1
|
Paes VM, de Figueiredo JR, Ryan PL, Willard ST, Feugang JM. Comparative Analysis of Porcine Follicular Fluid Proteomes of Small and Large Ovarian Follicles. BIOLOGY 2020; 9:biology9050101. [PMID: 32429601 PMCID: PMC7285177 DOI: 10.3390/biology9050101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/16/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022]
Abstract
Ovarian follicular fluid is widely used for in vitro oocyte maturation, but its in-depth characterization to extract full beneficial effects remains unclear. Here, we performed both shotgun (nanoscale liquid chromatography coupled to tandem mass spectrometry or nanoLC-MS/MS) and gel-based (two dimension-differential in-gel electrophoresis or 2D-DIGE) proteomics, followed by functional bioinformatics to compare the proteomes of follicular fluids collected from small (<4 mm) and large (>6-12 mm) follicles of pig ovaries. A total of 2321 unique spots were detected with the 2D-DIGE across small and large follicles, while 2876 proteins with 88% successful annotations were detected with the shotgun approach. The shotgun and 2D-DIGE approaches revealed about 426 and 300 proteins that were respectively common across samples. Six proteins detected with both technical approaches were significantly differently expressed between small and large follicles. Pathways such as estrogen and PI3K-Akt signaling were significantly enriched in small follicles while the complement and coagulation cascades pathways were significantly represented in large follicles. Up-regulated proteins in small follicles were in favor of oocyte maturation, while those in large follicles were involved in the ovulatory process preparation. Few proteins with potential roles during sperm-oocyte interactions were especially detected in FF of large follicles and supporting the potential role of the ovarian FF on the intrafallopian sperm migration and interaction with the oocyte.
Collapse
Affiliation(s)
- Victor M. Paes
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39759, USA; (V.M.P.); (P.L.R.); (S.T.W.)
- Laboratory of Manipulation of Oocyte and Preantral follicles, State University of Ceará, CEP, 60740 903 Fortaleza, Brazil;
| | - José R. de Figueiredo
- Laboratory of Manipulation of Oocyte and Preantral follicles, State University of Ceará, CEP, 60740 903 Fortaleza, Brazil;
| | - Peter L. Ryan
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39759, USA; (V.M.P.); (P.L.R.); (S.T.W.)
| | - Scott T. Willard
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39759, USA; (V.M.P.); (P.L.R.); (S.T.W.)
| | - Jean M. Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39759, USA; (V.M.P.); (P.L.R.); (S.T.W.)
- Correspondence: ; Tel.: +662-325-7567; Fax: +662-325-8873
| |
Collapse
|
2
|
Qiao S, Nordström K, Muijs L, Gasparoni G, Tierling S, Krause E, Walter J, Boehm U. Molecular Plasticity of Male and Female Murine Gonadotropes Revealed by mRNA Sequencing. Endocrinology 2016; 157:1082-93. [PMID: 26677881 DOI: 10.1210/en.2015-1836] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gonadotropes in the anterior pituitary gland are of particular importance within the hypothalamic-pituitary-gonadal axis because they provide a means of communication and thus a functional link between the brain and the gonads. Recent results indicate that female gonadotropes may be organized in the form of a network that shows plasticity and adapts to the altered endocrine conditions of different physiological states. However, little is known about functional changes on the molecular level within gonadotropes during these different conditions. In this study we capitalize on a binary genetic strategy in order to fluorescently label murine gonadotrope cells. Using this mouse model allows to produce an enriched gonadotrope population using fluorescence activated cell sorting to perform mRNA sequencing. By using this strategy, we analyze and compare the expression profile of murine gonadotropes in different genders and developmental and hormonal stages. We find that gonadotropes taken from juvenile males and females, from cycling females at diestrus and at proestrus, from lactating females, and from adult males each have unique gene expression patterns with approximately 100 to approximately 500 genes expressed only in one particular stage. We also demonstrate extensive gene-expression profile changes with up to approximately 2200 differentially expressed genes when comparing female and male development, juveniles and adults, and cycling females. Differentially expressed genes were significantly enriched in the GnRH signaling, calcium signaling, and MAPK signaling pathways by Kyoto Encyclopedia of Genes and Genomes analysis. Our data provide an unprecedented molecular view of the primary gonadotropes and reveal a high degree of molecular plasticity within the gonadotrope population.
