1
|
Giri RK. Molecular signatures in prion disease: altered death receptor pathways in a mouse model. J Transl Med 2024; 22:503. [PMID: 38802941 PMCID: PMC11129387 DOI: 10.1186/s12967-024-05121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/20/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Prion diseases are transmissible and fatal neurodegenerative diseases characterized by accumulation of misfolded prion protein isoform (PrPSc), astrocytosis, microgliosis, spongiosis, and neurodegeneration. Elevated levels of cell membrane associated PrPSc protein and inflammatory cytokines hint towards the activation of death receptor (DR) pathway/s in prion diseases. Activation of DRs regulate, either cell survival or apoptosis, autophagy and necroptosis based on the adaptors they interact. Very little is known about the DR pathways activation in prion disease. DR3 and DR5 that are expressed in normal mouse brain were never studied in prion disease, so also their ligands and any DR adaptors. This research gap is notable and investigated in the present study. METHODS C57BL/6J mice were infected with Rocky Mountain Laboratory scrapie mouse prion strain. The progression of prion disease was examined by observing morphological and behavioural abnormalities. The levels of PrP isoforms and GFAP were measured as the marker of PrPSc accumulation and astrocytosis respectively using antibody-based techniques that detect proteins on blot and brain section. The levels of DRs, their glycosylation and ectodomain shedding, and associated factors warrant their examination at protein level, hence western blot analysis was employed in this study. RESULTS Prion-infected mice developed motor deficits and neuropathology like PrPSc accumulation and astrocytosis similar to other prion diseases. Results from this research show higher expression of all DR ligands, TNFR1, Fas and p75NTR but decreased levels DR3 and DR5. The levels of DR adaptor proteins like TRADD and TRAF2 (primarily regulate pro-survival pathways) are reduced. FADD, which primarily regulate cell death, its level remains unchanged. RIPK1, which regulate pro-survival, apoptosis and necroptosis, its expression and proteolysis (inhibits necroptosis but activates apoptosis) are increased. CONCLUSIONS The findings from the present study provide evidence towards the involvement of DR3, DR5, DR6, TL1A, TRAIL, TRADD, TRAF2, FADD and RIPK1 for the first time in prion diseases. The knowledge obtained from this research discuss the possible impacts of these 16 differentially expressed DR factors on our understanding towards the multifaceted neuropathology of prion diseases and towards future explorations into potential targeted therapeutic interventions for prion disease specific neuropathology.
Collapse
Affiliation(s)
- Ranjit Kumar Giri
- Molecular and Cellular Neuroscience Division, National Brain Research Centre, Manesar, Gurgaon, Haryana, 122052, India.
| |
Collapse
|
2
|
Silva JDM, Alves CEDC, Pontes GS. Epstein-Barr virus: the mastermind of immune chaos. Front Immunol 2024; 15:1297994. [PMID: 38384471 PMCID: PMC10879370 DOI: 10.3389/fimmu.2024.1297994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous human pathogen linked to various diseases, including infectious mononucleosis and multiple types of cancer. To control and eliminate EBV, the host's immune system deploys its most potent defenses, including pattern recognition receptors, Natural Killer cells, CD8+ and CD4+ T cells, among others. The interaction between EBV and the human immune system is complex and multifaceted. EBV employs a variety of strategies to evade detection and elimination by both the innate and adaptive immune systems. This demonstrates EBV's mastery of navigating the complexities of the immunological landscape. Further investigation into these complex mechanisms is imperative to advance the development of enhanced therapeutic approaches with heightened efficacy. This review provides a comprehensive overview of various mechanisms known to date, employed by the EBV to elude the immune response, while establishing enduring latent infections or instigate its lytic replication.
Collapse
Affiliation(s)
- Jean de Melo Silva
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus, AM, Brazil
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus, AM, Brazil
| | | | - Gemilson Soares Pontes
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus, AM, Brazil
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus, AM, Brazil
| |
Collapse
|
3
|
Giehler F, Ostertag MS, Sommermann T, Weidl D, Sterz KR, Kutz H, Moosmann A, Feller SM, Geerlof A, Biesinger B, Popowicz GM, Kirchmair J, Kieser A. Epstein-Barr virus-driven B cell lymphoma mediated by a direct LMP1-TRAF6 complex. Nat Commun 2024; 15:414. [PMID: 38195569 PMCID: PMC10776578 DOI: 10.1038/s41467-023-44455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) drives viral B cell transformation and oncogenesis. LMP1's transforming activity depends on its C-terminal activation region 2 (CTAR2), which induces NF-κB and JNK by engaging TNF receptor-associated factor 6 (TRAF6). The mechanism of TRAF6 recruitment to LMP1 and its role in LMP1 signalling remains elusive. Here we demonstrate that TRAF6 interacts directly with a viral TRAF6 binding motif within CTAR2. Functional and NMR studies supported by molecular modeling provide insight into the architecture of the LMP1-TRAF6 complex, which differs from that of CD40-TRAF6. The direct recruitment of TRAF6 to LMP1 is essential for NF-κB activation by CTAR2 and the survival of LMP1-driven lymphoma. Disruption of the LMP1-TRAF6 complex by inhibitory peptides interferes with the survival of EBV-transformed B cells. In this work, we identify LMP1-TRAF6 as a critical virus-host interface and validate this interaction as a potential therapeutic target in EBV-associated cancer.
