1
|
Hu L, Mao S, Lin L, Bai G, Liu B, Mao J. Stress granules in the spinal muscular atrophy and amyotrophic lateral sclerosis: The correlation and promising therapy. Neurobiol Dis 2022; 170:105749. [PMID: 35568100 DOI: 10.1016/j.nbd.2022.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/27/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022] Open
Abstract
Increasing genetic and biochemical evidence has broadened our view of the pathomechanisms that lead to Spinal muscular atrophy (SMA) and Amyotrophic lateral sclerosis (ALS), two fatal neurodegenerative diseases with similar symptoms and causes. Stress granules are dynamic cytosolic storage hubs for mRNAs in response to stress exposures, that are evolutionarily conserved cytoplasmic RNA granules in somatic cells. A lot of previous studies have shown that the impaired stress granules are crucial events in SMA/ALS pathogenesis. In this review, we described the key stress granules related RNA binding proteins (SMN, TDP-43, and FUS) involved in SMA/ALS, summarized the reported mutations in these RNA binding proteins involved in SMA/ALS pathogenesis, and discussed the mechanisms through which stress granules dynamics participate in the diseases. Meanwhile, we described the applications and limitation of current therapies targeting SMA/ALS. We futher proposed the promising targets on stress granules in the future therapeutic interventions of SMA/ALS.
Collapse
Affiliation(s)
- LiDan Hu
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| | - Shanshan Mao
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Li Lin
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Guannan Bai
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Bingjie Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianhua Mao
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| |
Collapse
|
2
|
Lachke SA. RNA-binding proteins and post-transcriptional regulation in lens biology and cataract: Mediating spatiotemporal expression of key factors that control the cell cycle, transcription, cytoskeleton and transparency. Exp Eye Res 2022; 214:108889. [PMID: 34906599 PMCID: PMC8792301 DOI: 10.1016/j.exer.2021.108889] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 01/03/2023]
Abstract
Development of the ocular lens - a transparent tissue capable of sustaining frequent shape changes for optimal focusing power - pushes the boundaries of what cells can achieve using the molecular toolkit encoded by their genomes. The mammalian lens contains broadly two types of cells, the anteriorly located monolayer of epithelial cells which, at the equatorial region of the lens, initiate differentiation into fiber cells that contribute to the bulk of the tissue. This differentiation program involves massive upregulation of select fiber cell-expressed RNAs and their subsequent translation into high amounts of proteins, such as crystallins. But intriguingly, fiber cells achieve this while also simultaneously undergoing significant morphological changes such as elongation - involving about 1000-fold length-wise increase - and migration, which requires modulation of cytoskeletal and cell adhesion factors. Adding further to the challenges, these molecular and cellular events have to be coordinated as fiber cells progress toward loss of their nuclei and organelles, which irreversibly compromises their potential for harnessing genetically hardwired information. A long-standing question is how processes downstream of signaling and transcription, which may also participate in feedback regulation, contribute toward orchestrating these cellular differentiation events in the lens. It is now becoming clear from findings over the past decade that post-transcriptional gene expression regulatory mechanisms are critical in controlling cellular proteomes and coordinating key processes in lens development and fiber cell differentiation. Indeed, RNA-binding proteins (RBPs) such as Caprin2, Celf1, Rbm24 and Tdrd7 have now been described in mediating post-transcriptional control over key factors (e.g. Actn2, Cdkn1a (p21Cip1), Cdkn1b (p27Kip1), various crystallins, Dnase2b, Hspb1, Pax6, Prox1, Sox2) that are variously involved in cell cycle, transcription, cytoskeleton maintenance and differentiation in the lens. Furthermore, deficiencies of these RBPs have been shown to result in various eye and lens defects and/or cataract. Because fiber cell differentiation in the lens occurs throughout life, the underlying regulatory mechanisms operational in development are expected to also be recruited for the maintenance of transparency in aged lenses. Indeed, in support of this, TDRD7 and CAPRIN2 loci have been linked to age-related cataract in humans. Here, I will review the role of key RBPs in the lens and their importance in understanding the pathology of lens defects. I will discuss advances in RBP-based gene expression control, in general, and the important challenges that need to be addressed in the lens to define the mechanisms that determine the epithelial and fiber cell proteome. Finally, I will also discuss in detail several key future directions including the application of bioinformatics approaches such as iSyTE to study RBP-based post-transcriptional gene expression control in the aging lens and in the context of age-related cataract.