Collapse
Affiliation(s)
- Sen Qiao
- Department of Pharmacology and Toxicology (S.Q., L.M., U.B.) and Center for Integrative Physiology and Molecular Medicine (E.K.), University of Saarland School of Medicine, Kirrberger Straße D-66421 Homburg, Germany; and Department of Genetics (K.N., G.G., S.T., J.W.), University of Saarland, D-66123 Saarbrücken, Germany
| | - Karl Nordström
- Department of Pharmacology and Toxicology (S.Q., L.M., U.B.) and Center for Integrative Physiology and Molecular Medicine (E.K.), University of Saarland School of Medicine, Kirrberger Straße D-66421 Homburg, Germany; and Department of Genetics (K.N., G.G., S.T., J.W.), University of Saarland, D-66123 Saarbrücken, Germany
| | - Leon Muijs
- Department of Pharmacology and Toxicology (S.Q., L.M., U.B.) and Center for Integrative Physiology and Molecular Medicine (E.K.), University of Saarland School of Medicine, Kirrberger Straße D-66421 Homburg, Germany; and Department of Genetics (K.N., G.G., S.T., J.W.), University of Saarland, D-66123 Saarbrücken, Germany
| | - Gilles Gasparoni
- Department of Pharmacology and Toxicology (S.Q., L.M., U.B.) and Center for Integrative Physiology and Molecular Medicine (E.K.), University of Saarland School of Medicine, Kirrberger Straße D-66421 Homburg, Germany; and Department of Genetics (K.N., G.G., S.T., J.W.), University of Saarland, D-66123 Saarbrücken, Germany
| | - Sascha Tierling
- Department of Pharmacology and Toxicology (S.Q., L.M., U.B.) and Center for Integrative Physiology and Molecular Medicine (E.K.), University of Saarland School of Medicine, Kirrberger Straße D-66421 Homburg, Germany; and Department of Genetics (K.N., G.G., S.T., J.W.), University of Saarland, D-66123 Saarbrücken, Germany
| | - Elmar Krause
- Department of Pharmacology and Toxicology (S.Q., L.M., U.B.) and Center for Integrative Physiology and Molecular Medicine (E.K.), University of Saarland School of Medicine, Kirrberger Straße D-66421 Homburg, Germany; and Department of Genetics (K.N., G.G., S.T., J.W.), University of Saarland, D-66123 Saarbrücken, Germany
| | - Jörn Walter
- Department of Pharmacology and Toxicology (S.Q., L.M., U.B.) and Center for Integrative Physiology and Molecular Medicine (E.K.), University of Saarland School of Medicine, Kirrberger Straße D-66421 Homburg, Germany; and Department of Genetics (K.N., G.G., S.T., J.W.), University of Saarland, D-66123 Saarbrücken, Germany
| | - Ulrich Boehm
- Department of Pharmacology and Toxicology (S.Q., L.M., U.B.) and Center for Integrative Physiology and Molecular Medicine (E.K.), University of Saarland School of Medicine, Kirrberger Straße D-66421 Homburg, Germany; and Department of Genetics (K.N., G.G., S.T., J.W.), University of Saarland, D-66123 Saarbrücken, Germany
| |
Collapse
|
3
|
Umasuthan N, Whang I, Kim JO, Oh MJ, Jung SJ, Choi CY, Yeo SY, Lee JH, Noh JK, Lee J. Rock bream (Oplegnathus fasciatus) serpin, protease nexin-1: transcriptional analysis and characterization of its antiprotease and anticoagulant activities. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:785-798. [PMID: 21419793 DOI: 10.1016/j.dci.2011.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 05/30/2023]
Abstract