Collapse
Affiliation(s)
- Fabian Giehler
- Research Unit Signaling and Translation, Helmholtz Center Munich - German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Research Unit Gene Vectors, Helmholtz Center Munich - German Research Center for Environmental Health, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Michael S Ostertag
- Institute of Structural Biology, Helmholtz Center Munich - German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Thomas Sommermann
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Daniel Weidl
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Kai R Sterz
- Research Unit Gene Vectors, Helmholtz Center Munich - German Research Center for Environmental Health, 81377, Munich, Germany
| | - Helmut Kutz
- Research Unit Gene Vectors, Helmholtz Center Munich - German Research Center for Environmental Health, 81377, Munich, Germany
| | - Andreas Moosmann
- Research Unit Gene Vectors, Helmholtz Center Munich - German Research Center for Environmental Health, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Department of Medicine III, University Hospital, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
| | - Stephan M Feller
- Institute of Molecular Medicine, Martin-Luther-University Halle-Wittenberg, 06120, Halle, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Center Munich - German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Brigitte Biesinger
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Center Munich - German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Johannes Kirchmair
- Universität Hamburg, Department of Informatics, Center for Bioinformatics (ZBH), 20146, Hamburg, Germany
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, 1090, Vienna, Austria
| | - Arnd Kieser
- Research Unit Signaling and Translation, Helmholtz Center Munich - German Research Center for Environmental Health, 85764, Neuherberg, Germany.
- Research Unit Gene Vectors, Helmholtz Center Munich - German Research Center for Environmental Health, 81377, Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| |
Collapse
|
4
|
Mitra B, Beri NR, Guo R, Burton EM, Murray-Nerger LA, Gewurz BE. Characterization of target gene regulation by the two Epstein-Barr virus oncogene LMP1 domains essential for B-cell transformation. mBio 2023; 14:e0233823. [PMID: 38009935 PMCID: PMC10746160 DOI: 10.1128/mbio.02338-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/09/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Epstein-Barr virus (EBV) causes multiple human cancers, including B-cell lymphomas. In cell culture, EBV converts healthy human B-cells into immortalized ones that grow continuously, which model post-transplant lymphomas. Constitutive signaling from two cytoplasmic tail domains of the EBV oncogene latent membrane protein 1 (LMP1) is required for this transformation, yet there has not been systematic analysis of their host gene targets. We identified that only signaling from the membrane proximal domain is required for survival of these EBV-immortalized cells and that its loss triggers apoptosis. We identified key LMP1 target genes, whose abundance changed significantly with loss of LMP1 signals, or that were instead upregulated in response to switching on signaling by one or both LMP1 domains in an EBV-uninfected human B-cell model. These included major anti-apoptotic factors necessary for EBV-infected B-cell survival. Bioinformatics analyses identified clusters of B-cell genes that respond differently to signaling by either or both domains.
Collapse
Affiliation(s)
- Bidisha Mitra
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nina Rose Beri
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric M. Burton
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura A. Murray-Nerger
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin E. Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Gutjahr E, Fremd C, Arnscheidt J, Penzel R, Wacker J, Sinn P. Non-Response of Epstein-Barr Virus-Associated Breast Cancer after Primary Chemotherapy: Report of Two Cases. Pathogens 2023; 12:1387. [PMID: 38133273 PMCID: PMC10747629 DOI: 10.3390/pathogens12121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Based on epidemiological evidence and molecular findings, a possible association of Epstein-Barr virus (EBV) with the carcinogenesis of breast cancer has been described. However, the frequency of EBV in breast cancer and the role of EBV regarding tumor progression or therapeutic results is largely unexplored. Here, we report on two cases of advanced, lymph node-positive invasive breast cancer of no special type (NST), histologically showing no clinical or histological evidence of tumor regression as an equivalent of a lack of response to primary systemic therapy. Both tumors were considered to be EBV-associated due to their positivity in EBV-encoded RNA (EBER) in situ hybridization (ISH) and their immunoreactivity against EBV Epstein-Barr nuclear antigen 1 (EBNA1). We hypothesize that the unusual non-response to chemotherapy in these cases of breast cancer classified as triple-negative and HER2-positive may be linked to the EBV co-infection of tumor cells. Therefore, EBV tumor testing should be considered in patients with breast cancer presenting with resistance to chemotherapy. This hypothesis may provide a new aspect in the context of EBV-associated mechanisms of tumor progression.
