1
|
Hou J, Lv Z, Wang Y, Chen D. The gut microbiota regulates diabetic retinopathy in adult rats. Front Microbiol 2025; 16:1479792. [PMID: 39949626 PMCID: PMC11822567 DOI: 10.3389/fmicb.2025.1479792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/06/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction Diabetic retinopathy (DR) is the most common complication of diabetes. Neuronal apoptosis, activated microglia, and microvascular changes are early features of DR. The gut microbiota is critical for the maturation and activation of microglia in the brain, and DR patients exhibit gut dysbiosis. However, the effect of the gut microbiota on retinal microglia under normal or diabetic conditions is still unclear. Methods Type 2 diabetes (T2D) was established in male adult Brown Norway (BN) rats, and they were treated with gavage of broad-spectrum antibiotic (ABX) suspension. Retinal fundus fluorescein angiography was performed to observe the dynamic growth process and leakage of blood vessels. Retro-orbital injection of FITC-Dextran was performed to observe the changes in blood-retinal barriers. After treatment with ABX and diabetes lasting for more than 6 months, 16S RNA sequencing of stool samples was performed to determine changes in the gut microbiome and mass spectrometry was used to analyze metabolome changes. IBA1, IB4, and Brn3 staining were performed on adult rats' retinal wholemount or sections to observe the changes in microglia, blood vessels and the number of ganglion cells. Results Long-term (6 months) T2D caused gut dysbiosis with increased average taxa numbers. We showed that broad-spectrum antibiotics (ABXs) gavage can reduce the average number of gut microbiota taxa and retinal microglia in adult male BN rats with or without T2D. Interestingly, adult male BN rats with T2D for more than 6 months showed a loss of retinal ganglion cells (RGCs) without significant changes in retinal microglia or retinal vascular vessels. However, ABX gavage reduced retinal microglia and alleviated RGC damage in these T2D rats. Conclusion Our data suggests that ABX gavage-induced gut dysbiosis can reduce retinal microglia in adult rats and alleviate RGC loss in long-term T2D rats. Targeting the gut microbiota may be a future therapeutic strategy for DR management.
Collapse
Affiliation(s)
- Jueyu Hou
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, Eye Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongping Lv
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, Eye Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yujiao Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, Eye Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Danian Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, Eye Research Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Wang Q, Allen BN, Bohrer LR, Burnight ER, Tucker BA, Worthington KS. Conditional Immortalization Using SV40 Large T Antigen and Its Effects on Induced Pluripotent Stem Cell Differentiation Toward Retinal Progenitor Cells. Stem Cells Dev 2025; 34:26-34. [PMID: 39611948 PMCID: PMC11839531 DOI: 10.1089/scd.2024.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Current treatments for retinal degenerative diseases are limited and cell replacement therapies, in tandem with a supportive biomaterial scaffold, serve as a promising emerging option. However, the development and in vitro testing of these therapies require large quantities of human retinal progenitor cells (RPCs) to thoroughly assess the impact of material properties, culture conditions, and surgical parameters on cell survival and fate to refine and optimize this approach. Although induced pluripotent stem cells (iPSCs) are an ideal cell source for human RPC derivation, large-scale production is resource-intensive and requires specialized expertise. In this study, our objective was to address this barrier by creating conditional, Tet-On SV40-T immortalized RPCs derived from human iPSCs. In our approach, we employ the Tet-On system to conditionally immortalize RPCs by inducing a SV40 large T (SV40-T) antigen, a gene known to influence cell cycle regulation and differentiation. We transduced human iPSCs with the Tet-On SV40-T system and analyzed their proliferation and RPC differentiation capabilities in the presence and absence of doxycycline (a tetracycline class of antibiotics). Our results revealed that while SV40-T immortalization increased cell proliferation, it adversely impacted the expression of crucial RPC markers (PAX6, SOX2, CHX10), leading to a significant loss of RPC identity and multipotency. This de-differentiation was irreversible, even after removing doxycycline, indicating permanent alterations in differentiation potential. Overall, this study highlights the challenges associated with generating and maintaining an immortal human RPC cell line, particularly with respect to balancing proliferation and differentiation. Our findings prompt further research into optimizing conditional immortalization techniques, culture conditions, and proliferation timing to maintain the integrity and functional characteristics of RPCs. Such advancements are crucial for reducing labor and costs associated with in vitro testing of therapeutics as we work toward the development of improved stem cell-based interventions for retinal disease.
Collapse
Affiliation(s)
- Qi Wang
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Brittany N. Allen
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Laura R. Bohrer
- Institute for Vision Research, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Science, University of Iowa, Iowa City, Iowa, USA
| | - Erin R. Burnight
- Institute for Vision Research, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Science, University of Iowa, Iowa City, Iowa, USA
| | - Budd A. Tucker
- Institute for Vision Research, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Science, University of Iowa, Iowa City, Iowa, USA
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, USA
| | - Kristan S. Worthington
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
- Institute for Vision Research, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Lin Y, Du W, Fu X, Huang L, Hong Y, Tan H, Xiao L, Ren X, Wang Y, Chen D. Hyperglycemia-independent neonatal streptozotocin-induced retinopathy (NSIR) in rats. Front Pharmacol 2024; 15:1395887. [PMID: 39108749 PMCID: PMC11300211 DOI: 10.3389/fphar.2024.1395887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/01/2024] [Indexed: 03/17/2025] Open
Abstract
Introduction: Chemicals, such as MNU (N-methyl-N-nitrosourea) and NaIO3 (sodium iodate), are widely used to induce retinal degeneration in rodents. Streptozotocin (STZ) is an analog of N-acetyl glucosamine in which an MNU moiety is linked to a hexose and has a special toxic effect on insulin-producing pancreatic β-cells. It is commonly used to induce hyperglycemia to model diabetes. While intracerebroventricular injection of STZ can produce Alzheimer's disease independent of hyperglycemia, most retinal studies using STZ focus on the effects of hyperglycemia on the retina, but whether STZ has any impact on retinal cells independent of hyperglycemia is unknown. We aimed to investigate the role of cytotoxicity of STZ in rat retina. Methods: Intravitreal or subcutaneous injection of STZ was performed on newborn rats. Electroretinogram (ERG) and H&E staining investigated retinal function and morphological changes. Retinal cell types, cell death, proliferation, inflammation, and angiogenesis were studied by immunostaining. RNA sequencing was performed to examine the transcriptome changes of retinal cells after intravitreal injection of STZ. Results: Intravitreal (5 μg or 10 μg) or subcutaneous (30 mg/kg) injection of STZ at the early stage of newborn rats couldn't induce hyperglycemia but caused NSIR (Neonatal STZ-induced retinopathy), including reduced ERG amplitudes, retinal rosettes and apoptosis, cell cycle arrest, microglial activation, and delayed retinal angiogenesis. STZ did not affect the early-born retinal cell types but significantly reduced the late-born ones. Short-term and long-term hyperglycemia had no significant effects on the NSIR phenotypes. RNA sequencing revealed that STZ induces oxidative stress and activates the p53 pathway of retinal cells. Locally or systemically, STZ injection after P8 couldn't induce SINR when all retinal progenitors exit the cell cycle. Conclusion: NSIR in rats is independent of hyperglycemia but due to STZ's direct cytotoxic effects on retinal progenitor cells. NSIR is a typical reaction to STZ-induced retinal oxidative stress and DNA damage. This significant finding suggests that NSIR may be a valuable model for studying retinal progenitor DNA damage-related diseases, potentially leading to new insights and treatments.
Collapse
Affiliation(s)
- Yu Lin
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyu Du
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangyu Fu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Huang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yiwen Hong
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Haishan Tan
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lirong Xiao
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Ren
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yujiao Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Danian Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Li Y, Yu S, Jia X, Qiu X, He J. Defining morphologically and genetically distinct GABAergic/cholinergic amacrine cell subtypes in the vertebrate retina. PLoS Biol 2024; 22:e3002506. [PMID: 38363811 PMCID: PMC10914270 DOI: 10.1371/journal.pbio.3002506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 03/05/2024] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
In mammals, retinal direction selectivity originates from GABAergic/cholinergic amacrine cells (ACs) specifically expressing the sox2 gene. However, the cellular diversity of GABAergic/cholinergic ACs of other vertebrate species remains largely unexplored. Here, we identified 2 morphologically and genetically distinct GABAergic/cholinergic AC types in zebrafish, a previously undescribed bhlhe22+ type and a mammalian counterpart sox2+ type. Notably, while sole sox2 disruption removed sox2+ type, the codisruption of bhlhe22 and bhlhe23 was required to remove bhlhe22+ type. Also, both types significantly differed in dendritic arbors, lamination, and soma position. Furthermore, in vivo two-photon calcium imaging and the behavior assay suggested the direction selectivity of both AC types. Nevertheless, the 2 types showed preferential responses to moving bars of different sizes. Thus, our findings provide new cellular diversity and functional characteristics of GABAergic/cholinergic ACs in the vertebrate retina.
Collapse
Affiliation(s)
- Yan Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuguang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinling Jia
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoying Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jie He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Liu H, Cheng J, Zhuang X, Qi B, Li F, Zhang B. Genomic instability and eye diseases. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2023; 3:103-111. [PMID: 37846358 PMCID: PMC10577848 DOI: 10.1016/j.aopr.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 10/18/2023]
Abstract
Background Genetic information is stored in the bases of double-stranded DNA. However, the integrity of DNA molecules is constantly threatened by various mutagenic agents, including pollutants, ultraviolet light (UV), and medications. To counteract these environmental damages, cells have established multiple mechanisms, such as producing molecules to identify and eliminate damaged DNA, as well as reconstruct the original DNA structures. Failure or insufficiency of these mechanisms can cause genetic instability. However, the role of genome stability in eye diseases is still under-researched, despite extensive study in cancer biology. Main text As the eye is directly exposed to the external environment, the genetic materials of ocular cells are constantly under threat. Some of the proteins essential for DNA damage repair, such as pRb, p53, and RAD21, are also key during the ocular disease development. In this review, we discuss five ocular diseases that are associated with genomic instability. Retinoblastoma and pterygium are linked to abnormal cell cycles. Fuchs' corneal endothelial dystrophy and age-related macular degeneration are related to the accumulation of DNA damage caused by oxidative damage and UV. The mutation of the subunit of the cohesin complex during eye development is linked to sclerocornea. Conclusions Failure of DNA damage detection or repair leads to increased genomic instability. Deciphering the role of genomic instability in ocular diseases can lead to the development of new treatments and strategies, such as protecting vulnerable cells from risk factors or intensifying damage to unwanted cells.
