa using enzymatic digestion. Isolated mesenchymal and myoblastic cells were multi-differentiated into osteoblasts, adipocytes, and chondrocytes or myotubes. Isolated epithelial cells were cultured on collagen gels containing isolated mesenchymal cells for 2 weeks, and these epithelial-mesenchymal cell sheets were laminated onto myoblastic cell sheets. The engineered hybrid sheets were multi-stratified in the epithelial and myoblastic layers in a time-dependent manner, expressing intermediate cytoskeletal filament proteins of epithelium and muscle. Hybrid sheets also expressed extracellular matrix basement membrane proteins. Immature cell markers for epithelial and myoblastic cells were observed continuously in hybrid sheet cultures. We established engineered three-dimensional rabbit oral mucosa hybrid sheets containing each immature cell type in vitro.
Collapse
|
11
|
Deng G, Wang W, Yang C, Gao R, Yang X, Ye X. Shaking improves the whole bone marrow adherent method of purification. Mol Med Rep 2016; 13:3133-8. [PMID: 26936221 DOI: 10.3892/mmr.2016.4920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 12/14/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the potential effects of mechanical shaking on the purity, activity, differentiation and possible apoptosis of rat bone marrow mesenchymal stem cells (BMSCs). Based on the whole bone marrow adhesion method, different durations and frequencies of mechanical shaking were used on primary cells. The biomarkers, CD29, CD90, CD45 and CD31, in addition to the apoptosis labels, annexin V‑FITC and PI, were investigated using flow‑cytometric analysis. The differentiation capability following purification was evaluated. Following shaking treatment, the purity of adherent cells increased, in particular there was an increase in CD29 and CD90 positive cells, with the majority of the detached cells negative for these two markers. In addition, the apoptotic rates increased with the increasing shaking duration and frequency. Furthermore, cells following shaking were induced to differentiate into osteoblasts and adipocytes. The shaking method allows for mesenchymal stem cells at to be obtained with higher positive rates of CD29 and CD90. In addition, horizontal shaking has little influence on cell activity or differentiation, with low levels of apoptosis occurring as a result of shaking.
Collapse
Affiliation(s)
- Guoying Deng
- Department of Orthopaedics, Changzheng Hospital Affiliated with the Second Military Medical University, Shanghai 200003, P.R. China
| | - Weiheng Wang
- Department of Orthopaedics, Changzheng Hospital Affiliated with the Second Military Medical University, Shanghai 200003, P.R. China
| | - Chengwei Yang
- Department of Orthopaedics, Lanzhou General Hospital of Lanzhou Military Command Region, Lanzhou, Gansu 730050, P.R. China
| | - Rui Gao
- Department of Orthopaedics, Changzheng Hospital Affiliated with the Second Military Medical University, Shanghai 200003, P.R. China
| | - Xiangqun Yang
- Institute of Biomedical Engineering, Second Military Medical University, Shanghai 200433, P.R. China
| | - Xiaojian Ye
- Department of Orthopaedics, Changzheng Hospital Affiliated with the Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
12
|
Plasticity of mesenchymal stem cells from mouse bone marrow in the presence of conditioned medium of the facial nerve and fibroblast growth factor-2. ScientificWorldJournal 2015; 2014:457380. [PMID: 25614888 PMCID: PMC4295612 DOI: 10.1155/2014/457380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/07/2014] [Indexed: 11/18/2022] Open
Abstract
A number of evidences show the influence of the growth of injured nerve fibers in peripheral nervous system as well as potential implant stem cells (SCs). The SCs implementation in the clinical field is promising and the understanding of proliferation and differentiation is essential. This study aimed to evaluate the plasticity of mesenchymal SCs from bone marrow of mice in the presence of culture medium conditioned with facial nerve explants and fibroblast growth factor-2 (FGF-2). The growth and morphology were assessed for over 72 hours. Quantitative phenotypic analysis was taken from the immunocytochemistry for glial fibrillary acidic protein (GFAP), protein OX-42 (OX-42), protein associated with microtubule MAP-2 (MAP-2), protein β-tubulin III (β-tubulin III), neuronal nuclear protein (NeuN), and neurofilament 200 (NF-200). Cells cultured with conditioned medium alone or combined with FGF-2 showed morphological features apparently similar at certain times to neurons and glia and a significant proliferative activity in groups 2 and 4. Cells cultivated only with conditioned medium acquired a glial phenotype. Cells cultured with FGF-2 and conditioned medium expressed GFAP, OX-42, MAP-2, β-tubulin III, NeuN, and NF-200. This study improves our understanding of the plasticity of mesenchymal cells and allows the search for better techniques with SCs.