Collapse
Affiliation(s)
- Ewgenija Gutjahr
- Department of General Pathology, University Hospital, 69121 Heidelberg, Germany
| | - Carlo Fremd
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital and German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Johanna Arnscheidt
- Department of General Pathology, University Hospital, 69121 Heidelberg, Germany
| | - Roland Penzel
- Department of General Pathology, University Hospital, 69121 Heidelberg, Germany
| | - Jürgen Wacker
- Department of Obstetrics and Gynecology, Fuerst-Stirum-Hospital, 76646 Bruchsal, Germany
| | - Peter Sinn
- Department of General Pathology, University Hospital, 69121 Heidelberg, Germany
| |
Collapse
|
6
|
van Os BW, Kusters PJH, den Toom M, Beckers L, van Tiel CM, Vos WG, de Jong E, Kieser A, van Roomen C, Binder CJ, Reiche ME, de Winther MP, Bosmans LA, Lutgens E. Deficiency of germinal center kinase TRAF2 and NCK-interacting kinase (TNIK) in B cells does not affect atherosclerosis. Front Cardiovasc Med 2023; 10:1171764. [PMID: 37215541 PMCID: PMC10196212 DOI: 10.3389/fcvm.2023.1171764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/06/2023] [Indexed: 05/24/2023] Open
Abstract
Background Atherosclerosis is the underlying cause of many cardiovascular diseases, such as myocardial infarction or stroke. B cells, and their production of pro- and anti-atherogenic antibodies, play an important role in atherosclerosis. In B cells, TRAF2 and NCK-interacting Kinase (TNIK), a germinal center kinase, was shown to bind to TNF-receptor associated factor 6 (TRAF6), and to be involved in JNK and NF-κB signaling in human B cells, a pathway associated with antibody production. Objective We here investigate the role of TNIK-deficient B cells in atherosclerosis. Results ApoE-/-TNIKfl/fl (TNIKBWT) and ApoE-/-TNIKfl/flCD19-cre (TNIKBKO) mice received a high cholesterol diet for 10 weeks. Atherosclerotic plaque area did not differ between TNIKBKO and TNIKBWT mice, nor was there any difference in plaque necrotic core, macrophage, T cell, α-SMA and collagen content. B1 and B2 cell numbers did not change in TNIKBKO mice, and marginal zone, follicular or germinal center B cells were unaffected. Total IgM and IgG levels, as well as oxidation specific epitope (OSE) IgM and IgG levels, did not change in absence of B cell TNIK. In contrast, plasma IgA levels were decreased in TNIKBKO mice, whereas the number of IgA+ B cells in intestinal Peyer's patches increased. No effects could be detected on T cell or myeloid cell numbers or subsets. Conclusion We here conclude that in hyperlipidemic ApoE-/- mice, B cell specific TNIK deficiency does not affect atherosclerosis.
Collapse
Affiliation(s)
- Bram W. van Os
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Amsterdam UMC, Amsterdam, Netherlands
| | - Pascal J. H. Kusters
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Amsterdam UMC, Amsterdam, Netherlands
| | - Myrthe den Toom
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Amsterdam UMC, Amsterdam, Netherlands
| | - Linda Beckers
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Amsterdam UMC, Amsterdam, Netherlands
| | - Claudia M. van Tiel
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Amsterdam UMC, Amsterdam, Netherlands
| | - Winnie G. Vos
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Amsterdam UMC, Amsterdam, Netherlands
| | - Elize de Jong
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Arnd Kieser
- Research Unit Signaling and Translation, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Cindy van Roomen
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Amsterdam UMC, Amsterdam, Netherlands
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Myrthe E. Reiche
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Amsterdam UMC, Amsterdam, Netherlands
| | - Menno P. de Winther
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Amsterdam UMC, Amsterdam, Netherlands
| | - Laura A. Bosmans
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Amsterdam UMC, Amsterdam, Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Ludwig-Maximilians-Universität München, Germany
- Department of Cardiovascular Medicine and Immunology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
7
|
The Association between Infectious Mononucleosis and Cancer: A Cohort Study of 24,190 Outpatients in Germany. Cancers (Basel) 2022; 14:cancers14235837. [PMID: 36497319 PMCID: PMC9736164 DOI: 10.3390/cancers14235837] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Cancer represents one of the leading causes of death worldwide. Besides genetic risk factors and non-communicable diseases, chronic infections including Epstein−Barr virus (EBV) infection have been identified as promotors of cancer. In the present manuscript, we evaluated the association between infectious mononucleosis, the clinical manifestation of EBV infection, and cancer development in a real-word cohort of outpatients in Germany. Methods: We used the Disease Analyzer database (IQVIA) and matched a total of 12,095 patients with infectious mononucleosis to a cohort of individuals without infectious mononucleosis based on age, sex, index year, and annual patient consultation frequency between 2000 and 2018. Results: Patients diagnosed with infectious mononucleosis had a cancer incidence of 5.3 cases per 1000 person years versus 4.4 cases per 1000 person years for patients without infectious mononucleosis. In multivariable regression models, infectious mononucleosis showed a trend towards a higher incidence of cancer in general in the age group > 50 years (incidence rate ratio (IRR): 1.32; 95% CI: 1.04−1.67) and among men (IRR: 1.36; 95% CI: 1.07−1.72). Infectious mononucleosis was significantly associated with an increased incidence of tumors of the hematopoietic and lymphoid tissues (IRR: 1.75; 95% CI: 1.22−2.50) and showed a strong trend towards an association with prostate cancer (IRR: 3.09; 95% CI: 1.23−7.76). Conclusion: Infectious mononucleosis is associated with an increased incidence of certain cancer types. The present data from a large real-world cohort support the evidence on a role of EBV in the development of different malignancies and could trigger research efforts to further elucidate its precise involvement in the carcinogenic process.