Collapse
Affiliation(s)
- Hongyan Liu
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Qingdao, China
| | - Jun Cheng
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
| | - Xiaoyun Zhuang
- School of Ophthalmology, Shandong First Medical University, Qingdao, China
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China
- Department of Ophthalmology, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Benxiang Qi
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
| | - Fenfen Li
- The Eye Hospital of Wenzhou Medical University, Hangzhou, China
| | - Bining Zhang
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
| |
Collapse
|
6
|
Fan Y, Chen W, Wei R, Qiang W, Pearson JD, Yu T, Bremner R, Chen D. Mapping transgene insertion sites reveals the α-Cre transgene expression in both developing retina and olfactory neurons. Commun Biol 2022; 5:411. [PMID: 35505181 PMCID: PMC9065156 DOI: 10.1038/s42003-022-03379-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/18/2022] [Indexed: 02/05/2023] Open
Abstract
The Tg(Pax6-cre,GFP)2Pgr (α-Cre) mouse is a commonly used Cre line thought to be retinal-specific. Using targeted locus amplification (TLA), we mapped the insertion site of the transgene, and defined primers useful to deduce zygosity. Further analyses revealed four tandem copies of the transgene. The insertion site mapped to clusters of vomeronasal and olfactory receptor genes. Using R26R and Ai14 Cre reporter mice, we confirmed retinal Cre activity, but also detected expression in Gα0+ olfactory neurons. Most α-Cre+ olfactory neurons do not express Pax6, implicating the influence of neighboring regulatory elements. RT-PCR and buried food pellet test did not detect any effects of the transgene on flanking genes in the nasal mucosa and retina. Together, these data precisely map α-Cre, show that it does not affect surrounding loci, but reveal previously unanticipated transgene expression in olfactory neurons. The α-Cre mouse can be a valuable tool in both retinal and olfactory research. The Pax6-α-Cre mouse line used in retinal studies actually contains four transgene insertion within gene clusters of olfactory and vomeronasal receptors, leading to expression in not just retinal, but also olfactory and vomeronasal sensory neurons.
Collapse
Affiliation(s)
- Yimeng Fan
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyue Chen
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Ran Wei
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Qiang
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Joel D Pearson
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Departments of Ophthalmology and Visual Science, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Tao Yu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Departments of Ophthalmology and Visual Science, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Rod Bremner
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Departments of Ophthalmology and Visual Science, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| | - Danian Chen
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China. .,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China. .,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Departments of Ophthalmology and Visual Science, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Lv Z, Xiao L, Tang Y, Chen Y, Chen D. Rb deficiency induces p21cip1 expression and delays retinal degeneration in rd1 mice. Exp Eye Res 2021; 210:108701. [PMID: 34252413 DOI: 10.1016/j.exer.2021.108701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 02/08/2023]
Abstract
Retinitis pigmentosa (RP) is a major cause of inherited blindness, and there is presently no cure for RP. Rd1 mouse is the most commonly used RP animal model. Re-expression of cell cycle proteins in post-mitotic neurons is considered an important mechanism of neurodegenerative diseases, including RP. The retinoblastoma tumor suppressor (Rb) is a major regulator of cell cycle progression, yet its role in rd1 mouse retina and related signaling pathways have never been analyzed. By crossing α-Cre, Rbf/f mice with rd1 mice, p21cip1-/- mice, Cdk1f/f mice and Cdk2f/f mice, we established multiple rd1 mouse models with deletions of Rb gene, Cdkn1a (p21cip1) gene, Cdk1 and Cdk2 gene in the retina. Cdk inhibitor CR8 was injected into the vitreous of rd1 mouse to investigate its effects on photoreceptor survival. Rb gene knockout (KO) induces cell death in excitatory retinal neurons (rods, rod bipolar and ganglions) and ectopic proliferation of retinal cells; but it paradoxically delays the rod death of rd1 mice, which is primarily mediated by the Cdk inhibitor Cdkn1a (p21cip1). Interestingly, p21cip1 protects the ectopic dividing rd1 rod cells by inhibiting Cdk1 and Cdk2. However, inhibiting Cdk1 and Cdk2 in rd1 mice with non-dividing rods only has limited and transient protective effects. Our data suggest that there is no ectopic division of rd1 rod cells, and RbKO induces ectopic division but delays the death of rd1 rod cells. This reveals the important protective role of Rb-p21cip1-Cdk axis in rd1 rod cells. P21cip1 is a potential target for future therapy of RP.
Collapse
Affiliation(s)
- Zhongping Lv
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lirong Xiao
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunjing Tang
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongjiang Chen
- The School of Optometry and Vision Science, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada
| | - Danian Chen
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Li X, Guo C, Chen Y, Yu F. Long non-coding RNA SNHG16 regulates E2F1 expression by sponging miR-20a-5p and aggravating proliferative diabetic retinopathy. Can J Physiol Pharmacol 2021; 99:1207-1216. [PMID: 34197720 DOI: 10.1139/cjpp-2020-0693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long non-coding RNAs (lncRNAs) were reported that related to microvascular dysfunction in diabetic retinopathy (DR), but the potential mechanism remains unknown. This study was designed to elucidate the effects of lncRNA SNHG16 in proliferative DR progression. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to measure the levels of SNHG16 and miR-20a-5p from peripheral blood samples of different participants. Pearson's correlation analysis on the plasma data was applied to detect correlations between SNHG16 and miR-20a-5p. Finally, the interactions of miR-20a-5p and SNHG16 or E2F1 were assessed by luciferase reporter assays. SNHG16 and E2F1 were increased and miR-20a-5p was decreased in proliferative DR both in vivo and in vitro, when compared with control or non-proliferative DR. E2F1 was identified as the target of miR-20a-5p. MiR-20a-5p interacted with SNHG16 and E2F1, and was controlled by SNHG16. The regulation of SNHG16 on E2F1 was mediated by miR-20a-5p. Cells transfected with SNHG16 OE plasmid markedly increased cell apoptosis and vessel-like formation, whereas the miR-20a-5p mimic partially reversed these effects. Transfection with si-E2F1 plasmid rescued SNHG16 overexpression-aggravated proliferative DR. This study indicated that SNHG16 regulated E2F1 expression by sponging miR-20a-5p and aggravating proliferative DR.
Collapse
Affiliation(s)
| | | | - Yong Chen
- Zhuji Central Hospital, Zhuji, China;
| | - Feifei Yu
- Zhuji Affiliated Hospital of Wenzhou Medical University, 74784, 9, Jianmin Road, Taozhu Street, Zhuji City, Zhuji, China, 311800;
| |
Collapse
|
9
|
Liu X, Li X, Li J. Long Non-coding RNA FEZF1-AS1 Promotes Growth and Reduces Apoptosis Through Regulation of miR-363-3p/PAX6 Axis in Retinoblastoma. Biochem Genet 2021; 59:637-651. [PMID: 33432525 PMCID: PMC8096736 DOI: 10.1007/s10528-020-10026-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Retinoblastoma is the most common malignancy in children's eyes with high incidence. Long non-coding RNAs (lncRNAs) play important roles in the progression of retinoblastoma. LncRNA FEZF1 antisense RNA 1 (FEZF1-AS1) has been found to stimulate retinoblastoma. However, the mechanism of FEZF1-AS1 underlying progression of retinoblastoma is still unclear. In current study, FEZF1-AS1 was up-regulated in retinoblastoma tissues and cells. FEZF1-AS1 overexpression enhanced retinoblastoma cell viability, promoted cell cycle, and inhibited apoptosis. Conversely, FEZF1-AS1 knockdown reduced cell viability, cycle, and elevated apoptosis. The interaction between FEZF1-AS1 and microRNA-363-3p (miR-363-3p) was confirmed. FEZF1-AS1 down-regulated miR-363-3p and up-regulated PAX6. PAX6 was a target gene of miR-363-3p. EZF1-AS1 promoted retinoblastoma cell viability and suppressed apoptosis via PAX6. Further, we demonstrated that FEZF1-AS1 contribute to tumor formation in vivo. In conclusion, FEZF1-AS1 elevated growth and inhibited apoptosis by regulating miR-363-3p/PAX6 in retinoblastoma, which provide a new target for retinoblastoma treatment.
Collapse
Affiliation(s)
- Xiuming Liu
- Department of Ophthalmology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1, Huanghe Road, Huaiyin District, Huaian, 223300, Jiangsu, China.
| | - Xiaofeng Li
- Department of Ophthalmology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1, Huanghe Road, Huaiyin District, Huaian, 223300, Jiangsu, China
| | - Jianchang Li
- Department of Ophthalmology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1, Huanghe Road, Huaiyin District, Huaian, 223300, Jiangsu, China
| |
Collapse
|
10
|
Zocchi L, Mehta A, Wu SC, Wu J, Gu Y, Wang J, Suh S, Spitale RC, Benavente CA. Chromatin remodeling protein HELLS is critical for retinoblastoma tumor initiation and progression. Oncogenesis 2020; 9:25. [PMID: 32071286 PMCID: PMC7028996 DOI: 10.1038/s41389-020-0210-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/08/2023] Open
Abstract
Retinoblastoma is an aggressive childhood cancer of the developing retina that initiates by biallelic RB1 gene inactivation. Tumor progression in retinoblastoma is driven by epigenetics, as retinoblastoma genomes are stable, but the mechanism(s) that drive these epigenetic changes remain unknown. Lymphoid-specific helicase (HELLS) protein is an epigenetic modifier directly regulated by the RB/E2F pathway. In this study, we used novel genetically engineered mouse models to investigate the role of HELLS during retinal development and tumorigenesis. Our results indicate that Hells-null retinal progenitor cells divide, undergo cell-fate specification, and give rise to fully laminated retinae with minor bipolar cells defects, but normal retinal function. Despite the apparent nonessential role of HELLS in retinal development, failure to transcriptionally repress Hells during retinal terminal differentiation due to retinoblastoma (RB) family loss significantly contributes to retinal tumorigenesis. Loss of HELLS drastically reduced ectopic division of differentiating cells in Rb1/p107-null retinae, significantly decreased the incidence of retinoblastoma, delayed tumor progression, and increased overall survival. Despite its role in heterochromatin formation, we found no evidence that Hells loss directly affected chromatin accessibility in the retina but functioned as transcriptional co-activator of E2F3, decreasing expression of cell cycle genes. We propose that HELLS is a critical downstream mediator of E2F-dependent ectopic proliferation in RB-null retinae. Together with the nontoxic effect of HELLS loss in the developing retina, our results suggest that HELLS and its downstream pathways could serve as potential therapeutic targets for retinoblastoma.
Collapse
Affiliation(s)
- Loredana Zocchi
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Aditi Mehta
- Pediatric Hematology and Pediatric Oncology, Children's Hospital of Orange County, Orange, CA, 92868, USA.,Department of Graduate Medical Education, University of California, Irvine, CA, 92697, USA
| | - Stephanie C Wu
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, CA, 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, 92697, USA
| | - Yijun Gu
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Jingtian Wang
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Susie Suh
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.,Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Claudia A Benavente
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA. .,Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA. .,Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
11
|
Wei R, Ren X, Kong H, Lv Z, Chen Y, Tang Y, Wang Y, Xiao L, Yu T, Hacibekiroglu S, Liang C, Nagy A, Bremner R, Chen D. Rb1/Rbl1/Vhl loss induces mouse subretinal angiomatous proliferation and hemangioblastoma. JCI Insight 2019; 4:127889. [PMID: 31613797 DOI: 10.1172/jci.insight.127889] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/10/2019] [Indexed: 02/05/2023] Open
Abstract
Von Hippel-Lindau (Vhl) protein inhibits hypoxia-inducible factor (Hif), yet its deletion in murine retina does not cause the extensive angiogenesis expected with Hif induction. The mechanism is unclear. Here we show that retinoblastoma tumor suppressor (Rb1) constrains expression of Hif target genes in the Vhl-/- retina. Deleting Rb1 induced extensive retinal neovascularization and autophagic ablation of photoreceptors in the Vhl-/- retina. RNA-sequencing, ChIP, and reporter assays showed Rb1 recruitment to and repression of certain Hif target genes. Activating Rb1 by deleting cyclin D1 induced a partial defect in the retinal superficial vascular plexus. Unexpectedly, removing Vhl suppressed retinoblastoma formation in murine Rb1/Rbl1-deficient retina but generated subretinal vascular growths resembling retinal angiomatous proliferation (RAP) and retinal capillary hemangioblastoma (RCH). Most stromal cells in the RAP/RCH-like lesions were Sox9+, suggesting a Müller glia origin, and expressed Lgals3, a marker of human brain hemangioblastoma. Thus, the Rb family limit Hif target gene expression in the Vhl-/- retina, and removing this inhibitory signal generates new models for RAP and RCH.