Collapse
|
13
|
Beane OS, Fonseca VC, Cooper LL, Koren G, Darling EM. Impact of aging on the regenerative properties of bone marrow-, muscle-, and adipose-derived mesenchymal stem/stromal cells. PLoS One 2014; 9:e115963. [PMID: 25541697 PMCID: PMC4277426 DOI: 10.1371/journal.pone.0115963] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/03/2014] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are promising cell sources for regenerative therapies due to their multipotency and ready availability, but their application can be complicated by patient-specific factors like age or illness. MSCs have been investigated for the treatment of many musculoskeletal disorders, including osteoarthritis and osteoporosis. Due to the prevalence of these diseases in older populations, researchers have studied how aging affects MSC properties and have found that proliferation and differentiation potential are impaired. However, these effects have never been compared among MSCs isolated from multiple tissue sources in the same, healthy donor. Revealing differences in how MSCs are affected by age could help identify an optimal cell source for musculoskeletal therapies targeting older patients. MSCs were isolated from young and old rabbit bone marrow, muscle, and adipose tissue. Cell yield and viability were quantified after isolation procedures, and expansion properties were assessed using assays for proliferation, senescence, and colony formation. Multipotency was also examined using lineage-specific stains and spectrophotometry of metabolites. Results were compared between age groups and among MSC sources. Results showed that MSCs are differentially influenced by aging, with bone marrow-derived stem cells having impaired proliferation, senescence, and chondrogenic response, whereas muscle-derived stem cells and adipose-derived stem cells exhibited no negative effects. While age reduced overall cell yield and adipogenic potential of all MSC populations, osteogenesis and clonogenicity remained unchanged. These findings indicate the importance of age as a factor when designing cell-based therapies for older patients.
Collapse
Affiliation(s)
- Olivia S. Beane
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Vera C. Fonseca
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island, United States of America
| | - Leroy L. Cooper
- Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Gideon Koren
- Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Eric M. Darling
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island, United States of America
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island, United States of America
- Department of Orthopaedics, Brown University, Providence, Rhode Island, United States of America
- School of Engineering, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
14
|
Froehlich JM, Seiliez I, Gabillard JC, Biga PR. Preparation of primary myogenic precursor cell/myoblast cultures from basal vertebrate lineages. J Vis Exp 2014. [PMID: 24835774 DOI: 10.3791/51354] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Due to the inherent difficulty and time involved with studying the myogenic program in vivo, primary culture systems derived from the resident adult stem cells of skeletal muscle, the myogenic precursor cells (MPCs), have proven indispensible to our understanding of mammalian skeletal muscle development and growth. Particularly among the basal taxa of Vertebrata, however, data are limited describing the molecular mechanisms controlling the self-renewal, proliferation, and differentiation of MPCs. Of particular interest are potential mechanisms that underlie the ability of basal vertebrates to undergo considerable postlarval skeletal myofiber hyperplasia (i.e. teleost fish) and full regeneration following appendage loss (i.e. urodele amphibians). Additionally, the use of cultured myoblasts could aid in the understanding of regeneration and the recapitulation of the myogenic program and the differences between them. To this end, we describe in detail a robust and efficient protocol (and variations therein) for isolating and maintaining MPCs and their progeny, myoblasts and immature myotubes, in cell culture as a platform for understanding the evolution of the myogenic program, beginning with the more basal vertebrates. Capitalizing on the model organism status of the zebrafish (Danio rerio), we report on the application of this protocol to small fishes of the cyprinid clade Danioninae. In tandem, this protocol can be utilized to realize a broader comparative approach by isolating MPCs from the Mexican axolotl (Ambystoma mexicanum) and even laboratory rodents. This protocol is now widely used in studying myogenesis in several fish species, including rainbow trout, salmon, and sea bream(1-4).