Collapse
|
8
|
Ghaffari H, Tavakoli A, Nafissi N, Farahmand M, Ghorbani S, Moochani SS, Hashemi-Bahremani M, Alebouyeh MR, Monavari SH. Human cytomegalovirus and Epstein-Barr virus infections in breast cancer: A molecular study on Iranian women. Breast Dis 2021; 40:227-233. [PMID: 33935050 DOI: 10.3233/bd-201019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVES The role of human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV) infections in breast cancer pathology is not well understood. Our study aimed to investigate the association of HCMV and EBV infections with breast cancer and distinguish the types of positive EBV and LMP-1 samples in Iranian patients. METHODS Seventy-two formalin-fixed paraffin-embedded (FFPE) breast cancer tissues were analyzed between December 2014 and April 2016. Samples were analyzed for HCMV and EBV using nested-PCR and conventional PCR assays, respectively. Statistical analysis was performed using SPSS software version 18. RESULTS Overall, HCMV and EBV genomes were detected in 6.9% and 16.7% of FFPE breast cancer tissues, respectively. Clinical factors were not statistically associated with the presence of HCMV and EBV. CONCLUSION In this study, we reported EBV and LMP-1 typing in breast carcinoma cases for the first time in Iran. Our findings indicate that HCMV and EBV infections are not associated with the development of breast cancer.
Collapse
Affiliation(s)
- Hadi Ghaffari
- Department of Bacteriology and Virology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ahmad Tavakoli
- Department of Medical Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Nafissi
- Department of Surgery, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farahmand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saied Ghorbani
- Department of Medical Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Sadat Moochani
- Department of Medical Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hashemi-Bahremani
- Department of Pathology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Alebouyeh
- Department of Anesthesia, Faculty of Medicine, Rasoul Akram Medical Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Hamidreza Monavari
- Department of Medical Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
A central role of IKK2 and TPL2 in JNK activation and viral B-cell transformation. Nat Commun 2020; 11:685. [PMID: 32019925 PMCID: PMC7000802 DOI: 10.1038/s41467-020-14502-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
IκB kinase 2 (IKK2) is well known for its pivotal role as a mediator of the canonical NF-κB pathway, which has important functions in inflammation and immunity, but also in cancer. Here we identify a novel and critical function of IKK2 and its co-factor NEMO in the activation of oncogenic c-Jun N-terminal kinase (JNK) signaling, induced by the latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV). Independent of its kinase activity, the TGFβ-activated kinase 1 (TAK1) mediates LMP1 signaling complex formation, NEMO ubiquitination and subsequent IKK2 activation. The tumor progression locus 2 (TPL2) kinase is induced by LMP1 via IKK2 and transmits JNK activation signals downstream of IKK2. The IKK2-TPL2-JNK axis is specific for LMP1 and differs from TNFα, Interleukin-1 and CD40 signaling. This pathway mediates essential LMP1 survival signals in EBV-transformed human B cells and post-transplant lymphoma, and thus qualifies as a target for treatment of EBV-induced cancer.
