1
|
Eiermann M, Wrigley-Field E, Feigenbaum JJ, Helgertz J, Hernandez E, Boen CE. Racial Disparities in Mortality During the 1918 Influenza Pandemic in United States Cities. Demography 2022; 59:1953-1979. [PMID: 36124998 PMCID: PMC9714293 DOI: 10.1215/00703370-10235825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Against a backdrop of extreme racial health inequality, the 1918 influenza pandemic resulted in a striking reduction of non-White to White influenza and pneumonia mortality disparities in United States cities. We provide the most complete account to date of these reduced racial disparities, showing that they were unexpectedly uniform across cities. Linking data from multiple sources, we then examine potential explanations for this finding, including city-level sociodemographic factors such as segregation, implementation of nonpharmaceutical interventions, racial differences in exposure to the milder spring 1918 "herald wave," and racial differences in early-life influenza exposures, resulting in differential immunological vulnerability to the 1918 flu. While we find little evidence for the first three explanations, we offer suggestive evidence that racial variation in childhood exposure to the 1889-1892 influenza pandemic may have shrunk racial disparities in 1918. We also highlight the possibility that differential behavioral responses to the herald wave may have protected non-White urban populations. By providing a comprehensive description and examination of racial inequality in mortality during the 1918 pandemic, we offer a framework for understanding disparities in infectious disease mortality that considers interactions between the natural histories of particular microbial agents and the social histories of those they infect.
Collapse
Affiliation(s)
| | - Elizabeth Wrigley-Field
- Department of Sociology and Minnesota Population Center, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - James J Feigenbaum
- Department of Economics, Boston University, Boston, MA, USA
- National Bureau of Economic Research, Cambridge, MA, USA
| | - Jonas Helgertz
- Institute for Social Research and Data Innovation, Minnesota Population Center, University of Minnesota, Twin Cities, Minneapolis, MN, USA
- Centre for Economic Demography and Department of Economic History, Lund University, Lund, Sweden
| | - Elaine Hernandez
- Department of Sociology, Indiana University, Bloomington, IN, USA
| | - Courtney E Boen
- Department of Sociology, Population Studies and Population Aging Research Centers, and Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Pedrina J, Stambas J. Targeting the Host Response: Can We Manipulate Extracellular Matrix Metalloproteinase Activity to Improve Influenza Virus Infection Outcomes? Front Mol Biosci 2021; 8:703456. [PMID: 34291090 PMCID: PMC8287203 DOI: 10.3389/fmolb.2021.703456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 11/25/2022] Open
Abstract
Each year, hundreds of thousands of individuals succumb to influenza virus infection and its associated complications. Several preventative and therapeutic options may be applied in order to preserve life. These traditional approaches include administration of seasonal influenza vaccines, pharmacological interventions in the form of antiviral drug therapy and supportive clinical approaches including mechanical ventilation and extracorporeal membrane oxygenation. While these measures have shown varying degrees of success, antiviral therapies and vaccination are constrained due to ongoing antigenic drift. Moreover, clinical approaches can also be associated with complications and drawbacks. These factors have led to the exploration and development of more sophisticated and nuanced therapeutic approaches involving host proteins. Advances in immunotherapy in the cancer field or administration of steroids following virus infection have highlighted the therapeutic potential of targeting host immune responses. We have now reached a point where we can consider the contribution of other “non-traditional” host components such as the extracellular matrix in immunity. Herein, we will review current, established therapeutic interventions and consider novel therapeutic approaches involving the extracellular matrix.
Collapse
Affiliation(s)
- Jess Pedrina
- Faculty of Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - John Stambas
- Faculty of Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
3
|
Jester B, Uyeki TM, Jernigan DB, Tumpey TM. Historical and clinical aspects of the 1918 H1N1 pandemic in the United States. Virology 2019; 527:32-37. [DOI: 10.1016/j.virol.2018.10.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/28/2018] [Accepted: 10/19/2018] [Indexed: 11/30/2022]
|
4
|
Cilek L, Chowell G, Ramiro Fariñas D. Age-Specific Excess Mortality Patterns During the 1918-1920 Influenza Pandemic in Madrid, Spain. Am J Epidemiol 2018; 187:2511-2523. [PMID: 30124746 PMCID: PMC6454514 DOI: 10.1093/aje/kwy171] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 08/01/2018] [Indexed: 01/05/2023] Open
Abstract
Although much progress has been made to uncover age-specific mortality patterns of the 1918 influenza pandemic in populations around the world, more studies in different populations are needed to make sense of the heterogeneous death impact of this pandemic. We assessed the absolute and relative magnitudes of 3 pandemic waves in the city of Madrid, Spain, between 1918 and 1920, on the basis of age-specific all-cause and respiratory excess death rates. Excess death rates were estimated using a Serfling model with a parametric bootstrapping approach to calibrate baseline death levels with quantified uncertainty. Excess all-cause and pneumonia and influenza mortality rates were estimated for different pandemic waves and age groups. The youngest and oldest persons experienced the highest excess mortality rates, and young adults faced the highest standardized mortality risk. Waves differed in strength; the peak standardized mortality risk occurred during the herald wave in spring 1918, but the highest excess rates occurred during the fall and winter of 1918/1919. Little evidence was found to support a “W”-shaped, age-specific excess mortality curve. Acquired immunity may have tempered a protracted fall wave, but recrudescent waves following the initial 2 outbreaks heightened the total pandemic mortality impact.