Collapse
Affiliation(s)
| | | | | | - Peggy R Biga
- Department of Biology, University of Alabama at Birmingham;
| |
Collapse
|
15
|
Yang JD, Cheng-Huang, Wang JC, Feng XM, Li YN, Xiao HX. The isolation and cultivation of bone marrow stem cells and evaluation of differences for neural-like cells differentiation under the induction with neurotrophic factors. Cytotechnology 2014; 66:1007-19. [PMID: 24379142 DOI: 10.1007/s10616-013-9654-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 09/30/2013] [Indexed: 01/14/2023] Open
Abstract
The bone marrow represents the most common source from which to isolate mesenchymal stem cells (MSCs). They can be obtained directly from patients and successfully induced to form various differentiated cell types. In addition, cell-based transplantation therapies have been proven to be promising strategies for curing disease of the nerve system. Therefore, it was particularly important to establish an easy and feasible method for the isolation, purification, and differentiation of bone marrow stromal cells (BMSCs). The aim of this study was to isolate and characterize putative bone marrow derived MSCs from Sprague-Dawley (SD) rats. Furthermore, differentiation effects were compared between the GDNF-induction group and the BDNF-induction group. Of these, BMSCs were isolated from the SD rats in a traditional manner, and identified based on plastic adherence, morphology, and surface phenotype assays. After induction with GDNF and BDNF, viability of BMSCs was detected by MTT assay and neuronal differentiation of BMSCs was confirmed by using immunofluorescence and Western blotting. Besides, the number of BMSCs that obviously exhibited neuronal morphology was counted and the results were compared between the GDNF-induction group and BDNF-induction groups. Our results indicate that direct adherence was a simple and convenient method for isolation and cultivation of BMSCs. Furthermore, BMSCs can be induced in vitro to differentiate into neuronal cells by using GDNF, which could achieve a more persistent and stable inducing effect than when using BDNF.
Collapse
Affiliation(s)
- Jian-Dong Yang
- Department of spine surgery, The clinical medicine college of Yangzhou University, Nantong west road no.98, Yangzhou, Jiangsu province, china
| | | | | | | | | | | |
Collapse
|
16
|
Khurana A, Chapelin F, Beck G, Lenkov OD, Donig J, Nejadnik H, Messing S, Derugin N, Chan RCF, Gaur A, Sennino B, McDonald DM, Kempen PJ, Tikhomirov GA, Rao J, Daldrup-Link HE. Iron administration before stem cell harvest enables MR imaging tracking after transplantation. Radiology 2013; 269:186-97. [PMID: 23850832 DOI: 10.1148/radiol.13130858] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE To determine whether intravenous ferumoxytol can be used to effectively label mesenchymal stem cells (MSCs) in vivo and can be used for tracking of stem cell transplants. MATERIALS AND METHODS This study was approved by the institutional animal care and use committee. Sprague-Dawley rats (6-8 weeks old) were injected with ferumoxytol 48 hours prior to extraction of MSCs from bone marrow. Ferumoxytol uptake by these MSCs was evaluated with fluorescence, confocal, and electron microscopy and compared with results of traditional ex vivo-labeling procedures. The in vivo-labeled cells were subsequently transplanted in osteochondral defects of 14 knees of seven athymic rats and were evaluated with magnetic resonance (MR) imaging up to 4 weeks after transplantation. T2 relaxation times of in vivo-labeled MSC transplants and unlabeled control transplants were compared by using t tests. MR data were correlated with histopathologic results. RESULTS In vivo-labeled MSCs demonstrated significantly higher ferumoxytol uptake compared with ex vivo-labeled cells. With electron microscopy, iron oxide nanoparticles were localized in secondary lysosomes. In vivo-labeled cells demonstrated significant T2 shortening effects in vitro and in vivo when they were compared with unlabeled control cells (T2 in vivo, 15.4 vs 24.4 msec; P < .05) and could be tracked in osteochondral defects for 4 weeks. Histologic examination confirmed the presence of iron in labeled transplants and defect remodeling. CONCLUSION Intravenous ferumoxytol can be used to effectively label MSCs in vivo and can be used for tracking of stem cell transplants with MR imaging. This method eliminates risks of contamination and biologic alteration of MSCs associated with ex vivo-labeling procedures.