Protease nexin-1 (PN-1) is a serine protease inhibitor (SERPIN) protein with functional roles in growth, development, patho-physiology and injury. Here, we report our work to clone, analyze the expression profile and characterize the properties of the PN-1 gene in rock bream (Rb), Oplegnathus fasciatus. RbPN-1 encodes a peptide of 397 amino acids (AA) with a predicted molecular mass of 44 kDa and a 23 AA signal peptide. RbPN-1 protein was found to harbor a characteristic SERPIN domain comprised of a SERPIN signature and having sequence homology to vertebrate PN-1s. The greatest identity (85%) was observed with PN-1 from the three-spined stickleback fish, Gasterosteus aculeatus. The functional domains, including a heparin binding site and reactive centre loop were conserved between RbPN-1 and other fish PN-1s; in particular, they were found to correspond to components of the human plasminogen activator inhibitor 1, PAI-1. Phylogenetic analysis indicated that RbPN-1 was closer to homologues of green spotted pufferfish and Japanese pufferfish. Recombinant RbPN-1 demonstrated antiprotease activity against trypsin (48%) and thrombin (89%) in a dose-dependent manner, and its antithrombotic activity was potentiated by heparin. The anticoagulant function prolonged clotting time by 3.7-fold, as compared to the control in an activated partial thromboplastin time assay. Quantitative real-time PCR results indicated that RbPN-1 is transcribed in many endogenous tissues at different levels. Lipopolysaccharide (LPS) stimulated a prolonged transcriptional response in hematic cells, and Rb iridovirus up-regulated the RbPN-1 mRNA level in hematic cells to a maximum of 3.4-fold at 12 h post-infection. Interestingly, LPS and Edwardsiella tarda significantly induced the RbPN-1 transcription at the late phase of infection. In vivo studies indicated that injury response caused a temporal suppression in RbPN-1 transcription, in conjunction with that of another SERPIN, rock bream heparin cofactor II, RbHCII. Taken together, our findings suggest that PN-1 functions as an antiprotease and anticoagulant and that SERPINs (PN-1 and HCII) are likely to contribute to immunity and post-injury responses.
Collapse
Affiliation(s)
- Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Paczkowski M, Krisher R. Aberrant protein expression is associated with decreased developmental potential in porcine cumulus-oocyte complexes. Mol Reprod Dev 2010; 77:51-8. [PMID: 19728369 DOI: 10.1002/mrd.21102] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oocyte developmental competence is progressively obtained during pubertal development in females. Poor developmental potential in oocytes derived from prepubertal females suggests that essential processes required for oocyte development have not been fulfilled. The objective of this experiment was to analyze the protein profiles of porcine cumulus-oocyte complexes (COC) derived from cyclic and prepubertal females to identify alterations in protein abundance that correlate with developmental potential. COC complexes, aspirated from prepubertal and cyclic ovaries, were pooled into three replicates of 400 COCs each per treatment in approximately 100 microl SOF-HEPES medium. Protein samples were extracted and analyzed by two-dimensional differential in gel electrophoresis (2D-DIGE). Over 1,600 proteins were resolved on each of the three replicate gels. Sixteen protein spots were identified by mass spectrometry, representing 14 unique, differentially expressed proteins (volume ratio greater than 1.3). Glutathione-S-transferase and pyruvate kinase 3 were more abundant in COCs derived from cyclic females, whereas soluble epoxide hydrolase and transferrin were more abundant in prepubertal derived COCs. Abundance of several glycolytic enzymes (enolase 1, pyruvate kinase 3, and phosphoglycerate kinase) was increased in COCs derived from cyclic females, suggesting glucose metabolism is decreased in prepubertal derived COCs. We conclude that the abundance of proteins involved in metabolism and oxidative stress regulation is significantly altered in prepubertal derived COCs and may play a role in the mechanisms resulting in developmental competence.
Collapse
Affiliation(s)
- Melissa Paczkowski
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, USA
| | | |
Collapse
|