Collapse
|
10
|
miR-149* Suppresses Liver Cancer Progression by Down-Regulating Tumor Necrosis Factor Receptor 1–Associated Death Domain Protein Expression. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:469-483. [DOI: 10.1016/j.ajpath.2019.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/02/2019] [Accepted: 10/15/2019] [Indexed: 12/18/2022]
|
11
|
Farahmand M, Monavari SH, Shoja Z, Ghaffari H, Tavakoli M, Tavakoli A. Epstein-Barr virus and risk of breast cancer: a systematic review and meta-analysis. Future Oncol 2019; 15:2873-2885. [PMID: 31342783 DOI: 10.2217/fon-2019-0232] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite the numerous publications regarding the role of Epstein-Barr virus (EBV) in breast cancer development, the topic has still remained controversial. The aim of the meta-analysis was to estimate the overall prevalence of EBV in the breast cancer population, and to investigate the association between EBV and breast cancer risk. The overall prevalence of EBV was calculated 26.37% (95% CI: 22-31%) from the 44 included studies. Meta-analysis of 30 case-control studies showed that the pooled association between EBV and risk of breast cancer is odds ratio 4.74 (95% CI: 2.92-7.69; Z = 6.30; p < 0.0001). Our analyses indicate a strong statistical relationship between EBV infection and risk of breast cancer, suggesting a potential role of EBV infection in the development of breast cancer.
Collapse
Affiliation(s)
- Mohammad Farahmand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hamidreza Monavari
- Department of Medical Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hadi Ghaffari
- Department of Medical Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Tavakoli
- Faculty of Electrical & Computer Engineering, Malek-Ashtar University of Technology, Tehran, Iran
| | - Ahmad Tavakoli
- Department of Medical Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Ammous-Boukhris N, Mosbah A, Ayadi W, Sahli E, Chevance S, Bondon A, Gargouri A, Baudy-Floc'h M, Mokdad-Gargouri R. B1.12: a novel peptide interacting with the extracellular loop of the EBV oncoprotein LMP1. Sci Rep 2019; 9:4389. [PMID: 30867462 PMCID: PMC6416395 DOI: 10.1038/s41598-019-39732-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
Latent membrane protein 1 (LMP1) encoded by the Epstein-Barr virus (EBV) plays an important role in EBV-induced cell transformation. Down-regulation of the LMP1 expression had shown promising results on cancer cell therapy. In this study, we identified by Phage display a novel peptide called B1.12 (ACPLDLRSPCG) which selectively binds to the extracellular loop (B1) of the LMP1 oncoprotein as demonstrated by molecular docking, NMR and ITC. Using an LMP1 expressing cell line, we showed that B1.12 decreased cell viability, and induced G0/G1 cell cycle arrest. In addition, the expression of A20, pAkt, and pNFkb (pRelA536) in C666-1 cells treated with B1.12 decreased compared to the untreated cells. In conclusion, we selected a novel peptide able to bind specifically to the extracellular loop of LMP1 and thus modulate its oncogenic properties.
Collapse
Affiliation(s)
- Nihel Ammous-Boukhris
- Center of Biotechnology of Sfax, Laboratory: Molecular Biotechnology of Eukaryotes, University of Sfax, Sfax, Tunisia
| | - Amor Mosbah
- BVBGR-LR 11ES31, ISBST, University of Manouba, Biotechnopole Sidi Thabet, 2020, Ariana, Tunisia
| | - Wajdi Ayadi
- Center of Biotechnology of Sfax, Laboratory: Molecular Biotechnology of Eukaryotes, University of Sfax, Sfax, Tunisia
| | - Emna Sahli
- Center of Biotechnology of Sfax, Plate-forme of Analysis, University of Sfax, Sfax, Tunisia
| | - Soizic Chevance
- COrInt, ISCR UMR CNRS 6226, Université de Rennes 1, Rennes, France
| | - Arnaud Bondon
- COrInt, ISCR UMR CNRS 6226, Université de Rennes 1, Rennes, France.,Plate-forme PRISM, Biosit, SFR UMS CNRS 3480 - INSERM 018, Université de Rennes 1, Rennes, France
| | - Ali Gargouri
- Center of Biotechnology of Sfax, Laboratory: Molecular Biotechnology of Eukaryotes, University of Sfax, Sfax, Tunisia
| | | | - Raja Mokdad-Gargouri
- Center of Biotechnology of Sfax, Laboratory: Molecular Biotechnology of Eukaryotes, University of Sfax, Sfax, Tunisia.
| |
Collapse
|
13
|
Cheerathodi MR, Meckes DG. The Epstein-Barr virus LMP1 interactome: biological implications and therapeutic targets. Future Virol 2018; 13:863-887. [PMID: 34079586 DOI: 10.2217/fvl-2018-0120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The oncogenic potential of Epstein-Barr virus (EBV) is mostly attributed to latent membrane protein 1 (LMP1), which is essential and sufficient for transformation of fibroblast and primary lymphocytes. LMP1 expression results in the activation of multiple signaling cascades like NF-ΚB and MAP kinases that trigger cell survival and proliferative pathways. LMP1 specific signaling events are mediated through the recruitment of a number of interacting proteins to various signaling domains. Based on these properties, LMP1 is an attractive target to develop effective therapeutics to treat EBV-related malignancies. In this review, we focus on LMP1 interacting proteins, associated signaling events, and potential targets that could be exploited for therapeutic strategies.