Collapse
Affiliation(s)
- Aman Khurana
- Department of Radiology and Molecular Imaging Program at Stanford, Stanford University School of Medicine, 725 Welch Rd, Room 1665, Stanford, CA 94305-5654; Department of Communication and Statistics and Department of Materials Science and Engineering, Stanford University, Stanford, Calif; Department of Neurology, Comprehensive Cancer Center, Cardiovascular Research Institute and Department of Anatomy, University of California San Francisco, San Francisco, Calif
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Adult stem cells derived from skeletal muscle — biology and potential. Open Life Sci 2013. [DOI: 10.2478/s11535-013-0137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractSkeletal muscle contains at least two distinct populations of adult stem cells — satellite cells and multipotent muscle-derived stem cells. Monopotential satellite cells are located under the basal lamina of muscle fibers. They are capable of giving rise only to cells of myogenic lineage, which play an important role in the processes of muscle regeneration. Multipotent muscle-derived stem cells are considered to be predecessors of the satellite cells. Under proper conditions, both in vitro and in vivo, they undergo myogenic, cardiogenic, chondrogenic, osteogenic and adipogenic differentiation. The main purpose of the present article is to summarize current information about adult stem cells derived from skeletal muscle, and to discuss their isolation and in vitro expansion techniques, biological properties, as well as their potential for regenerative medicine.
Collapse
|
18
|
Liu Y, Chen S, Li W, Du H, Zhu W. Isolation and characterization of primary skeletal muscle satellite cells from rats. Toxicol Mech Methods 2012; 22:721-5. [PMID: 22901082 DOI: 10.3109/15376516.2012.720302] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The purpose of this study was to isolate and characterize skeletal muscle satellite cells from rats using tissue block culture method. Specific Pathogen Free (SPF) level Sprague-Dawley (SD) rats were used to isolate skeletal muscle satellite cells. Morphology, expression and distribution of α-actin and Desmin within the cytoplasm of skeletal muscle satellite cells were compared with those of C2C12 myoblasts. The results showed that tissue block culturing method achieved robust proliferation and excellent differentiation of skeletal muscle satellite cells. Immunofluorescence and immunohistochemistry results showed that α-actin and Desmin proteins were expressed in the cytoplasm of both skeletal muscle satellite cells and myoblasts. We concluded that tissue block culturing method can obtain highly purified skeletal muscle satellite cells with robust proliferation and excellent differentiation capabilities.