Collapse
Affiliation(s)
- Salil A Lachke
- Department of Biological Sciences, University of Delaware, 105 The Green, Delaware Avenue, 236 Wolf Hall, Newark, DE, USA; Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
3
|
Yang F, Diao X, Wang F, Wang Q, Sun J, Zhou Y, Xie J. Identification of Key Regulatory Genes and Pathways in Prefrontal Cortex of Alzheimer's Disease. Interdiscip Sci 2020; 12:90-98. [PMID: 32006383 DOI: 10.1007/s12539-019-00353-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder partly induced by dysregulation of different brain regions. Prefrontal cortex (PFC) dysregulation has been reported to associate with mental symptoms such as delusion, apathy, and depression in AD patients. However, the internal mechanisms have not yet been well-understood. This study aims to identify the potential therapeutic target genes and related pathways in PFC of AD. First, differential expression analyses were performed on transcriptome microarray of PFC between AD specimens and non-AD controls. Second, protein-protein interaction networks were constructed based on the identified differentially expressed genes to explore candidate therapeutic target genes. Finally, these candidate genes were validated through biological experiments. The enrichment analyses showed that the differentially expressed genes were significantly enriched in protein functions and pathways related to AD. Furthermore, the top ten hub genes in the protein-protein interaction network (ELAVL1, CUL3, MAPK6, FBXW11, YWHAE, YWHAZ, GRB2, CLTC, YWHAQ, and PDHA1) were proved to be directly or indirectly related to AD. Besides, six genes (PDHA1, CLTC, YWHAE, MAPK6, YWHAZ, and GRB2) of which were validated to significantly altered in AD mice by biological experiments. Importantly, the most significantly changed gene, PDHA1, was proposed for the first time that may be serve as a target gene in AD treatment. In summary, several genes and pathways that play critical roles in PFC of AD patients have been uncovered, which will provide novel insights on molecular targets for treatment and diagnostic biomarkers of AD.
Collapse
Affiliation(s)
- Fuzhang Yang
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Xin Diao
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Fushuai Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Quanwei Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiamin Sun
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Yan Zhou
- Laboratory on Naturopathy, College of Physical Education, Shanghai University, Shanghai, China
| | - Jiang Xie
- School of Computer Engineering and Science, Shanghai University, Shanghai, China.
| |
Collapse
|
4
|
Poblete-Durán N, Prades-Pérez Y, Vera-Otarola J, Soto-Rifo R, Valiente-Echeverría F. Who Regulates Whom? An Overview of RNA Granules and Viral Infections. Viruses 2016; 8:v8070180. [PMID: 27367717 PMCID: PMC4974515 DOI: 10.3390/v8070180] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/10/2016] [Accepted: 06/21/2016] [Indexed: 12/22/2022] Open
Abstract
After viral infection, host cells respond by mounting an anti-viral stress response in order to create a hostile atmosphere for viral replication, leading to the shut-off of mRNA translation (protein synthesis) and the assembly of RNA granules. Two of these RNA granules have been well characterized in yeast and mammalian cells, stress granules (SGs), which are translationally silent sites of RNA triage and processing bodies (PBs), which are involved in mRNA degradation. This review discusses the role of these RNA granules in the evasion of anti-viral stress responses through virus-induced remodeling of cellular ribonucleoproteins (RNPs).
Collapse
Affiliation(s)
- Natalia Poblete-Durán
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8389100, Chile.
| | - Yara Prades-Pérez
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8389100, Chile.
| | - Jorge Vera-Otarola
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago 8330024, Chile.
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8389100, Chile.
| | - Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8389100, Chile.