Collapse
Affiliation(s)
- Ran Wei
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, and.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Ren
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, and.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongyu Kong
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, and.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongping Lv
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, and.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjiang Chen
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Departments of Ophthalmology and Visual Science, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Yunjing Tang
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, and.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yujiao Wang
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, and.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Lirong Xiao
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, and
| | - Tao Yu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sabiha Hacibekiroglu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Chen Liang
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, and
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Rod Bremner
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Departments of Ophthalmology and Visual Science, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Danian Chen
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, and.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Departments of Ophthalmology and Visual Science, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Chen Z, Yang H, Nie Y, Xing Y. miR-145 regulates the proliferation and apoptosis of Y79 human retinoblastoma cells by targeting IGF-1R. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4331-4338. [PMID: 31949829 PMCID: PMC6962974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/20/2018] [Indexed: 06/10/2023]
Abstract
PURPOSE To investigate the effect of miR-145 on the proliferation and apoptosis of human retinoblastoma Y79 cells and to explore the underlying mechanism. METHOD The Y79 cells were transfected by miR-145 mimics and IGF-1R siRNA with lipofection, respectively. The expression of miR-145 or IGF-1R was detected after transfection by real time-PCR. Cell proliferation inhibition was measured by Cell Counting Kit-8 (CCK-8) assay. Flow cytometry was used to examine cell cycles. Apoptosis was detected by Annexin/PI double immunofluorescence and flow cytometer. The interaction between miR-145 and IGF-1R was tested by luciferase activity measurement. RESULTS The expression of miR-145 in the miR-145 mimics group was significantly increased (P<0.05). The proliferation inhibition rate was higher in the miR-145 mimics group (P<0.01). The results of immunofluorescence and flow cytometry showed that ratios of Annexin or Annexin/PI double positive were increased in the miR-145 mimics group (P<0.05). The OD value of proliferation inhibition was lower in the IGF-1R siRNA group (P<0.05). The ratios of Annexin or Annexin/PI double positive were higher in the IGF-1R siRNA group (P<0.05). Luciferase activity was reduced in miR-145 mimics group (P<0.01). CONCLUSION miR-145 inhibited proliferation and induced apoptosis in Y79 cells. Lower expression of IGF-1R suppressed the proliferation of Y79 cells. miR-145 restrained the proliferation of human retinoblastoma Y79 cells by down-regulating the expression of IGF-1R.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University Wuhan, Hubei Province, China
| | - Hongxia Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University Wuhan, Hubei Province, China
| | - Yuhong Nie
- Department of Ophthalmology, Renmin Hospital of Wuhan University Wuhan, Hubei Province, China
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University Wuhan, Hubei Province, China
| |
Collapse
|
13
|
Xie C, Freeman MJ, Lu H, Wang X, Forster CL, Sarver AL, Hallstrom TC. Retinoblastoma cells activate the AKT pathway and are vulnerable to the PI3K/mTOR inhibitor NVP-BEZ235. Oncotarget 2018; 8:38084-38098. [PMID: 28445155 PMCID: PMC5503517 DOI: 10.18632/oncotarget.16970] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/10/2017] [Indexed: 12/14/2022] Open
Abstract
Retinoblastoma is a pediatric cancer of the retina most often caused by inactivation of the retinoblastoma (RB1) tumor suppressor gene. We previously showed that Rb1 loss cooperates with either co-activating the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, or co-deleting Pten, to initiate retinoblastoma tumors in mice. The objectives of this study were to determine if the AKT pathway is activated in human retinoblastomas and the extent that anti-PI3K therapy induces apoptosis in retinoblastoma cells, alone or in combination with the DNA damaging drugs carboplatin and topotecan. Serial sections from human retinoblastoma tissue microarrays containing 27 tumors were stained with antibodies specific to p-AKT, Ki-67, forkhead box O1 (p-FOXO1), and ribosomal protein S6 (p-S6) using immunohistochemistry and each tumor sample scored for intensity. Human retinoblastoma tumors displayed significant correlation between p-AKT intensity with highly proliferative tumors (p = 0.008) that were also highly positive for p-FOXO1 (p = 0.002). Treatment with BEZ235, a dual PI3K/mTOR inhibitor, reduced phosphorylation levels of the AKT targets p-FOXO and p-S6 and effectively induced apoptosis the Y79 and Weri-1 human retinoblastoma cell lines and in vivo in our retinoblastoma mouse model. Long-term treatment with BEZ235 in vivo using our retinoblastoma-bearing mice induced apoptosis but did not significantly extend the lifespan of the mice. We then co-administered BEZ235 with topotecan and carboplatin chemotherapeutics in vivo, which more effectively induced apoptosis of retinoblastoma, but not normal retinal cells than either treatment alone. Our study has increased the variety of potentially effective targeted treatments that can be considered for human retinoblastoma.
Collapse
Affiliation(s)
- Chencheng Xie
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Matthew J Freeman
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Huarui Lu
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Xiaohong Wang
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Colleen L Forster
- BioNet, Academic Health Center, University of Minnesota, Minneapolis, MN, USA
| | - Aaron L Sarver
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
14
|
Rb is required for retinal angiogenesis and lamination. Cell Death Dis 2018; 9:370. [PMID: 29511172 PMCID: PMC5840357 DOI: 10.1038/s41419-018-0411-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/29/2018] [Accepted: 02/16/2018] [Indexed: 02/05/2023]
Abstract
Retinoblastoma tumor suppressor (Rb) promotes cell cycle exit, survival, differentiation, and tumor suppression in the retina. Here, we show it is also essential for vascularization and lamination. Despite minimal effects on Hif1a target expression, intraretinal vascular plexi did not form in the Rb -/- murine retina. Deleting adenovirus E2 promoter binding factor 3 (E2f3), which rescues starburst amacrine cell differentiation, or E2f2, had no effect, but deleting E2f1, which promotes neuronal cell cycle exit and survival, restored retinal vasculature. We specifically linked cell loss to the defect because removing Bax rescued rod and bipolar neurons and the vasculature, but not cell cycle exit. Despite rescuing Rb -/- neurons, Bax deletion exacerbated a delay in outer retina lamination, and exposed a requirement for Rb in inner retina lamination. The latter resembled Sem5 or FAT atypical cadherin 3 (Fat3) mutants, but expression of Sem5/Fat3 pathway components, or that of Neogenin, which perturbs migration in the Rb -/- cortex, was unchanged. Instead, lamination defects correlated with ectopic division, and were E2f1-dependent, implicating the cell cycle machinery. These in vivo studies expose new developmental roles for Rb, pinpoint aberrant E2f1 and Bax activity in neuronal death and vascular loss, and further implicate E2f1 in defective lamination. Links between Rb, angiogenesis and lamination have implications for the treatment of neovascularization, neurodegeneration and cancer.
Collapse
|
15
|
Watanabe T, Kiyomoto T, Tadokoro R, Takase Y, Takahashi Y. Newly raised anti-VAChT and anti-ChAT antibodies detect cholinergic cells in chicken embryos. Dev Growth Differ 2017; 59:677-687. [DOI: 10.1111/dgd.12406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Tadayoshi Watanabe
- Department of Zoology; Graduate School of Science; Kyoto University; Sakyo-ku Kyoto 606-8502 Japan
| | - Takahiro Kiyomoto
- Department of Zoology; Graduate School of Science; Kyoto University; Sakyo-ku Kyoto 606-8502 Japan
| | - Ryosuke Tadokoro
- Department of Zoology; Graduate School of Science; Kyoto University; Sakyo-ku Kyoto 606-8502 Japan
| | - Yuta Takase
- Department of Zoology; Graduate School of Science; Kyoto University; Sakyo-ku Kyoto 606-8502 Japan
| | - Yoshiko Takahashi
- Department of Zoology; Graduate School of Science; Kyoto University; Sakyo-ku Kyoto 606-8502 Japan
- AMED Core Research for Evolutional Science and Technology (AMED-CREST); Japan Agency for Medical Research and Development (AMED); Chiyoda-ku Tokyo 100-0004 Japan
| |
Collapse
|
16
|
Wang Y, Zhou Y, Xiao L, Zheng S, Yan N, Chen D. E2f1 mediates high glucose-induced neuronal death in cultured mouse retinal explants. Cell Cycle 2017; 16:1824-1834. [PMID: 28825879 DOI: 10.1080/15384101.2017.1361070] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Diabetic retinopathy (DR) is the most common complication of diabetes and remains one of the major causes of blindness in the world; infants born to diabetic mothers have higher risk of developing retinopathy of prematurity (ROP). While hyperglycemia is a major risk factor, the molecular and cellular mechanisms underlying DR and diabetic ROP are poorly understood. To explore the consequences of retinal cells under high glucose, we cultured wild type or E2f1-/- mouse retinal explants from postnatal day 8 with normal glucose, high osmotic or high glucose media. Explants were also incubated with cobalt chloride (CoCl2) to mimic the hypoxic condition. We showed that, at 7 days post exposure to high glucose, retinal explants displayed elevated cell death, ectopic cell division and intact retinal vascular plexus. Cell death mainly occurred in excitatory neurons, such as ganglion and bipolar cells, which were also ectopically dividing. Many Müller glial cells reentered the cell cycle; some had irregular morphology or migrated to other layers. High glucose inhibited the hyperoxia-induced blood vessel regression of retinal explants. Moreover, inactivation of E2f1 rescued high glucose-induced ectopic division and cell death of retinal neurons, but not ectopic cell division of Müller glial cells and vascular phenotypes. This suggests that high glucose has direct but distinct effects on retinal neurons, glial cells and blood vessels, and that E2f1 mediates its effects on retinal neurons. These findings shed new light onto mechanisms of DR and the fetal retinal abnormalities associated with maternal diabetes, and suggest possible new therapeutic strategies.