Collapse
Affiliation(s)
- Yuan Liu
- Guangzhou Center for Disease Control and Prevention , Guangzhou, Guangdong, People's Republic of China
| | | | | | | | | |
Collapse
|
19
|
Li X, Zhang Y, Qi G. Evaluation of isolation methods and culture conditions for rat bone marrow mesenchymal stem cells. Cytotechnology 2012; 65:323-34. [PMID: 23011741 DOI: 10.1007/s10616-012-9497-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 09/03/2012] [Indexed: 01/14/2023] Open
Abstract
Bone marrow mesenchymal stem cells (bMSCs) are multipotent and preferred for cell therapy. However, the content of bMSCs is very low. To propagate a large number of primary bMSCs rapidly has become a prerequisite for bMSC study and application. Different methods of isolating and culturing bMSC were used and compared among groups: bMSCs of group A are isolated using direct adherence method and cultured by conventional medium changing; of group B are isolated using direct adherence method and cultured by low volume medium changing; of group C are isolated using density gradient centrifugation and cultured by conventional medium changing; of group D are isolated using density gradient centrifugation and cultured by low volume medium changing. The average population doubling time (PDT), average generation time and the cumulative cell doubling level were calculated for every group. bMSCs cultured with complete medium containing 10, 11 and 15 % FBS were allocated into group a, b and c separatedly. Cell numbers were counted everyday under a microscope, the population doubling level curve was plotted and PDT was calculated. The growth curve of bMSC in group a, b and c was made. Both density gradient centrifugation and direct adherence methods obtained relatively pure bMSCs. A larger quantity of primary bMSCs were obtained by direct adherence. bMSC proliferation was faster when cultured via the low volume medium changing method at a serum concentration of 11 % than the other methods. Isolating bMSC by direct adherence and culturing by low volume medium changing at a serum concentration of 11 % is preferential for bMSC propagation.
Collapse
Affiliation(s)
- Xueyuan Li
- Department of Cardiological Internal Medicine, The No. 1 Affiliated Hospital of China Medical University, ShenYang, LiaoNing, China
| | | | | |
Collapse
|
20
|
Smith A, Passey S, Greensmith L, Mudera V, Lewis M. Characterization and optimization of a simple, repeatable system for the long term in vitro culture of aligned myotubes in 3D. J Cell Biochem 2012; 113:1044-53. [DOI: 10.1002/jcb.23437] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Chirieleison SM, Feduska JM, Schugar RC, Askew Y, Deasy BM. Human muscle-derived cell populations isolated by differential adhesion rates: phenotype and contribution to skeletal muscle regeneration in Mdx/SCID mice. Tissue Eng Part A 2011; 18:232-41. [PMID: 21854253 DOI: 10.1089/ten.tea.2010.0553] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Muscle-derived stem cells (MDSCs) isolated from murine skeletal tissue by the preplate method have displayed the capability to commit to the myogenic lineage and regenerate more efficiently than myoblasts in skeletal and cardiac muscle in murine Duchenne Muscular Dystrophy mice (mdx). However, until now, these studies have not been translated to human muscle cells. Here, we describe the isolation, by a preplate technique, of candidate human MDSCs, which exhibit myogenic and regenerative characteristics similar to their murine counterparts. Using the preplate isolation method, we compared cells that adhere faster to the flasks, preplate 2 (PP2), and cells that adhere slower, preplate 6 (PP6). The human PP6 cells express several markers of mesenchymal stem cells and are distinct from human PP2 (a myoblast-like population) based on their expression of CD146 and myogenic markers desmin and CD56. After transplantation to the gastrocnemius muscle of mdx/SCID mice, we observe significantly higher levels of PP6 cells participating in muscle regeneration as compared with the transplantation of PP2 cells. This study supports some previous findings related to mouse preplate cells, and also identifies some differences between mouse and human muscle preplate cells.