| |
Collapse
|
5
|
Scheckel C, Drapeau E, Frias MA, Park CY, Fak J, Zucker-Scharff I, Kou Y, Haroutunian V, Ma'ayan A, Buxbaum JD, Darnell RB. Regulatory consequences of neuronal ELAV-like protein binding to coding and non-coding RNAs in human brain. eLife 2016; 5. [PMID: 26894958 PMCID: PMC4798961 DOI: 10.7554/elife.10421] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/19/2015] [Indexed: 12/12/2022] Open
Abstract
Neuronal ELAV-like (nELAVL) RNA binding proteins have been linked to numerous neurological disorders. We performed crosslinking-immunoprecipitation and RNAseq on human brain, and identified nELAVL binding sites on 8681 transcripts. Using knockout mice and RNAi in human neuroblastoma cells, we showed that nELAVL intronic and 3' UTR binding regulates human RNA splicing and abundance. We validated hundreds of nELAVL targets among which were important neuronal and disease-associated transcripts, including Alzheimer's disease (AD) transcripts. We therefore investigated RNA regulation in AD brain, and observed differential splicing of 150 transcripts, which in some cases correlated with differential nELAVL binding. Unexpectedly, the most significant change of nELAVL binding was evident on non-coding Y RNAs. nELAVL/Y RNA complexes were specifically remodeled in AD and after acute UV stress in neuroblastoma cells. We propose that the increased nELAVL/Y RNA association during stress may lead to nELAVL sequestration, redistribution of nELAVL target binding, and altered neuronal RNA splicing. DOI:http://dx.doi.org/10.7554/eLife.10421.001 When a gene is active, its DNA is copied into a molecule of RNA. This molecule then undergoes a process called splicing which removes certain segments, and the resulting ‘messenger RNA’ molecule is then translated into protein. Many messenger RNAs go through alternative splicing, whereby different segments can be included or excluded from the final molecule. This allows more than one type of protein to be produced from a single gene. Specialized RNA binding proteins associate with messenger RNAs and regulate not only their splicing, but also their abundance and location within the cell. These activities are crucially important in the brain where forming memories and learning new skills requires thousands of proteins to be made rapidly. Many members of a family of RNA binding proteins called ELAV-like proteins are unique to neurons. These proteins have also been associated with conditions such as Alzheimer’s disease, but it was not known which messenger RNAs were the targets of these proteins in the human brain. Scheckel, Drapeau et al. have now addressed this question and used a method termed 'CLIP' to identify thousands of messenger RNAs that directly bind to neuronal ELAV-like proteins in the human brain. Many of these messenger RNAs coded for proteins that are important for the health of neurons, and neuronal ELAV-like proteins were shown to regulate both the alternative splicing and the abundance of these messenger RNAs. The regulation of RNA molecules in post-mortem brain samples of people with or without Alzheimer’s disease was then compared. Scheckel, Drapeau et al. unexpectedly observed that, in the Alzheimer’s disease patients, the neuronal ELAV-like proteins were very often associated with a class of RNA molecules known as Y RNAs. These RNA molecules do not code for proteins, and are therefore classified as non-coding RNA. Moreover, massive shifts in the binding of ELAV-like proteins onto Y RNAs were observed in neurons grown in the laboratory that had been briefly stressed by exposure to ultraviolet radiation. Scheckel, Drapeau et al. suggest that the strong tendency of neuronal ELAV-like proteins to bind to Y RNAs in conditions of short- or long-term stress, including Alzheimer’s disease, might prevent these proteins from associating with their normal messenger RNA targets. This was supported by finding that some messenger RNAs targeted by neuronal ELAV-like proteins showed altered regulation after stress. Such changes to the normal regulation of these messenger RNAs could have a large impact on the proteins that are produced from them. Together, these findings link Y RNAs to both neuronal stress and Alzheimer’s disease, and suggest a new way that a cell can alter which messenger RNAs are expressed in response to changes in its environment. The next step is to explore what causes the shift in neuronal ELAV-like protein binding from messenger RNAs to Y RNAs and how it might contribute to disease. DOI:http://dx.doi.org/10.7554/eLife.10421.002
Collapse
Affiliation(s)
- Claudia Scheckel
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States.,Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Elodie Drapeau
- Seaver Autism Center for Research and Treatment, New York, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Maria A Frias
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States.,Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Christopher Y Park
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States.,Howard Hughes Medical Institute, The Rockefeller University, New York, United States.,New York Genome Center, New York, United States
| | - John Fak