Collapse
Affiliation(s)
- Yujiao Wang
- a Department of Ophthalmology, Research Laboratory of Ophthalmology and Vision Sciences , Torsten-Wiesel Research Institute of World Eye Organization, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , China
| | - Yi Zhou
- a Department of Ophthalmology, Research Laboratory of Ophthalmology and Vision Sciences , Torsten-Wiesel Research Institute of World Eye Organization, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , China
| | - Lirong Xiao
- a Department of Ophthalmology, Research Laboratory of Ophthalmology and Vision Sciences , Torsten-Wiesel Research Institute of World Eye Organization, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , China
| | - Shijie Zheng
- a Department of Ophthalmology, Research Laboratory of Ophthalmology and Vision Sciences , Torsten-Wiesel Research Institute of World Eye Organization, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , China
| | - Naihong Yan
- a Department of Ophthalmology, Research Laboratory of Ophthalmology and Vision Sciences , Torsten-Wiesel Research Institute of World Eye Organization, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , China
| | - Danian Chen
- a Department of Ophthalmology, Research Laboratory of Ophthalmology and Vision Sciences , Torsten-Wiesel Research Institute of World Eye Organization, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , China
| |
Collapse
|
17
|
Liu Y, Hu H, Liang M, Xiong Y, Li K, Chen M, Fan Z, Kuang X, Deng F, Liu X, Xu C, Li K, Ge J. Regulated differentiation of WERI-Rb-1 cells into retinal neuron-like cells. Int J Mol Med 2017; 40:1172-1184. [PMID: 28848998 PMCID: PMC5593461 DOI: 10.3892/ijmm.2017.3102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/08/2017] [Indexed: 11/10/2022] Open
Abstract
The encouraging response and improved survival of acute promyelocytic leukemia patients following retinoic acid treatment has rendered differentiation therapy an attractive option in cancer treatment. Given that terminal differentiation represents a considerable barrier in retinoblastoma tumorigenesis and that retinoblastoma has a significantly higher spontaneous degeneration rate compared with other tumors (1,000-fold change), differentiation therapy represents a promising alternative in the treatment of retinoblastoma. However, the full differentiation potential of retinoblastoma still unknown. The present study was designed to investigate the extend differentiation of the classical retinoblastoma cell line WERI-Rb-1 (W-RBCs). Several critical cell signaling pathways and key genes related to cell proliferation and differentiation were comprehensively regulated to control the fate of W-RBCs. Various strategies were applied to optimize simple and time-saving methods to induce W-RBCs into different types of retinal neuron-like cells (RNLCs) in vitro. Further, the tumorigenesis of these differentiated W-RBCs was tested in nude mice in vivo. W-RBCs were found to inherently express both retinal progenitor cell- and embryonic stem cell-related genes or proteins. Moreover, the addition of antagonists of critical cell signals (Wnt, Nodal, BMP4 and Notch), even without atonal bHLH transcription factor 7 gene transfection, could directly induce W-RBCs into RNLCs, and especially into photoreceptor-like and retinal ganglion-like cells. Interestingly, the differentiated cells showed remarkably poorer tumorigenesis in vivo. These findings may offer new insights on the oriented differentiation of W-RBCs into RNLCs with low tumorigenicity and provide potential targets for retinoblastoma differentiation therapy.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Huiling Hu
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Shenzhen, Guangdong 518034, P.R. China
| | - Meixin Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Yunfan Xiong
- The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Kang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Mengfei Chen
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21087, USA
| | - Zhigang Fan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xielan Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Fei Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xiaohong Liu
- Department of Ophthalmology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Chaochao Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Kaijing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
18
|
Liban TJ, Medina EM, Tripathi S, Sengupta S, Henry RW, Buchler NE, Rubin SM. Conservation and divergence of C-terminal domain structure in the retinoblastoma protein family. Proc Natl Acad Sci U S A 2017; 114:4942-4947. [PMID: 28439018 PMCID: PMC5441720 DOI: 10.1073/pnas.1619170114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The retinoblastoma protein (Rb) and the homologous pocket proteins p107 and p130 negatively regulate cell proliferation by binding and inhibiting members of the E2F transcription factor family. The structural features that distinguish Rb from other pocket proteins have been unclear but are critical for understanding their functional diversity and determining why Rb has unique tumor suppressor activities. We describe here important differences in how the Rb and p107 C-terminal domains (CTDs) associate with the coiled-coil and marked-box domains (CMs) of E2Fs. We find that although CTD-CM binding is conserved across protein families, Rb and p107 CTDs show clear preferences for different E2Fs. A crystal structure of the p107 CTD bound to E2F5 and its dimer partner DP1 reveals the molecular basis for pocket protein-E2F binding specificity and how cyclin-dependent kinases differentially regulate pocket proteins through CTD phosphorylation. Our structural and biochemical data together with phylogenetic analyses of Rb and E2F proteins support the conclusion that Rb evolved specific structural motifs that confer its unique capacity to bind with high affinity those E2Fs that are the most potent activators of the cell cycle.
Collapse
Affiliation(s)
- Tyler J Liban
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064
| | - Edgar M Medina
- Department of Biology, Duke University, Durham, NC 27708
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064
| | - Satyaki Sengupta
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - R William Henry
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Nicolas E Buchler
- Department of Biology, Duke University, Durham, NC 27708
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064;
| |
Collapse
|
19
|
Vandenbosch R, Clark A, Fong BC, Omais S, Jaafar C, Dugal-Tessier D, Dhaliwal J, Lagace DC, Park DS, Ghanem N, Slack RS. RB regulates the production and the survival of newborn neurons in the embryonic and adult dentate gyrus. Hippocampus 2016; 26:1379-1392. [DOI: 10.1002/hipo.22613] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Renaud Vandenbosch
- Department of Cellular and Molecular Medicine; University of Ottawa Brain and Mind Research Institute, University of Ottawa; Ottawa ON Canada
| | - Alysen Clark
- Department of Cellular and Molecular Medicine; University of Ottawa Brain and Mind Research Institute, University of Ottawa; Ottawa ON Canada
| | - Bensun C. Fong
- Department of Cellular and Molecular Medicine; University of Ottawa Brain and Mind Research Institute, University of Ottawa; Ottawa ON Canada
| | - Saad Omais
- Department of Biology; American University of Beirut; Beirut Lebanon
| | - Carine Jaafar
- Department of Biology; American University of Beirut; Beirut Lebanon
| | - Delphie Dugal-Tessier
- Department of Cellular and Molecular Medicine; University of Ottawa Brain and Mind Research Institute, University of Ottawa; Ottawa ON Canada
| | - Jagroop Dhaliwal
- Department of Cellular and Molecular Medicine; University of Ottawa Brain and Mind Research Institute, University of Ottawa; Ottawa ON Canada
| | - Diane C. Lagace
- Department of Cellular and Molecular Medicine; University of Ottawa Brain and Mind Research Institute, University of Ottawa; Ottawa ON Canada
| | - David S. Park
- Department of Cellular and Molecular Medicine; University of Ottawa Brain and Mind Research Institute, University of Ottawa; Ottawa ON Canada
| | - Noël Ghanem
- Department of Biology; American University of Beirut; Beirut Lebanon
| | - Ruth S. Slack
- Department of Cellular and Molecular Medicine; University of Ottawa Brain and Mind Research Institute, University of Ottawa; Ottawa ON Canada
| |
Collapse
|
20
|
Miles A, Tropepe V. Coordinating progenitor cell cycle exit and differentiation in the developing vertebrate retina. NEUROGENESIS 2016; 3:e1161697. [PMID: 27604453 PMCID: PMC4974023 DOI: 10.1080/23262133.2016.1161697] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/09/2016] [Accepted: 02/29/2016] [Indexed: 02/06/2023]
Abstract
The proper development of the vertebrate retina relies heavily on producing the correct number and type of differentiated retinal cell types. To achieve this, proliferating retinal progenitor cells (RPCs) must exit the cell cycle at an appropriate time and correctly express a subset of differentiation markers that help specify retinal cell fate. Homeobox genes, which encode a family of transcription factors, have been accredited to both these processes, implicated in the transcriptional regulation of important cell cycle components, such as cyclins and cyclin-dependent kinases, and proneural genes. This dual regulation of homeobox genes allows these factors to help co-ordinate the transition from the proliferating RPC to postmitotic, differentiated cell. However, understanding the exact molecular targets of these factors remains a challenging task. This commentary highlights the current knowledge we have about how these factors regulate cell cycle progression and differentiation, with particular emphasis on a recent discovery from our lab demonstrating an antagonistic relationship between Vsx2 and Dmbx1 to control RPC proliferation. Future studies should aim to further understand the direct transcriptional targets of these genes, additional co-factors/interacting proteins and the possible recruitment of epigenetic machinery by these homeobox genes.
Collapse
Affiliation(s)
- Amanda Miles
- Department of Cell & Systems Biology, University of Toronto , Toronto, Ontario, Canada
| | - Vincent Tropepe
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada; Department of Ophthalmology & Vision Sciences; Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
de Bruin A, A Cornelissen PW, Kirchmaier BC, Mokry M, Iich E, Nirmala E, Liang KH, D Végh AM, Scholman KT, Groot Koerkamp MJ, Holstege FC, Cuppen E, Schulte-Merker S, Bakker WJ. Genome-wide analysis reveals NRP1 as a direct HIF1α-E2F7 target in the regulation of motorneuron guidance in vivo. Nucleic Acids Res 2015; 44:3549-66. [PMID: 26681691 PMCID: PMC4856960 DOI: 10.1093/nar/gkv1471] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/01/2015] [Indexed: 02/03/2023] Open
Abstract
In this study, we explored the existence of a transcriptional network co-regulated by E2F7 and HIF1α, as we show that expression of E2F7, like HIF1α, is induced in hypoxia, and because of the previously reported ability of E2F7 to interact with HIF1α. Our genome-wide analysis uncovers a transcriptional network that is directly controlled by HIF1α and E2F7, and demonstrates both stimulatory and repressive functions of the HIF1α -E2F7 complex. Among this network we reveal Neuropilin 1 (NRP1) as a HIF1α-E2F7 repressed gene. By performing in vitro and in vivo reporter assays we demonstrate that the HIF1α-E2F7 mediated NRP1 repression depends on a 41 base pairs ‘E2F-binding site hub’, providing a molecular mechanism for a previously unanticipated role for HIF1α in transcriptional repression. To explore the biological significance of this regulation we performed in situ hybridizations and observed enhanced nrp1a expression in spinal motorneurons (MN) of zebrafish embryos, upon morpholino-inhibition of e2f7/8 or hif1α. Consistent with the chemo-repellent role of nrp1a, morpholino-inhibition of e2f7/8 or hif1α caused MN truncations, which was rescued in TALEN-induced nrp1ahu10012 mutants, and phenocopied in e2f7/8 mutant zebrafish. Therefore, we conclude that repression of NRP1 by the HIF1α-E2F7 complex regulates MN axon guidance in vivo.