Collapse
Affiliation(s)
- Mujeeb R Cheerathodi
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306
| |
Collapse
|
14
|
Abstract
Epstein-Barr virus latent membrane protein 1 (LMP1) is expressed in multiple human malignancies, including nasopharyngeal carcinoma and Hodgkin and immunosuppression-associated lymphomas. LMP1 mimics CD40 signaling to activate multiple growth and survival pathways, in particular, NF-κB. LMP1 has critical roles in Epstein-Barr virus (EBV)-driven B-cell transformation, and its expression causes fatal lymphoproliferative disease in immunosuppressed mice. Here, we review recent developments in studies of LMP1 signaling, LMP1-induced host dependency factors, mouse models of LMP1 lymphomagenesis, and anti-LMP1 immunotherapy approaches.
Collapse
Affiliation(s)
- Liang Wei Wang
- Division of Infectious Disease, Brigham & Women's Hospital, Boston, Massachusetts
- Program in Virology, Harvard Medical School, Boston, Massachusetts
| | - Sizun Jiang
- Division of Infectious Disease, Brigham & Women's Hospital, Boston, Massachusetts
- Program in Virology, Harvard Medical School, Boston, Massachusetts
| | - Benjamin E Gewurz
- Division of Infectious Disease, Brigham & Women's Hospital, Boston, Massachusetts
- Program in Virology, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
15
|
Ammous-Boukhris N, Mosbah A, Sahli E, Ayadi W, Hadhri-Guiga B, Chérif A, Gargouri A, Mokdad-Gargouri R. Phage-display screening identifies LMP1-binding peptides targeting the C-terminus region of the EBV oncoprotein. Peptides 2016; 85:73-79. [PMID: 27650372 DOI: 10.1016/j.peptides.2016.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 01/25/2023]
Abstract
Latent membrane protein 1 (LMP1), a major oncoprotein of Epstein Barr Virus (EBV) is responsible for transforming B lymphocytes in vitro. LMP1 is overexpressed in several EBV-associated malignancies, and different approaches have been developed to reduce its level and accordingly its oncogenic function in tumor tissues. This study aimed to use phage display peptide library to obtain peptides which could specifically bind to the cytoplasmic region of LMP1 to prevent its interaction with signaling proteins. The LMP1 C-terminus region was produced in bacterial E. coli and used as target for the phage library panning. After 3 rounds, 20 phage clones were randomly selected and 8 showed high binding affinity to the recombinant C-terminus LMP1 protein. The most interesting candidates are the FO5 "QPTKDSSPPLRV" and NO4 "STTSPPAVPHNN" peptides since both bind the C-terminus LMP1 as showed by molecular docking. Furthermore, sequence alignment revealed that the FO5 peptide shared sequence similarity with the Death Receptor 4 which belongs to the tumor necrosis factor-related apoptosis-inducing receptor which plays key role in anti-tumor immunity.
Collapse
Affiliation(s)
| | - Amor Mosbah
- BVBGR-LR 11ES31, ISBST University of Manouba, Biotechpole Sidi Thabet, 2020 Ariana, Tunisie
| | - Emna Sahli
- LBME, Center of Biotechnology of Sfax, University of Sfax, 3018 Sfax, Tunisie
| | - Wajdi Ayadi
- LBME, Center of Biotechnology of Sfax, University of Sfax, 3018 Sfax, Tunisie
| | | | - Ameur Chérif
- BVBGR-LR 11ES31, ISBST University of Manouba, Biotechpole Sidi Thabet, 2020 Ariana, Tunisie
| | - Ali Gargouri
- LBME, Center of Biotechnology of Sfax, University of Sfax, 3018 Sfax, Tunisie
| | | |
Collapse
|
16
|
Abstract
Almost exactly twenty years after the discovery of Epstein-Barr virus (EBV), the latent membrane protein 1 (LMP1) entered the EBV stage, and soon thereafter, it was recognized as the primary transforming gene product of the virus. LMP1 is expressed in most EBV-associated lymphoproliferative diseases and malignancies, and it critically contributes to pathogenesis and disease phenotypes. Thirty years of LMP1 research revealed its high potential as a deregulator of cellular signal transduction pathways leading to target cell proliferation and the simultaneous subversion of cell death programs. However, LMP1 has multiple roles beyond cell transformation and immortalization, ranging from cytokine and chemokine induction, immune modulation, the global alteration of gene and microRNA expression patterns to the regulation of tumor angiogenesis, cell-cell contact, cell migration, and invasive growth of tumor cells. By acting like a constitutively active receptor, LMP1 recruits cellular signaling molecules associated with tumor necrosis factor receptors such as tumor necrosis factor receptor-associated factor (TRAF) proteins and TRADD to mimic signals of the costimulatory CD40 receptor in the EBV-infected B lymphocyte. LMP1 activates NF-κB, mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3-K), IRF7, and STAT pathways. Here, we review LMP1's molecular and biological functions, highlighting the interface between LMP1 and the cellular signal transduction network as an important factor of virus-host interaction and a potential therapeutic target.