Collapse
Affiliation(s)
- Steven M Chirieleison
- Stem Cell Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | | | |
Collapse
|
22
|
Dupas T, Rouaud T, Rouger K, Lieubeau B, Cario-Toumaniantz C, Fontaine-Pérus J, Gardahaut MF, Auda-Boucher G. Fetal muscle contains different CD34+ cell subsets that distinctly differentiate into adipogenic, angiogenic and myogenic lineages. Stem Cell Res 2011; 7:230-43. [PMID: 21907166 DOI: 10.1016/j.scr.2011.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/17/2011] [Accepted: 06/21/2011] [Indexed: 11/29/2022] Open
Abstract
We have previously demonstrated that CD34(+) cells isolated from fetal mouse muscles are an interesting source of myogenic progenitors. In the present work, we pinpoint the tissue location of these CD34(+) cells using cell surface and phenotype markers. In order to identify the myogenic population, we next purified different CD34(+) subsets, determined their expression of relevant lineage-related genes, and analyzed their differentiation capacities in vitro and in vivo. The CD34(+) population comprised a CD31(+)/CD45(-) cell subset exhibiting endothelial characteristics and only capable of forming microvessels in vivo. The CD34(+)/CD31(-)/CD45(-)/Sca1(+) subpopulation, which is restricted to the muscle epimysium, displayed adipogenic differentiation both in vitro and in vivo. CD34(+)/CD31(-)/CD45(-)/Sca1(-) cells, localized in the muscle interstitium, transcribed myogenic genes, but did not display the characteristics of adult satellite cells. These cells were distinct from pericytes and fibroblasts. They were myogenic in vitro, and efficiently contributed to skeletal muscle regeneration in vivo, although their myogenic potential was lower than that of the unfractionated CD34(+) cell population. Our results indicate that angiogenic and adipogenic cells grafted with myogenic cells enhance their contribution to myogenic regeneration, highlighting the fundamental role of the microenvironment on the fate of transplanted cells.
Collapse
|
23
|
Lu SH, Lin ATL, Chen KK, Chiang HS, Chang LS. Characterization of smooth muscle differentiation of purified human skeletal muscle-derived cells. J Cell Mol Med 2011; 15:587-92. [PMID: 20132408 PMCID: PMC3922380 DOI: 10.1111/j.1582-4934.2010.01017.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 01/12/2010] [Indexed: 01/10/2023] Open
Abstract
The purpose of this study is to characterize the smooth muscle differentiation of purified human muscle-derived cells (hMDCs). The isolation and purification of hMDCs were conducted by modified preplate technique and Dynal CD34 cell selection. Smooth muscle cell differentiation was induced by the use of smooth muscle induction medium (SMIM) and low-serum medium. The gene expressions at the mRNA and protein levels of undifferentiated and differentiated hMDCs were tested by RT-PCR, Western blot and immunofluorescence studies. Western blot and immunofluorescence studies demonstrated the purified hMDCs cultured in SMIM for 4 weeks and expressed significant amount of smooth muscle myosin heavy chain (MHC) and α-smooth muscle actin (ASMA). The cells cultured in low-serum medium for 4 weeks also expressed ASMA, while the control group did not. RT-PCR analysis showed increased gene expression of smooth muscle markers, such as ASMA, Calponin, SM22, Caldesmon, Smoothelin and MHC when purified hMDCs were exposed to SMIM for 2 and 4 weeks when compared to the controls. In conclusion, we confirmed the smooth muscle differentiation capability of purified hMDCs. The gene expression of smooth muscle differentiation of purified hMDCs was characterized. These cells may be potential biomaterials for human tissue regeneration.
Collapse
Affiliation(s)
- Shing-Hwa Lu
- Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
24
|
Wu X, Wang S, Chen B, An X. Muscle-derived stem cells: isolation, characterization, differentiation, and application in cell and gene therapy. Cell Tissue Res 2010; 340:549-67. [DOI: 10.1007/s00441-010-0978-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 04/06/2010] [Indexed: 01/06/2023]
|
25
|
Lu SH, Yang AH, Wei CF, Chiang HS, Chancellor MB. Multi-potent differentiation of human purified muscle-derived cells: potential for tissue regeneration. BJU Int 2009; 105:1174-80. [PMID: 19712114 DOI: 10.1111/j.1464-410x.2009.08823.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate whether CD34+ purified human muscle-derived cells (hMDCs) are capable of multiple lineage differentiation. MATERIALS AND METHODS The hMDCs were isolated from human skeletal muscle and purified using a CD34+ cell selection system (Dynal Biotech, Oslo, Norway). Adherent populations of cells were expanded in culture and cell differentiation was induced using different kinds of growth factors and different differentiation-conditional media. The immunohistochemical properties of CD34+ hMDCs were examined after varying periods in culture. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were used to investigate the gene expression of the undifferentiated and differentiated hMDCs. RESULTS Using special differentiation conditions the CD34+ hMDCs could be differentiated into myogenic cells, adipocytes, osteocytes and chondrocytes. The differentiation was confirmed by immunohistochemistry. RT-PCR and Western blotting showed multiple-lineage gene-level expression in the different cultivation periods of the differentiated cells. CONCLUSIONS We confirmed the multi-lineage capacity of a population of stem cells, termed CD34+ hMDCs. Our findings showed that CD34+ hMDCs are capable of multiple mesodermal-lineage differentiation, as shown by the expression of several lineage-specific genes. They can be differentiated toward the myogenic, osteogenic, adipogenic and chondrogenic lineages. These cells might have potential for use in tissue regeneration.