Collapse
Affiliation(s)
- Alain de Bruin
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands Department of Pediatrics, Division of Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Peter W A Cornelissen
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Bettina C Kirchmaier
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands Goethe Universität Frankfurt, Buchmann Institute of Molecular Life Sciences (BMLS), Neural and Vascular Guidance group, D-60438 Frankfurt am Main, Germany
| | - Michal Mokry
- Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
| | - Elhadi Iich
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Ella Nirmala
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Kuo-Hsuan Liang
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Anna M D Végh
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Koen T Scholman
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Marian J Groot Koerkamp
- Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Frank C Holstege
- Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Edwin Cuppen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Stefan Schulte-Merker
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands Institute for Cardiovascular Organogenesis and Regeneration, Cells-in-Motion Cluster of Excellence, University of Münster, 48149 Münster, Germany
| | - Walbert J Bakker
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| |
Collapse
|
22
|
Farioli-Vecchioli S, Tirone F. Control of the Cell Cycle in Adult Neurogenesis and its Relation with Physical Exercise. Brain Plast 2015; 1:41-54. [PMID: 29765834 PMCID: PMC5928538 DOI: 10.3233/bpl-150013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the adult brain the neurogenesis is mainly restricted to two neurogenic regions: newly generated neurons arise at the subventricular zone (SVZ) of the lateral ventricle and at the subgranular zone of the hippocampal subregion named the dentate gyrus. The hippocampus is involved in learning and memory paradigms and the generation of new hippocampal neurons has been hypothesized to be a pivotal form of plasticity involved in the process. Moreover the dysregulation of hippocampal adult neurogenesis has been recognized and could anticipate several varieties of brain disease such as Alzheimer disease, epilepsy and depression. Over the last few decades numerous intrinsic, epigenetic and environmental factors have been revealed to deeply influence the process of adult neurogenesis, although the underlying mechanisms remain largely unknown. Growing evidence indicates that physical exercise represents one of the main extrinsic factor able to profoundly increase hippocampal adult neurogenesis, by altering neurochemistry and function of newly generated neurons. The present review surveys how neurogenesis can be modulated by cell cycle kinetics and highlights the putative role of the cell cycle length as a key component of the beneficial effect of running for hippocampal adult neurogenesis, both in physiological conditions and in the presence of defective neurogenesis.
Collapse
Affiliation(s)
- Stefano Farioli-Vecchioli
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione S.Lucia, Rome, Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione S.Lucia, Rome, Italy
| |
Collapse
|
23
|
Benavente CA, Finkelstein D, Johnson DA, Marine JC, Ashery-Padan R, Dyer MA. Chromatin remodelers HELLS and UHRF1 mediate the epigenetic deregulation of genes that drive retinoblastoma tumor progression. Oncotarget 2015; 5:9594-608. [PMID: 25338120 PMCID: PMC4259422 DOI: 10.18632/oncotarget.2468] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/06/2014] [Indexed: 12/14/2022] Open
Abstract
The retinoblastoma (Rb) family of proteins are key regulators of cell cycle exit during development and their deregulation is associated with cancer. Rb is critical for normal retinal development and germline mutations lead to retinoblastoma making retinae an attractive system to study Rb family signaling. Rb coordinates proliferation and differentiation through the E2f family of transcription factors, a critical interaction for the role of Rb in retinal development and tumorigenesis. However, whether the roles of the different E2fs are interchangeable in controlling development and tumorigenesis in the retina or if they have selective functions remains unknown. In this study, we found that E2f family members play distinct roles in the development and tumorigenesis. In Rb;p107-deficient retinae, E2f1 and E2f3 inactivation rescued tumor formation but only E2f1 rescued the retinal development phenotype. This allowed the identification of key target genes for Rb/E2f family signaling contributing to tumorigenesis and those contributing to developmental defects. We found that Sox4 and Sox11 genes contribute to the developmental phenotype and Hells and Uhrf1 contribute to tumorigenesis. Using orthotopic human xenografts, we validated that upregulation of HELLS and UHRF1 is essential for the tumor phenotype. Also, these epigenetic regulators are important for the regulation of SYK.
Collapse
Affiliation(s)
- Claudia A Benavente
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dianna A Johnson
- Department of Ophtalmology, The University of Tennessee Health Science Center, Memphis, TN, USA. Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for the Biology of Disease, VIB, Leuven, Belgium
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Tel-Aviv University, Tel Aviv, Israel
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA. Department of Human Molecular Genetics and Biochemistry, Tel-Aviv University, Tel Aviv, Israel. Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
24
|
Julian LM, Blais A. Transcriptional control of stem cell fate by E2Fs and pocket proteins. Front Genet 2015; 6:161. [PMID: 25972892 PMCID: PMC4412126 DOI: 10.3389/fgene.2015.00161] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/08/2015] [Indexed: 01/04/2023] Open
Abstract
E2F transcription factors and their regulatory partners, the pocket proteins (PPs), have emerged as essential regulators of stem cell fate control in a number of lineages. In mammals, this role extends from both pluripotent stem cells to those encompassing all embryonic germ layers, as well as extra-embryonic lineages. E2F/PP-mediated regulation of stem cell decisions is highly evolutionarily conserved, and is likely a pivotal biological mechanism underlying stem cell homeostasis. This has immense implications for organismal development, tissue maintenance, and regeneration. In this article, we discuss the roles of E2F factors and PPs in stem cell populations, focusing on mammalian systems. We discuss emerging findings that position the E2F and PP families as widespread and dynamic epigenetic regulators of cell fate decisions. Additionally, we focus on the ever expanding landscape of E2F/PP target genes, and explore the possibility that E2Fs are not simply regulators of general ‘multi-purpose’ cell fate genes but can execute tissue- and cell type-specific gene regulatory programs.
Collapse
Affiliation(s)
- Lisa M Julian
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON Canada
| | - Alexandre Blais
- Ottawa Institute of Systems Biology, Ottawa, ON Canada ; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
25
|
Tissue-specific targeting of cell fate regulatory genes by E2f factors. Cell Death Differ 2015; 23:565-75. [PMID: 25909886 DOI: 10.1038/cdd.2015.36] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 02/03/2015] [Accepted: 03/04/2015] [Indexed: 12/30/2022] Open
Abstract
Cell cycle proteins are important regulators of diverse cell fate decisions, and in this capacity have pivotal roles in neurogenesis and brain development. The mechanisms by which cell cycle regulation is integrated with cell fate control in the brain and other tissues are poorly understood, and an outstanding question is whether the cell cycle machinery regulates fate decisions directly or instead as a secondary consequence of proliferative control. Identification of the genes targeted by E2 promoter binding factor (E2f) transcription factors, effectors of the pRb/E2f cell cycle pathway, will provide essential insights into these mechanisms. We identified the promoter regions bound by three neurogenic E2f factors in neural precursor cells in a genome-wide manner. Through bioinformatic analyses and integration of published genomic data sets we uncovered hundreds of transcriptionally active E2f-bound promoters corresponding to genes that control cell fate processes, including key transcriptional regulators and members of the Notch, fibroblast growth factor, Wnt and Tgf-β signaling pathways. We also demonstrate a striking enrichment of the CCCTC binding factor transcription factor (Ctcf) at E2f3-bound nervous system-related genes, suggesting a potential regulatory co-factor for E2f3 in controlling differentiation. Finally, we provide the first demonstration of extensive tissue specificity among E2f target genes in mammalian cells, whereby E2f3 promoter binding is well conserved between neural and muscle precursors at genes associated with cell cycle processes, but is tissue-specific at differentiation-associated genes. Our findings implicate the cell cycle pathway as a widespread regulator of cell fate genes, and suggest that E2f3 proteins control cell type-specific differentiation programs by regulating unique sets of target genes. This work significantly enhances our understanding of how the cell cycle machinery impacts cell fate and differentiation, and will importantly drive further discovery regarding the mechanisms of cell fate control and transcriptional regulation in the brain, as well as in other tissues.
Collapse
|
26
|
Xie C, Lu H, Nomura A, Hanse EA, Forster CL, Parker JB, Linden MA, Karasch C, Hallstrom TC. Co-deleting Pten with Rb in retinal progenitor cells in mice results in fully penetrant bilateral retinoblastomas. Mol Cancer 2015; 14:93. [PMID: 25907958 PMCID: PMC4411757 DOI: 10.1186/s12943-015-0360-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 04/06/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Rb1 is the most frequently mutated gene in the pediatric cancer retinoblastoma, and its loss causes E2F transcription factors to induce proliferation related genes. However, high E2F levels following pRB loss also induce apoptosis-promoting genes as a safeguard mechanism to suppress emergent tumors. Although p53 accumulation and apoptosis induction is believed to be a primary mechanism to eliminate cells with excess E2F activity, p53 deletion doesn't suppress RB/E2F induced apoptosis in vivo in the retina. This prompted us to test the PTEN/PI3K/AKT signaling pathway on RB/E2F apoptosis suppression in vivo, to ascertain if the PI3K pathway may provide a potential avenue for retinoblastoma therapy. METHODS We developed a mouse model in which Rb1 and Pten were conditionally deleted from retinal progenitor cells using Chx10-Cre, whereas Rbl1 (p107) was constitutively deleted. Pathway components were also tested individually by in vivo electroporation into newborn retinas for an effect on apoptosis and tumor initiation. Mouse retinal tissues were analyzed by immunohistochemistry (IHC) for proliferation, apoptosis, and pathway activation. ShRNAs were used in vitro to assess effects on apoptosis and gene expression. RESULTS Co-deleting Pten with Rb1 and Rbl1 in mouse retinal progenitor cells (RPCs) causes fully penetrant bilateral retinoblastomas by 30 days and strongly suppresses Rb/E2F-induced apoptosis. In vivo electroporation of constitutively active (ca)-Pik3ca, ca-Akt, or dominant-negative (dn)-Foxo1 into apoptosis prone newborn murine retina with deleted Rb/p107 eliminate Rb/E2F induced apoptosis and induce retinoblastoma emergence. Retinal deletion of Pten activates p-AKT and p-FOXO1 signaling in incipient retinoblastoma. An unbiased shRNA screen focusing on Akt phosphorylation targets identified FOXOs as critical mediators of Rb/E2F induced apoptosis and expression of Bim and p73 pro-apoptotic genes. CONCLUSIONS These data indicate that we defined a key molecular trigger involving E2F/FOXO functioning to control retinal progenitor cell homeostasis and retinoblastoma tumor initiation. We anticipate that our findings could provide contextual understanding of the proliferation of other progenitor cells, considering the high frequency of co-altered signaling from RB/E2F and PTEN/PI3K/AKT pathways in a wide variety of normal and malignant settings.
Collapse
Affiliation(s)
- Chencheng Xie
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Huarui Lu
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Alice Nomura
- Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Eric Allan Hanse
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Colleen Lynn Forster
- BioNet, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Josh Berken Parker
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, 55108, USA.
| | - Michael Andrew Linden
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Chris Karasch
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA.
| | | |
Collapse
|
27
|
Schaal C, Pillai S, Chellappan SP. The Rb-E2F transcriptional regulatory pathway in tumor angiogenesis and metastasis. Adv Cancer Res 2015; 121:147-182. [PMID: 24889531 DOI: 10.1016/b978-0-12-800249-0.00004-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The retinoblastoma tumor suppressor protein Rb plays a major role in regulating G1/S transition and is a critical regulator of cell proliferation. Rb protein exerts its growth regulatory properties mainly by physically interacting with the transcriptionally active members of the E2F transcription factor family, especially E2Fs 1, 2, and 3. Given its critical role in regulating cell proliferation, it is not surprising that Rb is inactivated in almost all tumors, either through the mutation of Rb gene itself or through the mutations of its upstream regulators including K-Ras and INK4. Recent studies have revealed a significant role for Rb and its downstream effectors, especially E2Fs, in regulating various aspects of tumor progression, angiogenesis, and metastasis. Thus, components of the Rb-E2F pathway have been shown to regulate the expression of genes involved in angiogenesis, including VEGF and VEGFR, genes involved in epithelial-mesenchymal transition including E-cadherin and ZEB proteins, and genes involved in invasion and migration like matrix metalloproteinases. Rb has also been shown to play a major role in the functioning of normal and cancer stem cells; further, Rb and E2F appear to play a regulatory role in the energy metabolism of cancer cells. These findings raise the possibility that mutational events that initiate tumorigenesis by inducing uncontrolled cell proliferation might also contribute to the progression and metastasis of cancers through the mediation of the Rb-E2F transcriptional regulatory pathway. This review highlights these recent studies on tumor promoting functions of the Rb-E2F pathway.