Collapse
|
17
|
Chattopadhyay A, Abecassis I, Redner RL. NPM-RAR binding to TRADD selectively inhibits caspase activation, while allowing activation of NFκB and JNK. Leuk Lymphoma 2015; 56:3401-3406. [PMID: 25791120 DOI: 10.3109/10428194.2015.1023799] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The t(5;17) variant of acute promeylocytic leukemia (APL) expresses a fusion of nucleophosmin (NPM) with the retinoic acid receptor alpha (RARA). We have previously shown that NPM-RAR is a binding partner of the tumor necrosis factor (TNF) receptor type-I-associated DEATH domain protein, TRADD. Binding of TNF to its receptor, TNF-R, induces recruitment of TRADD, and subsequent recruitment of a cascade of proteins that ultimate activate caspase 3, nuclear factor κB (NFκB) and c-Jun N-terminal kinase (JNK). We have previously shown that NPM-RAR interaction with TRADD blocks TNF activation of caspase 3, caspase 8, poly(ADP-ribose) polymerase (PARP) cleavage and, ultimately, apoptosis. We now report that NPM-RAR expression is permissive for TNF activation of NFκB and JNK. We propose that inhibition of TNF activation of apoptosis, while preserving TNF activation of NFκB and JNK pathways that stimulate cell growth and survival, represents a novel mechanism through which NPM-RAR contributes to development of the leukemic phenotype.
Collapse
Affiliation(s)
- Anuja Chattopadhyay
- Department of Medicine and University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh PA 15213 USA
| | - Irina Abecassis
- Department of Medicine and University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh PA 15213 USA
| | - Robert L Redner
- Department of Medicine and University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh PA 15213 USA
| |
Collapse
|
18
|
Shukla K, Sharma AK, Ward A, Will R, Hielscher T, Balwierz A, Breunig C, Münstermann E, König R, Keklikoglou I, Wiemann S. MicroRNA-30c-2-3p negatively regulates NF-κB signaling and cell cycle progression through downregulation of TRADD and CCNE1 in breast cancer. Mol Oncol 2015; 9:1106-19. [PMID: 25732226 DOI: 10.1016/j.molonc.2015.01.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 01/06/2023] Open
Abstract
Nuclear Factor kappa B (NF-κB) signaling is frequently deregulated in a variety of cancers and is constitutively active in estrogen receptor negative (ER-) breast cancer subtypes. These molecular subtypes of breast cancer are associated with poor overall survival. We focused on mechanisms of NF-κB regulation by microRNAs (miRNAs), which regulate eukaryotic gene expression at the post-transcriptional level. In a previous genome-wide miRNA screen, we had identified miR-30c-2-3p as one of the strongest negative regulators of NF-κB signaling. Here we have uncovered the underlying molecular mechanisms and its consequences in breast cancer. In vitro results show that miR-30c-2-3p directly targets both TNFRSF1A-associated via death domain (TRADD), an adaptor protein of the TNFR/NF-κB signaling pathway, and the cell cycle protein Cyclin E1 (CCNE1). Ectopic expression of miR-30c-2-3p downregulated essential cytokines IL8, IL6, CXCL1, and reduced cell proliferation as well as invasion in MDA-MB-231 breast cancer cells. RNA interference (RNAi) induced silencing of TRADD phenocopied the effects on invasion and cytokine expression caused by miR-30c-2-3p, while inhibition of CCNE1 phenocopied the effects on cell proliferation. We further confirmed the tumor suppressive role of this miRNA using a dataset of 781 breast tumors, where higher expression was associated with better survival in breast cancer patients. In summary we have elucidated the mechanism by which miR-30c-2-3p negatively regulates NF-κB signaling and cell cycle progression in breast cancer.
Collapse
Affiliation(s)
- Kirti Shukla
- Division of Molecular Genome Analysis, DKFZ, 69120 Heidelberg, Germany.
| | | | - Aoife Ward
- Division of Molecular Genome Analysis, DKFZ, 69120 Heidelberg, Germany
| | - Rainer Will
- Genomics & Proteomics Core Facility, DKFZ, 69120 Heidelberg, Germany
| | | | | | - Christian Breunig
- Division of Molecular Genome Analysis, DKFZ, 69120 Heidelberg, Germany
| | - Ewald Münstermann
- Division of Molecular Genome Analysis, DKFZ, 69120 Heidelberg, Germany
| | - Rainer König
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany; Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Beutenbergstrasse 11a, 07745 Jena, Germany; Division of Theoretical Bioinformatics, DKFZ, 69120 Heidelberg, Germany
| | | | - Stefan Wiemann
- Division of Molecular Genome Analysis, DKFZ, 69120 Heidelberg, Germany.