Collapse
Affiliation(s)
- Laura Cilek
- Institute of Economy, Geography and Demography, Center for Humanities and Social Sciences Spanish National Research Council, Madrid, Spain
| | - Gerardo Chowell
- School of Public Health, Division of Epidemiology & Biostatistics, Georgia State University, Atlanta, Georgia
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland
| | - Diego Ramiro Fariñas
- Institute of Economy, Geography and Demography, Center for Humanities and Social Sciences Spanish National Research Council, Madrid, Spain
| |
Collapse
|
5
|
Short KR, Kedzierska K, van de Sandt CE. Back to the Future: Lessons Learned From the 1918 Influenza Pandemic. Front Cell Infect Microbiol 2018; 8:343. [PMID: 30349811 PMCID: PMC6187080 DOI: 10.3389/fcimb.2018.00343] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/10/2018] [Indexed: 01/02/2023] Open
Abstract
2018 marks the 100-year anniversary of the 1918 influenza pandemic, which killed ~50 million people worldwide. The severity of this pandemic resulted from a complex interplay between viral, host, and societal factors. Here, we review the viral, genetic and immune factors that contributed to the severity of the 1918 pandemic and discuss the implications for modern pandemic preparedness. We address unresolved questions of why the 1918 influenza H1N1 virus was more virulent than other influenza pandemics and why some people survived the 1918 pandemic and others succumbed to the infection. While current studies suggest that viral factors such as haemagglutinin and polymerase gene segments most likely contributed to a potent, dysregulated pro-inflammatory cytokine storm in victims of the pandemic, a shift in case-fatality for the 1918 pandemic toward young adults was most likely associated with the host's immune status. Lack of pre-existing virus-specific and/or cross-reactive antibodies and cellular immunity in children and young adults likely contributed to the high attack rate and rapid spread of the 1918 H1N1 virus. In contrast, lower mortality rate in in the older (>30 years) adult population points toward the beneficial effects of pre-existing cross-reactive immunity. In addition to the role of humoral and cellular immunity, there is a growing body of evidence to suggest that individual genetic differences, especially involving single-nucleotide polymorphisms (SNPs), contribute to differences in the severity of influenza virus infections. Co-infections with bacterial pathogens, and possibly measles and malaria, co-morbidities, malnutrition or obesity are also known to affect the severity of influenza disease, and likely influenced 1918 H1N1 disease severity and outcomes. Additionally, we also discuss the new challenges, such as changing population demographics, antibiotic resistance and climate change, which we will face in the context of any future influenza virus pandemic. In the last decade there has been a dramatic increase in the number of severe influenza virus strains entering the human population from animal reservoirs (including highly pathogenic H7N9 and H5N1 viruses). An understanding of past influenza virus pandemics and the lessons that we have learnt from them has therefore never been more pertinent.
Collapse
Affiliation(s)
- Kirsty R. Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Carolien E. van de Sandt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| |
Collapse
|
6
|
McKinsey DS, McKinsey JP, Enriquez M. Part I: The 1918 Influenza in Missouri: Centennial Remembrance of the Crisis. MISSOURI MEDICINE 2018; 115:183-188. [PMID: 30228714 PMCID: PMC6140156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- David S McKinsey
- David S. McKinsey, MD, MSMA member since 1987, is with Metro Infectious Disease Consultants, Kansas City, Mo
| | - Joel P McKinsey
- Joel P. McKinsey, MD, MSMA member since 2003, is with Metro Infectious Disease Consultants, Kansas City, Mo
| | - Maithe Enriquez
- Maithe Enriquez, PhD, APRN, is with the University of Missouri Sinclair School of Nursing, Columbia, Mo
| |
Collapse
|