Collapse
Affiliation(s)
- Courtney Schaal
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Smitha Pillai
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Srikumar P Chellappan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.
| |
Collapse
|
28
|
Hardwick LJA, Ali FR, Azzarelli R, Philpott A. Cell cycle regulation of proliferation versus differentiation in the central nervous system. Cell Tissue Res 2014; 359:187-200. [PMID: 24859217 PMCID: PMC4284380 DOI: 10.1007/s00441-014-1895-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/10/2014] [Indexed: 01/07/2023]
Abstract
Formation of the central nervous system requires a period of extensive progenitor cell proliferation, accompanied or closely followed by differentiation; the balance between these two processes in various regions of the central nervous system gives rise to differential growth and cellular diversity. The correlation between cell cycle lengthening and differentiation has been reported across several types of cell lineage and from diverse model organisms, both in vivo and in vitro. Furthermore, different cell fates might be determined during different phases of the preceding cell cycle, indicating direct cell cycle influences on both early lineage commitment and terminal cell fate decisions. Significant advances have been made in the last decade and have revealed multi-directional interactions between the molecular machinery regulating the processes of cell proliferation and neuronal differentiation. Here, we first introduce the modes of proliferation in neural progenitor cells and summarise evidence linking cell cycle length and neuronal differentiation. Second, we describe the manner in which components of the cell cycle machinery can have additional and, sometimes, cell-cycle-independent roles in directly regulating neurogenesis. Finally, we discuss the way that differentiation factors, such as proneural bHLH proteins, can promote either progenitor maintenance or differentiation according to the cellular environment. These intricate connections contribute to precise coordination and the ultimate division versus differentiation decision.
Collapse
Affiliation(s)
- Laura J A Hardwick
- Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | | | | | | |
Collapse
|
29
|
Ajioka I. Coordination of proliferation and neuronal differentiation by the retinoblastoma protein family. Dev Growth Differ 2014; 56:324-34. [PMID: 24697649 DOI: 10.1111/dgd.12127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/13/2014] [Accepted: 02/16/2014] [Indexed: 12/23/2022]
Abstract
Once neurons enter the post-mitotic G0 phase during central nervous system (CNS) development, they lose their proliferative potential. When neurons re-enter the cell cycle during pathological situations such as neurodegeneration, they undergo cell death after S phase progression. Thus, the regulatory networks that drive cell proliferation and maintain neuronal differentiation are highly coordinated. In this review, the coordination of cell cycle control and neuronal differentiation during development are discussed, focusing on regulation by the Rb family of tumor suppressors (including p107 and p130), and the Cip/Kip family of cyclin dependent kinase (Cdk) inhibitors. Based on recent findings suggesting roles for these families in regulating neurogenesis and neuronal differentiation, I propose that the Rb family is essential for daughter cells of neuronal progenitors to enter the post-mitotic G0 phase without affecting the initiation of neuronal differentiation in most cases, while the Cip/Kip family regulates the timing of neuronal progenitor cell cycle exit and the initiation of neuronal differentiation at least in the progenitor cells of the cerebral cortex and the retina. Rb's lack of involvement in regulating the initiation of neuronal differentiation may explain why Rb family-deficient retinoblastomas characteristically exhibit neuronal features.
Collapse
Affiliation(s)
- Itsuki Ajioka
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Tokyo, 113-8510, Japan
| |
Collapse
|
30
|
Pacal M, Bremner R. Induction of the ganglion cell differentiation program in human retinal progenitors before cell cycle exit. Dev Dyn 2014; 243:712-29. [PMID: 24339342 DOI: 10.1002/dvdy.24103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/29/2013] [Accepted: 12/02/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Despite the disease relevance, understanding of human retinal development lags behind that of other species. We compared the kinetics of gene silencing or induction during ganglion cell development in human and murine retina. RESULTS Induction of POU4F2 (BRN3B) marks ganglion cell commitment, and we detected this factor in S-phase progenitors that had already silenced Cyclin D1 and VSX2 (CHX10). This feature was conserved in human and mouse retina, and the fraction of Pou4f2+ murine progenitors labeled with a 30 min pulse of BrdU matched the fraction of ganglion cells predicted to be born in a half-hour period. Additional analysis of 18 markers revealed many with conserved kinetics, such as the POU4F2 pattern above, as well as the surprising maintenance of "cell cycle" proteins KI67, PCNA, and MCM6 well after terminal mitosis. However, four proteins (TUBB3, MTAP1B, UCHL1, and RBFOX3) showed considerably delayed induction in human relative to mouse retina, and two proteins (ISL1, CALB2) showed opposite kinetics, appearing on either side of terminal mitosis depending on the species. CONCLUSION With some notable exceptions, human and murine ganglion cell differentiation show similar kinetics, and the data add weight to prior studies supporting the existence of biased ganglion cell progenitors.
Collapse
Affiliation(s)
- Marek Pacal
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto Department of Ophthalmology and Vision Sciences, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | |
Collapse
|
31
|
Liu H, Kim SY, Fu Y, Wu X, Ng L, Swaroop A, Forrest D. An isoform of retinoid-related orphan receptor β directs differentiation of retinal amacrine and horizontal interneurons. Nat Commun 2013; 4:1813. [PMID: 23652001 PMCID: PMC3671912 DOI: 10.1038/ncomms2793] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 03/21/2013] [Indexed: 01/14/2023] Open
Abstract
Amacrine and horizontal interneurons integrate visual information as it is relayed through the retina from the photoreceptors to the ganglion cells. The early steps that generate these interneuron networks remain unclear. Here we show that a distinct RORβ1 isoform encoded by the retinoid-related orphan nuclear receptor β gene (Rorb) is critical for both amacrine and horizontal cell differentiation in mice. A fluorescent protein cassette targeted into Rorb revealed RORβ1 as a novel marker of immature amacrine and horizontal cells and of undifferentiated, dividing progenitor cells. RORβ1-deficient mice lose expression of pancreas-specific transcription factor 1a (Ptf1a) but retain forkhead box n4 factor (Foxn4), two early-acting factors necessary for amacrine and horizontal cell generation. RORβ1 and Foxn4 synergistically induce Ptf1a expression, suggesting a central role for RORβ1 in a transcriptional hierarchy that directs this interneuron differentiation pathway. Moreover, ectopic RORβ1 expression in neonatal retina promotes amacrine cell differentiation.
Collapse
Affiliation(s)
- Hong Liu
- Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, NIDDK, 10 Center Drive, Bethesda, Maryland 20892-1772, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Pocket proteins pRb and p107 are required for cortical lamination independent of apoptosis. Dev Biol 2013; 384:101-13. [DOI: 10.1016/j.ydbio.2013.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 01/24/2023]
|
33
|
Chen D, Chen Y, Forrest D, Bremner R. E2f2 induces cone photoreceptor apoptosis independent of E2f1 and E2f3. Cell Death Differ 2013; 20:931-40. [PMID: 23558950 DOI: 10.1038/cdd.2013.24] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The 'activating' E2fs (E2f1-3) are transcription factors that potently induce quiescent cells to divide. Work on cultured fibroblasts suggested they were essential for division, but in vivo analysis in the developing retina and other tissues disproved this notion. The retina, therefore, is an ideal location to assess other in vivo adenovirus E2 promoter binding factor (E2f) functions. It is thought that E2f1 directly induces apoptosis, whereas other activating E2fs only induce death indirectly by upregulating E2f1 expression. Indeed, mouse retinoblastoma (Rb)-null retinal neuron death requires E2f1, but not E2f2 or E2f3. However, we report an entirely distinct mechanism in dying cone photoreceptors. These neurons survive Rb loss, but undergo apoptosis in the cancer-prone retina lacking both Rb and its relative p107. We show that while E2f1 killed Rb/p107 null rod, bipolar and ganglion neurons, E2f2 was required and sufficient for cone death, independent of E2f1 and E2f3. Moreover, whereas E2f1-dependent apoptosis was p53 and p73-independent, E2f2 caused p53-dependent cone death. Our in vivo analysis of cone photoreceptors provides unequivocal proof that E2f-induces apoptosis independent of E2f1, and reveals distinct E2f1- and E2f2-activated death pathways in response to a single tumorigenic insult.
Collapse
Affiliation(s)
- D Chen
- Department of Ophthalmology and Visual Science, Toronto Western Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
34
|
Rodríguez-Aznar E, Barrallo-Gimeno A, Nieto MA. Scratch2 prevents cell cycle re-entry by repressing miR-25 in postmitotic primary neurons. J Neurosci 2013; 33:5095-105. [PMID: 23516276 PMCID: PMC6704984 DOI: 10.1523/jneurosci.4459-12.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 01/02/2013] [Accepted: 01/30/2013] [Indexed: 01/25/2023] Open
Abstract
During the development of the nervous system the regulation of cell cycle, differentiation, and survival is tightly interlinked. Newly generated neurons must keep cell cycle components under strict control, as cell cycle re-entry leads to neuronal degeneration and death. However, despite their relevance, the mechanisms controlling this process remain largely unexplored. Here we show that Scratch2 is involved in the control of the cell cycle in neurons in the developing spinal cord of the zebrafish embryo. scratch2 knockdown induces postmitotic neurons to re-enter mitosis. Scratch2 prevents cell cycle re-entry by maintaining high levels of the cycle inhibitor p57 through the downregulation of miR-25. Thus, Scratch2 appears to safeguard the homeostasis of postmitotic primary neurons by preventing cell cycle re-entry.
Collapse
Affiliation(s)
| | | | - M. Angela Nieto
- Instituto de Neurociencias, CSIC-UMH, San Juan de Alicante 03550, Spain
| |
Collapse
|
35
|
Opposing regulation of Sox2 by cell-cycle effectors E2f3a and E2f3b in neural stem cells. Cell Stem Cell 2013; 12:440-52. [PMID: 23499385 DOI: 10.1016/j.stem.2013.02.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 12/04/2012] [Accepted: 02/13/2013] [Indexed: 01/03/2023]
Abstract
The mechanisms through which cell-cycle control and cell-fate decisions are coordinated in proliferating stem cell populations are largely unknown. Here, we show that E2f3 isoforms, which control cell-cycle progression in cooperation with the retinoblastoma protein (pRb), have critical effects during developmental and adult neurogenesis. Loss of either E2f3 isoform disrupts Sox2 gene regulation and the balance between precursor maintenance and differentiation in the developing cortex. Both isoforms target the Sox2 locus to maintain baseline levels of Sox2 expression but antagonistically regulate Sox2 levels to instruct fate choices. E2f3-mediated regulation of Sox2 and precursor cell fate extends to the adult brain, where E2f3a loss results in defects in hippocampal neurogenesis and memory formation. Our results demonstrate a mechanism by which E2f3a and E2f3b differentially regulate Sox2 dosage in neural precursors, a finding that may have broad implications for the regulation of diverse stem cell populations.