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States.,Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Ilana Zucker-Scharff
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States.,Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Yan Kou
- Seaver Autism Center for Research and Treatment, New York, United States.,Department of Pharmacology and Systems Therapeutics, BD2K-LINCS Data Integration and Coordination Center, Mount Sinai Knowledge Management Center for Illuminating the Druggable Genome, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Vahram Haroutunian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States.,James J. Peters VA Medical Center, New York, United States
| | - Avi Ma'ayan
- Department of Pharmacology and Systems Therapeutics, BD2K-LINCS Data Integration and Coordination Center, Mount Sinai Knowledge Management Center for Illuminating the Druggable Genome, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, New York, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, United States.,Mindich Child Health Institute, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States.,Howard Hughes Medical Institute, The Rockefeller University, New York, United States.,New York Genome Center, New York, United States
| |
Collapse
|
6
|
Bronicki LM, Jasmin BJ. Emerging complexity of the HuD/ELAVl4 gene; implications for neuronal development, function, and dysfunction. RNA (NEW YORK, N.Y.) 2013; 19:1019-1037. [PMID: 23861535 PMCID: PMC3708524 DOI: 10.1261/rna.039164.113] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Precise control of messenger RNA (mRNA) processing and abundance are increasingly being recognized as critical for proper spatiotemporal gene expression, particularly in neurons. These regulatory events are governed by a large number of trans-acting factors found in neurons, most notably RNA-binding proteins (RBPs) and micro-RNAs (miRs), which bind to specific cis-acting elements or structures within mRNAs. Through this binding mechanism, trans-acting factors, particularly RBPs, control all aspects of mRNA metabolism, ranging from altering the transcription rate to mediating mRNA degradation. In this context the best-characterized neuronal RBP, the Hu/ELAVl family member HuD, is emerging as a key component in multiple regulatory processes--including pre-mRNA processing, mRNA stability, and translation--governing the fate of a substantial amount of neuronal mRNAs. Through its ability to regulate mRNA metabolism of diverse groups of functionally similar genes, HuD plays important roles in neuronal development and function. Furthermore, compelling evidence indicates supplementary roles for HuD in neuronal plasticity, in particular, recovery from axonal injury, learning and memory, and multiple neurological diseases. The purpose of this review is to provide a detailed overview of the current knowledge surrounding the expression and roles of HuD in the nervous system. Additionally, we outline the present understanding of the molecular mechanisms presiding over the localization, abundance, and function of HuD in neurons.
Collapse
|
7
|
Richardson DS, Rodrigues DM, Hyndman BD, Crupi MJF, Nicolescu AC, Mulligan LM. Alternative splicing results in RET isoforms with distinct trafficking properties. Mol Biol Cell 2012; 23:3838-50. [PMID: 22875993 PMCID: PMC3459860 DOI: 10.1091/mbc.e12-02-0114] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The RET gene encodes a receptor tyrosine kinase that is alternatively spliced to two protein isoforms that differ in their C-terminal peptide sequences (RET9, RET51). These unique C-terminal tails produce distinct subcellular localizations and intracellular trafficking properties, which affect downstream signaling. RET encodes a receptor tyrosine kinase that is essential for spermatogenesis, development of the sensory, sympathetic, parasympathetic, and enteric nervous systems and the kidneys, as well as for maintenance of adult midbrain dopaminergic neurons. RET is alternatively spliced to encode multiple isoforms that differ in their C-terminal amino acids. The RET9 and RET51 isoforms display unique levels of autophosphorylation and have differential interactions with adaptor proteins. They induce distinct gene expression patterns, promote different levels of cell differentiation and transformation, and play unique roles in development. Here we present a comprehensive study of the subcellular localization and trafficking of RET isoforms. We show that immature RET9 accumulates intracellularly in the Golgi, whereas RET51 is efficiently matured and present in relatively higher amounts on the plasma membrane. RET51 is internalized faster after ligand binding and undergoes recycling back to the plasma membrane. This differential trafficking of RET isoforms produces a more rapid and longer duration of signaling through the extracellular-signal regulated kinase/mitogen-activated protein kinase pathway downstream of RET51 relative to RET9. Together these differences in trafficking properties contribute to some of the functional differences previously observed between RET9 and RET51 and establish the important role of intracellular trafficking in modulating and maintaining RET signaling.
