2
|
Li C, Xin W, Sy MS. Binding of pro-prion to filamin A: by design or an unfortunate blunder. Oncogene 2010; 29:5329-45. [PMID: 20697352 DOI: 10.1038/onc.2010.307] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the last decades, cancer research has focused on tumor suppressor genes and oncogenes. Genes in other cellular pathways has received less attention. Between 0.5% to 1% of the mammalian genome encodes for proteins that are tethered on the cell membrane via a glycosylphosphatidylinositol (GPI)-anchor. The GPI modification pathway is complex and not completely understood. Prion (PrP), a GPI-anchored protein, is infamous for being the only normal protein that when misfolded can cause and transmit a deadly disease. Though widely expressed and highly conserved, little is known about the functions of PrP. Pancreatic cancer and melanoma cell lines express PrP. However, in these cell lines the PrP exists as a pro-PrP as defined by retaining its GPI anchor peptide signal sequence (GPI-PSS). Unexpectedly, the GPI-PSS of PrP has a filamin A (FLNA) binding motif and binds FLNA. FLNA is a cytolinker protein, and an integrator of cell mechanics and signaling. Binding of pro-PrP to FLNA disrupts the normal FLNA functions. Although normal pancreatic ductal cells lack PrP, about 40% of patients with pancreatic ductal cell adenocarcinoma express PrP in their cancers. These patients have significantly shorter survival time compared with patients whose cancers lack PrP. Pro-PrP is also detected in melanoma in situ but is undetectable in normal melanocyte, and invasive melanoma expresses more pro-PrP. In this review, we will discuss the underlying mechanisms by which binding of pro-PrP to FLNA disrupts normal cellular physiology and contributes to tumorigenesis, and the potential mechanisms that cause the accumulation of pro-PrP in cancer cells.
Collapse
Affiliation(s)
- C Li
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-7288, USA
| | | | | |
Collapse
|
4
|
Li C, Yu S, Nakamura F, Yin S, Xu J, Petrolla AA, Singh N, Tartakoff A, Abbott DW, Xin W, Sy MS. Binding of pro-prion to filamin A disrupts cytoskeleton and correlates with poor prognosis in pancreatic cancer. J Clin Invest 2009; 119:2725-36. [PMID: 19690385 PMCID: PMC2735930 DOI: 10.1172/jci39542] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 06/17/2009] [Indexed: 01/02/2023] Open
Abstract
The cellular prion protein (PrP) is a highly conserved, widely expressed, glycosylphosphatidylinositol-anchored (GPI-anchored) cell surface glycoprotein. Since its discovery, most studies on PrP have focused on its role in neurodegenerative prion diseases, whereas its function outside the nervous system remains unclear. Here, we report that human pancreatic ductal adenocarcinoma (PDAC) cell lines expressed PrP. However, the PrP was neither glycosylated nor GPI-anchored, existing as pro-PrP and retaining its GPI anchor peptide signal sequence (GPI-PSS). We also showed that the PrP GPI-PSS has a filamin A-binding (FLNa-binding) motif and interacted with FLNa, an actin-associated protein that integrates cell mechanics and signaling. Binding of pro-PrP to FLNa disrupted cytoskeletal organization. Inhibition of PrP expression by shRNA in the PDAC cell lines altered the cytoskeleton and expression of multiple signaling proteins; it also reduced cellular proliferation and invasiveness in vitro as well as tumor growth in vivo. A subgroup of human patients with pancreatic cancer was found to have tumors that expressed pro-PrP. Most importantly, PrP expression in tumors correlated with a marked decrease in patient survival. We propose that binding of pro-PrP to FLNa perturbs FLNa function, thus contributing to the aggressiveness of PDAC. Prevention of this interaction could provide an attractive target for therapeutic intervention in human PDAC.
Collapse
Affiliation(s)
- Chaoyang Li
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shuiliang Yu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Fumihiko Nakamura
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shaoman Yin
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jinghua Xu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Amber A. Petrolla
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Neena Singh
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Alan Tartakoff
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Derek W. Abbott
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Wei Xin
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Man-Sun Sy
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|