Collapse
|
36
|
Retinal degeneration depends on Bmi1 function and reactivation of cell cycle proteins. Proc Natl Acad Sci U S A 2013; 110:E593-601. [PMID: 23359713 DOI: 10.1073/pnas.1108297110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The epigenetic regulator Bmi1 controls proliferation in many organs. Reexpression of cell cycle proteins such as cyclin-dependent kinases (CDKs) is a hallmark of neuronal apoptosis in neurodegenerative diseases. Here we address the potential role of Bmi1 as a key regulator of cell cycle proteins during neuronal apoptosis. We show that several cell cycle proteins are expressed in different models of retinal degeneration and required in the Rd1 photoreceptor death process. Deleting E2f1, a downstream target of CDKs, provided temporary protection in Rd1 mice. Most importantly, genetic ablation of Bmi1 provided extensive photoreceptor survival and improvement of retinal function in Rd1 mice, mediated by a decrease in cell cycle markers and regulators independent of p16(Ink4a) and p19(Arf). These data reveal that Bmi1 controls the cell cycle-related death process, highlighting this pathway as a promising therapeutic target for neuroprotection in retinal dystrophies.
Collapse
|
37
|
The tumor suppressor gene retinoblastoma-1 is required for retinotectal development and visual function in zebrafish. PLoS Genet 2012; 8:e1003106. [PMID: 23209449 PMCID: PMC3510048 DOI: 10.1371/journal.pgen.1003106] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 10/04/2012] [Indexed: 11/19/2022] Open
Abstract
Mutations in the retinoblastoma tumor suppressor gene (rb1) cause both sporadic and familial forms of childhood retinoblastoma. Despite its clinical relevance, the roles of rb1 during normal retinotectal development and function are not well understood. We have identified mutations in the zebrafish space cadet locus that lead to a premature truncation of the rb1 gene, identical to known mutations in sporadic and familial forms of retinoblastoma. In wild-type embryos, axons of early born retinal ganglion cells (RGC) pioneer the retinotectal tract to guide later born RGC axons. In rb1 deficient embryos, these early born RGCs show a delay in cell cycle exit, causing a transient deficit of differentiated RGCs. As a result, later born mutant RGC axons initially fail to exit the retina, resulting in optic nerve hypoplasia. A significant fraction of mutant RGC axons eventually exit the retina, but then frequently project to the incorrect optic tectum. Although rb1 mutants eventually establish basic retinotectal connectivity, behavioral analysis reveals that mutants exhibit deficits in distinct, visually guided behaviors. Thus, our analysis of zebrafish rb1 mutants reveals a previously unknown yet critical role for rb1 during retinotectal tract development and visual function.
Collapse
|
38
|
Xue XY, Harris WA. Using myc genes to search for stem cells in the ciliary margin of the Xenopus retina. Dev Neurobiol 2012; 72:475-90. [PMID: 21465669 DOI: 10.1002/dneu.20887] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ciliary marginal zone (CMZ) of fish and frog retinas contains cells that proliferate throughout postembryonic development as the retina grows with increasing body size, indicating the presence of stem cells in this region. However, neither the location nor the molecular identity of retinal stem cells has been identified. Here, we show in Xenopus that c-myc and n-myc are sequentially expressed both during development and in the post-embryonic retina. The c-myc+/n-myc- cells near the extreme periphery of the CMZ cycle more slowly and preferentially retain DNA label compared to their more central cmyc+/n-myc+ neighbors which cycle rapidly and preferentially dilute DNA label. During retinal development c-myc is functionally required earlier than n-myc, and n-myc expression depends on earlier c-myc expression. The expression of c-myc but not n-myc in the CMZ depends on growth factor signaling. Our results suggest that c-myc+/n-myc- cells in the far peripheral CMZ are candidates for a niche-dependent population of retinal stem cells that give rise to more centrally located and rapidly dividing n-myc+ progenitors of more limited proliferative potential. Analysis of homologues of these genes in the zebrafish CMZ suggests that the transition from c-myc to n-myc expression might be conserved in other lower vertebrates whose retinas growth throughout life.
Collapse
Affiliation(s)
- Xiao Yan Xue
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
39
|
Donovan SL, Corbo JC. Retinal horizontal cells lacking Rb1 sustain persistent DNA damage and survive as polyploid giant cells. Mol Biol Cell 2012; 23:4362-72. [PMID: 23015754 PMCID: PMC3496610 DOI: 10.1091/mbc.e12-04-0293] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The retinoblastoma tumor susceptibility gene, Rb1, is a key regulator of the cell cycle, and mutations in this gene have been found in many human cancers. Prior studies showed that retina-specific knockout of Rb1 in the mouse results in the formation of abnormally large horizontal cells, but the development, fate, and genomic status of these cells remain unknown. In this study, we conditionally inactivate Rb1 in early retinal progenitors and show that the loss of Rb1 leads to the rapid degeneration of most retinal cells except horizontal cells, which persist as giant cells with aberrant centrosome content, DNA damage, and polyploidy/aneuploidy. We observed inappropriate cell cycle entry of Rb1-deficient horizontal cells during the first postnatal weeks, which dropped off abruptly by P30. Despite extensive DNA damage in Rb1-deficient horizontal cells, these cells can still enter mitosis. Adult Rb1-deficient horizontal cells display elevated DNA content (5N-34N) that varied continuously, suggesting the presence of aneuploidy. We also found evidence of supernumerary and disoriented centrosomes in a rare population of mitotic cells in the mutant retinas. Overall our data demonstrate that horizontal cells are a remarkably robust cell type and can survive for months despite extensive DNA damage and elevated genome content.
Collapse
Affiliation(s)
- Stacy L Donovan
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
40
|
The Rb/E2F pathway modulates neurogenesis through direct regulation of the Dlx1/Dlx2 bigene cluster. J Neurosci 2012; 32:8219-30. [PMID: 22699903 DOI: 10.1523/jneurosci.1344-12.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
During brain morphogenesis, the mechanisms through which the cell cycle machinery integrates with differentiation signals remain elusive. Here we show that the Rb/E2F pathway regulates key aspects of differentiation and migration through direct control of the Dlx1 and Dlx2 homeodomain proteins, required for interneuron specification. Rb deficiency results in a dramatic reduction of Dlx1 and Dlx2 gene expression manifested by loss of interneuron subtypes and severe migration defects in the mouse brain. The Rb/E2F pathway modulates Dlx1/Dlx2 regulation through direct interaction with a Dlx forebrain-specific enhancer, I12b, and the Dlx1/Dlx2 proximal promoter regions, through repressor E2F sites both in vitro and in vivo. In the absence of Rb, we demonstrate that repressor E2Fs inhibit Dlx transcription at the Dlx1/Dlx2 promoters and Dlx1/2-I12b enhancer to suppress differentiation. Our findings support a model whereby the cell cycle machinery not only controls cell division but also modulates neuronal differentiation and migration through direct regulation of the Dlx1/Dlx2 bigene cluster during embryonic development.
Collapse
|
41
|
Cruz-Ramírez A, Díaz-Triviño S, Blilou I, Grieneisen VA, Sozzani R, Zamioudis C, Miskolczi P, Nieuwland J, Benjamins R, Dhonukshe P, Caballero-Pérez J, Horvath B, Long Y, Mähönen AP, Zhang H, Xu J, Murray JAH, Benfey PN, Bako L, Marée AFM, Scheres B. A bistable circuit involving SCARECROW-RETINOBLASTOMA integrates cues to inform asymmetric stem cell division. Cell 2012; 150:1002-15. [PMID: 22921914 DOI: 10.1016/j.cell.2012.07.017] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 05/24/2012] [Accepted: 07/11/2012] [Indexed: 12/21/2022]
Abstract
In plants, where cells cannot migrate, asymmetric cell divisions (ACDs) must be confined to the appropriate spatial context. We investigate tissue-generating asymmetric divisions in a stem cell daughter within the Arabidopsis root. Spatial restriction of these divisions requires physical binding of the stem cell regulator SCARECROW (SCR) by the RETINOBLASTOMA-RELATED (RBR) protein. In the stem cell niche, SCR activity is counteracted by phosphorylation of RBR through a cyclinD6;1-CDK complex. This cyclin is itself under transcriptional control of SCR and its partner SHORT ROOT (SHR), creating a robust bistable circuit with either high or low SHR-SCR complex activity. Auxin biases this circuit by promoting CYCD6;1 transcription. Mathematical modeling shows that ACDs are only switched on after integration of radial and longitudinal information, determined by SHR and auxin distribution, respectively. Coupling of cell-cycle progression to protein degradation resets the circuit, resulting in a "flip flop" that constrains asymmetric cell division to the stem cell region.
Collapse
Affiliation(s)
- Alfredo Cruz-Ramírez
- Molecular Genetics, Department of Biology, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Pacal M, Bremner R. Mapping differentiation kinetics in the mouse retina reveals an extensive period of cell cycle protein expression in post-mitotic newborn neurons. Dev Dyn 2012; 241:1525-44. [PMID: 22837015 DOI: 10.1002/dvdy.23840] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2012] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Knowledge of gene expression kinetics around neuronal cell birth is required to dissect mechanisms underlying progenitor fate. Here, we timed cell cycle and neuronal protein silencing/induction during cell birth in the developing murine retina. RESULTS The pan-cell cycle markers Pcna and Mcm6 were present in the post-mitotic ganglion cell layer. Although confined to the neuroblastic layer (NBL), 6-7% of Ki67(+) cells lacked six progenitor/cell cycle markers, and expressed neuronal markers. To define protein extinction/induction timing, we defined G2/M length throughout retinogenesis, which was typically 1-2 h, but <10% cells took double this time. BrdU-chase analyses revealed that at E12.5, Tubb3 (Tuj1) appeared at M-phase, followed by Calb2 and Dcx at ~2 h, Elavl2/3/4 at ~4 h, and Map2 at ~6 h after cell birth, and these times extended with embryonic age. Strikingly, Ki67 was not extinguished until up to a day after cell cycle exit, coinciding with exit from the NBL and induction of late markers such as Map1b/Uchl1/Rbfox3. CONCLUSIONS A minor population of progenitors transits slowly through G2/M and, most importantly, some cell cycle proteins are retained for an unexpectedly long period in post-mitotic neurons. The high-resolution map of cell birth kinetics reported here provides a framework to better define mechanisms that regulate neurogenesis.