Collapse
Affiliation(s)
- Shing-Hwa Lu
- Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
26
|
Gharaibeh B, Lu A, Tebbets J, Zheng B, Feduska J, Crisan M, Péault B, Cummins J, Huard J. Isolation of a slowly adhering cell fraction containing stem cells from murine skeletal muscle by the preplate technique. Nat Protoc 2008; 3:1501-9. [PMID: 18772878 DOI: 10.1038/nprot.2008.142] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This protocol details a procedure, known as the modified preplate technique, which is currently used in our laboratory to isolate muscle cells on the basis of selective adhesion to collagen-coated tissue culture plates. By employing this technique to murine skeletal muscle, we have been able to isolate a rapidly adhering cell (RAC) fraction within the earlier stages of the process, whereas a slowly adhering cell (SAC) fraction containing muscle-derived stem cells is obtained from the later stages of the process. This protocol outlines the methods and materials needed to isolate RAC and SAC populations from murine skeletal muscle. The procedure involves mechanical and enzymatic digestion of skeletal muscle tissue with collagenase XI, dispase and trypsin followed by plating the resultant muscle slurry on collagen type I-coated flasks where the cells adhere at different rates. The entire preplate technique requires 5 d to obtain the final preplate SAC population. Two to three additional days are usually required before this population is properly established. We also detail additional methodologies designed to further enrich the resultant cell population by continuing the modified preplating process on the SAC population. This process is known as replating and requires further time.
Collapse
Affiliation(s)
- Burhan Gharaibeh
- Stem Cell Research Center, 4100 Rangos Research Center, 3460 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Recent progress on tissue-resident adult stem cell biology and their therapeutic implications. ACTA ACUST UNITED AC 2008; 4:27-49. [PMID: 18288619 DOI: 10.1007/s12015-008-9008-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent progress in the field of the stem cell research has given new hopes to treat and even cure diverse degenerative disorders and incurable diseases in human. Particularly, the identification of a rare population of adult stem cells in the most tissues/organs in human has emerged as an attractive source of multipotent stem/progenitor cells for cell replacement-based therapies and tissue engineering in regenerative medicine. The tissue-resident adult stem/progenitor cells offer the possibility to stimulate their in vivo differentiation or to use their ex vivo expanded progenies for cell replacement-based therapies with multiple applications in human. Among the human diseases that could be treated by the stem cell-based therapies, there are hematopoietic and immune disorders, multiple degenerative disorders, such as Parkinson's and Alzheimer's diseases, type 1 or 2 diabetes mellitus as well as eye, liver, lung, skin and cardiovascular disorders and aggressive and metastatic cancers. In addition, the genetically-modified adult stem/progenitor cells could also be used as delivery system for expressing the therapeutic molecules in specific damaged areas of different tissues. Recent advances in cancer stem/progenitor cell research also offer the possibility to targeting these undifferentiated and malignant cells that provide critical functions in cancer initiation and progression and disease relapse for treating the patients diagnosed with the advanced and metastatic cancers which remain incurable in the clinics with the current therapies.
Collapse
|
28
|
Isolation of myogenic progenitor populations from Pax7-deficient skeletal muscle based on adhesion characteristics. Gene Ther 2008; 15:1116-25. [DOI: 10.1038/gt.2008.86] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|