Collapse
Affiliation(s)
- Douglas S Richardson
- Department of Pathology and Molecular Medicine and Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | | | | | | | | | | |
Collapse
|
8
|
The role of molecular microtubule motors and the microtubule cytoskeleton in stress granule dynamics. Int J Cell Biol 2011; 2011:939848. [PMID: 21760798 PMCID: PMC3132543 DOI: 10.1155/2011/939848] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 04/20/2011] [Indexed: 11/18/2022] Open
Abstract
Stress granules (SGs) are cytoplasmic foci that appear in cells exposed to stress-induced translational inhibition. SGs function as a triage center, where mRNAs are sorted for storage, degradation, and translation reinitiation. The underlying mechanisms of SGs dynamics are still being characterized, although many key players have been identified. The main components of SGs are stalled 48S preinitiation complexes. To date, many other proteins have also been found to localize in SGs and are hypothesized to function in SG dynamics. Most recently, the microtubule cytoskeleton and associated motor proteins have been demonstrated to function in SG dynamics. In this paper, we will discuss current literature examining the function of microtubules and the molecular microtubule motors in SG assembly, coalescence, movement, composition, organization, and disassembly.
Collapse
|
9
|
DeGracia DJ, Jamison JT, Szymanski JJ, Lewis MK. Translation arrest and ribonomics in post-ischemic brain: layers and layers of players. J Neurochem 2008; 106:2288-301. [PMID: 18627434 DOI: 10.1111/j.1471-4159.2008.05561.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A persistent translation arrest (TA) correlates precisely with the selective vulnerability of post-ischemic neurons. Mechanisms of post-ischemic TA that have been assessed include ribosome biochemistry, the link between TA and stress responses, and the inactivation of translational components via sequestration in subcellular structures. Each of these approaches provides a perspective on post-ischemic TA. Here, we develop the notion that mRNA regulation via RNA-binding proteins, or ribonomics, also contributes to post-ischemic TA. We describe the ribonomic network, or structures involved in mRNA regulation, including nuclear foci, polysomes, stress granules, embryonic lethal abnormal vision/Hu granules, processing bodies, exosomes, and RNA granules. Transcriptional, ribonomic, and ribosomal regulation together provide multiple layers mediating cell reprogramming. Stress gene induction via the heat-shock response, immediate early genes, and endoplasmic reticulum stress represents significant reprogramming of post-ischemic neurons. We present a model of post-ischemic TA in ischemia-resistant neurons that incorporates ribonomic considerations. In this model, selective translation of stress-induced mRNAs contributes to translation recovery. This model provides a basis to study dysfunctional stress responses in vulnerable neurons, with a key focus on the inability of vulnerable neurons to selectively translate stress-induced mRNAs. We suggest a ribonomic approach will shed new light on the roles of mRNA regulation in persistent TA in vulnerable post-ischemic neurons.
Collapse
Affiliation(s)
- Donald J DeGracia
- Department of Physiology, Wayne State University, Detroit, Michigan, USA.
| | | | | | | |
Collapse
|
10
|
Zhu H, Hasman RA, Barron VA, Luo G, Lou H. A nuclear function of Hu proteins as neuron-specific alternative RNA processing regulators. Mol Biol Cell 2006; 17:5105-14. [PMID: 17035636 PMCID: PMC1679676 DOI: 10.1091/mbc.e06-02-0099] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 09/08/2006] [Accepted: 09/29/2006] [Indexed: 12/12/2022] Open
Abstract
Recent advances in genome-wide analysis of alternative splicing indicate that extensive alternative RNA processing is associated with many proteins that play important roles in the nervous system. Although differential splicing and polyadenylation make significant contributions to the complexity of the nervous system, our understanding of the regulatory mechanisms underlying the neuron-specific pathways is very limited. Mammalian neuron-specific embryonic lethal abnormal visual-like Hu proteins (HuB, HuC, and HuD) are a family of RNA-binding proteins implicated in neuronal differentiation and maintenance. It has been established that Hu proteins increase expression of proteins associated with neuronal function by up-regulating mRNA stability and/or translation in the cytoplasm. We report here a novel function of these proteins as RNA processing regulators in the nucleus. We further elucidate the underlying mechanism of this regulation. We show that in neuron-like cells, Hu proteins block the activity of TIA-1/TIAR, two previously identified, ubiquitously expressed proteins that promote the nonneuronal pathway of calcitonin/calcitonin gene-related peptide (CGRP) pre-mRNA processing. These studies define not only the first neuron-specific regulator of the calcitonin/CGRP system but also the first nuclear function of Hu proteins.
Collapse
Affiliation(s)
| | | | | | - Guangbin Luo
- *Department of Genetics
- Case Comprehensive Cancer Center, and
| | - Hua Lou
- *Department of Genetics
- Case Comprehensive Cancer Center, and
- Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|