Collapse
Affiliation(s)
- Marek Pacal
- Genetics and Development Division, Toronto Western Research Institute, University Health Network, Toronto, Canada
| | | |
Collapse
|
43
|
Abstract
The Caenorhabditis elegans pRb ortholog, LIN-35, functions in a wide range of cellular and developmental processes. This includes a role of LIN-35 in nutrient utilization by the intestine, which it carries out redundantly with SLR-2, a zinc-finger protein. This and other redundant functions of LIN-35 were identified in genetic screens for mutations that display synthetic phenotypes in conjunction with loss of lin-35. To explore the intestinal role of LIN-35, we conducted a genome-wide RNA-interference-feeding screen for suppressors of lin-35; slr-2 early larval arrest. Of the 26 suppressors identified, 17 fall into three functional classes: (1) ribosome biogenesis genes, (2) mitochondrial prohibitins, and (3) chromatin regulators. Further characterization indicates that different categories of suppressors act through distinct molecular mechanisms. We also tested lin-35; slr-2 suppressors, as well as suppressors of the synthetic multivulval phenotype, to determine the spectrum of lin-35-synthetic phenotypes that could be suppressed following inhibition of these genes. We identified 19 genes, most of which are evolutionarily conserved, that can suppress multiple unrelated lin-35-synthetic phenotypes. Our study reveals a network of genes broadly antagonistic to LIN-35 as well as genes specific to the role of LIN-35 in intestinal and vulval development. Suppressors of multiple lin-35 phenotypes may be candidate targets for anticancer therapies. Moreover, screening for suppressors of phenotypically distinct synthetic interactions, which share a common altered gene, may prove to be a novel and effective approach for identifying genes whose activities are most directly relevant to the core functions of the shared gene.
Collapse
|
44
|
Established and new mouse models reveal E2f1 and Cdk2 dependency of retinoblastoma, and expose effective strategies to block tumor initiation. Oncogene 2012; 31:5019-28. [PMID: 22286767 PMCID: PMC4977187 DOI: 10.1038/onc.2011.654] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RB +/− individuals develop retinoblastoma and, subsequently, many other tumors. The Rb relatives p107 and p130 protect the tumor-resistant Rb−/− mouse retina. Determining the mechanism underlying this tumor suppressor function may expose novel strategies to block Rb-pathway cancers. p107/p130 are best known as E2f inhibitors, but here we implicate E2f-independent Cdk2 inhibition as the critical p107 tumor suppressor function in vivo. Like p107 loss, deleting p27 or inactivating its Cdk inhibitor (CKI) function (p27CK−) cooperated with Rb loss to induce retinoblastoma. Genetically, p107 behaved like a CKI because inactivating Rb and one allele each of p27 and p107 was tumorigenic. While Rb loss induced canonical E2f targets, unexpectedly p107 loss did not further induce these genes but instead caused post-transcriptional Skp2-induction and Cdk2 activation. Strikingly, Cdk2 activity correlated with tumor penetrance across all the retinoblastoma models. Therefore, Rb restrains E2f, but p107 inhibits cross-talk to Cdk. While removing either E2f2 or E2f3 genes had little effect, removing only one E2f1 allele blocked tumorigenesis. More importantly, exposing retinoblastoma-prone fetuses to small molecule E2f or Cdk inhibitors for merely one week dramatically inhibited subsequent tumorigenesis in adult mice. Protection was achieved without disrupting normal proliferation. Thus, exquisite sensitivity of the cell-of-origin to E2f and Cdk activity can be exploited to prevent Rb pathway-induced cancer in vivo without perturbing normal cell division. These data suggest that E2f inhibitors, never before tested in vivo, or Cdk inhibitors, largely disappointing as therapeutics, may be effective preventive agents.
Collapse
|
45
|
Mongan M, Wang J, Liu H, Fan Y, Jin C, Kao WYW, Xia Y. Loss of MAP3K1 enhances proliferation and apoptosis during retinal development. Development 2011; 138:4001-12. [PMID: 21862560 DOI: 10.1242/dev.065003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Precise coordination of progenitor cell proliferation and differentiation is essential for proper organ morphogenesis and function during mammalian development. The mitogen-activated protein kinase kinase kinase 1 (MAP3K1) has a well-established role in anterior eyelid development, as Map3k1-knockout mice have defective embryonic eyelid closure and an `eye-open at birth' (EOB) phenotype. Here, we show that MAP3K1 is highly expressed in the posterior of the developing eye and is required for retina development. The MAP3K1-deficient mice exhibit increased proliferation and apoptosis, and Müller glial cell overproduction in the developing retinas. Consequently, the retinas of these mice show localized rosette-like arrangements in the outer nuclear layer, and develop abnormal vascularization, broken down retinal pigment epithelium, photoreceptor loss and early onset of retinal degeneration. Although the retinal defect is associated with increased cyclin D1 and CDK4/6 expression, and RB phosphorylation and E2F-target gene upregulation, it is independent of the EOB phenotype and of JNK. The retinal developmental defect still occurs in knockout mice that have undergone tarsorrhaphy, but is absent in compound mutant Map3k1(+/ΔKD)Jnk1(-/-) and Map3k1(+/ΔKD)Jnk(+/-)Jnk2(+/-) mice that have EOB and reduced JNK signaling. Our results unveil a novel role for MAP3K1 in which it crosstalks with the cell cycle regulatory pathways in the prevention of retina malformation and degeneration.
Collapse
Affiliation(s)
- Maureen Mongan
- Department of Environmental Health, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0056, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
In the few weeks prior to the onset of vision, the retina undergoes a dramatic transformation. Neurons migrate into position and target appropriate synaptic partners to assemble the circuits that mediate vision. During this period of development, the retina is not silent but rather assembles and disassembles a series of transient circuits that use distinct mechanisms to generate spontaneous correlated activity called retinal waves. During the first postnatal week, this transient circuit is comprised of reciprocal cholinergic connections between starburst amacrine cells. A few days before the eyes open, these cholinergic connections are eliminated as the glutamatergic circuits involved in processing visual information are formed. Here, we discuss the assembly and disassembly of this transient cholinergic network and the role it plays in various aspects of retinal development.
Collapse
|
47
|
Abstract
The RB1 gene is the first tumor suppressor gene identified whose mutational inactivation is the cause of a human cancer, the pediatric cancer retinoblastoma. The 25 years of research since its discovery has not only illuminated a general role for RB1 in human cancer, but also its critical importance in normal development. Understanding the molecular function of the RB1 encoded protein, pRb, is a long-standing goal that promises to inform our understanding of cancer, its relationship to normal development, and possible therapeutic strategies to combat this disease. Achieving this goal has been difficult, complicated by the complexity of pRb and related proteins. The goal of this review is to explore the hypothesis that, at its core, the molecular function of pRb is to dynamically regulate the location-specific assembly or disassembly of protein complexes on the DNA in response to the output of various signaling pathways. These protein complexes participate in a variety of molecular processes relevant to DNA including gene transcription, DNA replication, DNA repair, and mitosis. Through regulation of these processes, RB1 plays a uniquely prominent role in normal development and cancer.
Collapse
Affiliation(s)
- Meenalakshmi Chinnam
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | |
Collapse
|
48
|
Chalasani K, Brewster RM. N-cadherin-mediated cell adhesion restricts cell proliferation in the dorsal neural tube. Mol Biol Cell 2011; 22:1505-15. [PMID: 21389116 PMCID: PMC3084673 DOI: 10.1091/mbc.e10-08-0675] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Neural progenitors are organized as a pseudostratified epithelium held together by adherens junctions (AJs), multiprotein complexes composed of cadherins and α- and β-catenin. Catenins are known to control neural progenitor division; however, it is not known whether they function in this capacity as cadherin binding partners, as there is little evidence that cadherins themselves regulate neural proliferation. We show here that zebrafish N-cadherin (N-cad) restricts cell proliferation in the dorsal region of the neural tube by regulating cell-cycle length. We further reveal that N-cad couples cell-cycle exit and differentiation, as a fraction of neurons are mitotic in N-cad mutants. Enhanced proliferation in N-cad mutants is mediated by ligand-independent activation of Hedgehog (Hh) signaling, possibly caused by defective ciliogenesis. Furthermore, depletion of Hh signaling results in the loss of junctional markers. We therefore propose that N-cad restricts the response of dorsal neural progenitors to Hh and that Hh signaling limits the range of its own activity by promoting AJ assembly. Taken together, these observations emphasize a key role for N-cad-mediated adhesion in controlling neural progenitor proliferation. In addition, these findings are the first to demonstrate a requirement for cadherins in synchronizing cell-cycle exit and differentiation and a reciprocal interaction between AJs and Hh signaling.
Collapse
Affiliation(s)
- Kavita Chalasani
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | |
Collapse
|
49
|
Wirt SE, Adler AS, Gebala V, Weimann JM, Schaffer BE, Saddic LA, Viatour P, Vogel H, Chang HY, Meissner A, Sage J. G1 arrest and differentiation can occur independently of Rb family function. ACTA ACUST UNITED AC 2010; 191:809-25. [PMID: 21059851 PMCID: PMC2983066 DOI: 10.1083/jcb.201003048] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Repression of E2F target genes is required for cell cycle arrest in Rb family (Rb, p107, and p130)-deficient cells. The ability of progenitor cells to exit the cell cycle is essential for proper embryonic development and homeostasis, but the mechanisms governing cell cycle exit are still not fully understood. Here, we tested the requirement for the retinoblastoma (Rb) protein and its family members p107 and p130 in G0/G1 arrest and differentiation in mammalian cells. We found that Rb family triple knockout (TKO) mouse embryos survive until days 9–11 of gestation. Strikingly, some TKO cells, including in epithelial and neural lineages, are able to exit the cell cycle in G0/G1 and differentiate in teratomas and in culture. This ability of TKO cells to arrest in G0/G1 is associated with the repression of key E2F target genes. Thus, G1 arrest is not always dependent on Rb family members, which illustrates the robustness of cell cycle regulatory networks during differentiation and allows for the identification of candidate pathways to inhibit the expansion of cancer cells with mutations in the Rb pathway.
Collapse
Affiliation(s)
- Stacey E Wirt
- Department of Pediatrics, Stanford Medical School, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The Rb/E2F pathway has long been appreciated for its role in regulating cell cycle progression. Emerging evidence indicates that it also influences physiological events beyond regulation of the cell cycle. We have previously described a requirement for Rb/E2F mediating neuronal migration; however, the molecular mechanisms remain unknown, making this an ideal system to identify Rb/E2F-mediated atypical gene regulation in vivo. Here, we report that Rb regulates the expression of neogenin, a gene encoding a receptor involved in cell migration and axon guidance. Rb is capable of repressing E2F-mediated neogenin expression while E2F3 occupies a region containing E2F consensus sites on the neogenin promoter in native chromatin. Absence of Rb results in aberrant neuronal migration and adhesion in response to netrin-1, a known ligand for neogenin. Increased expression of neogenin through ex vivo electroporation results in impaired neuronal migration similar to that detected in forebrain-specific Rb deficiency. These findings show direct regulation of neogenin by the Rb/E2F pathway and demonstrate that regulation of neogenin expression is required for neural precursor migration. These studies identify a novel mechanism through which Rb regulates transcription of a gene beyond the classical E2F targets to regulate events distinct from cell cycle progression.
Collapse
|