| |
Collapse
|
19
|
Mohr CF, Kalmer M, Gross C, Mann MC, Sterz KR, Kieser A, Fleckenstein B, Kress AK. The tumor marker Fascin is induced by the Epstein-Barr virus-encoded oncoprotein LMP1 via NF-κB in lymphocytes and contributes to their invasive migration. Cell Commun Signal 2014; 12:46. [PMID: 25105941 PMCID: PMC4222691 DOI: 10.1186/s12964-014-0046-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 06/29/2014] [Indexed: 12/05/2022] Open
Abstract
Background The actin-bundling protein Fascin (FSCN1) is a tumor marker that is highly expressed in numerous types of cancer including lymphomas and is important for migration and metastasis of tumor cells. Fascin has also been detected in B lymphocytes that are freshly-infected with Epstein-Barr virus (EBV), however, both the inducers and the mechanisms of Fascin upregulation are still unclear. Results Here we show that the EBV-encoded oncoprotein latent membrane protein 1 (LMP1), a potent regulator of cellular signaling and transformation, is sufficient to induce both Fascin mRNA and protein in lymphocytes. Fascin expression is mainly regulated by LMP1 via the C-terminal activation region 2 (CTAR2). Block of canonical NF-κB signaling using a chemical inhibitor of IκB kinase β (IKKβ) or cotransfection of a dominant-negative inhibitor of IκBα (NFKBIA) reduced not only expression of p100, a classical target of the canonical NF-κB-pathway, but also LMP1-induced Fascin expression. Furthermore, chemical inhibition of IKKβ reduced both Fascin mRNA and protein levels in EBV-transformed lymphoblastoid cell lines, indicating that canonical NF-κB signaling is required for LMP1-mediated regulation of Fascin both in transfected and transformed lymphocytes. Beyond that, chemical inhibition of IKKβ significantly reduced invasive migration of EBV-transformed lymphoblastoid cells through extracellular matrix. Transient transfection experiments revealed that Fascin contributed to LMP1-mediated enhancement of invasive migration through extracellular matrix. While LMP1 enhanced the number of invaded cells, functional knockdown of Fascin by two different small hairpin RNAs resulted in significant reduction of invaded, non-attached cells. Conclusions Thus, our data show that LMP1-mediated upregulation of Fascin depends on NF-κB and both NF-κB and Fascin contribute to invasive migration of LMP1-expressing lymphocytes.
Collapse
|
20
|
Abstract
The NF-κB family of inducible transcription factors is activated in response to a variety of stimuli. Amongst the best-characterized inducers of NF-κB are members of the TNF family of cytokines. Research on NF-κB and TNF have been tightly intertwined for more than 25 years. Perhaps the most compelling examples of the interconnectedness of NF-κB and the TNF have come from analysis of knock-out mice that are unable to activate NF-κB. Such mice die embryonically, however, deletion of TNF or TNFR1 can rescue the lethality thereby illustrating the important role of NF-κB as the key regulator of transcriptional responses to TNF. The physiological connections between NF-κB and TNF cytokines are numerous and best explored in articles focusing on a single TNF family member. Instead, in this review, we explore general mechanisms of TNF cytokine signaling, with a focus on the upstream signaling events leading to activation of the so-called canonical and noncanonical NF-κB pathways by TNFR1 and CD40, respectively.
Collapse
Affiliation(s)
- Matthew S Hayden
- Department of Microbiology and Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA; Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| |
Collapse
|
21
|
Waters JP, Pober JS, Bradley JR. Tumour necrosis factor in infectious disease. J Pathol 2013; 230:132-47. [PMID: 23460469 DOI: 10.1002/path.4187] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 02/15/2013] [Accepted: 02/23/2013] [Indexed: 12/12/2022]
Abstract
TNF signals through two distinct receptors, designated TNFR1 and TNFR2, which initiate diverse cellular effects that include cell survival, activation, differentiation, and proliferation and cell death. These cellular responses can promote immunological and inflammatory responses that eradicate infectious agents, but can also lead to local tissue injury at sites of infection and harmful systemic effects. Defining the molecular mechanisms involved in TNF responses, the effects of natural and experimental genetic diversity in TNF signalling and the effects of therapeutic blockade of TNF has increased our understanding of the key role that TNF plays in infectious disease.
Collapse
Affiliation(s)
- John P Waters
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | | | | |
Collapse
|
22
|
Ersing I, Bernhardt K, Gewurz BE. NF-κB and IRF7 pathway activation by Epstein-Barr virus Latent Membrane Protein 1. Viruses 2013; 5:1587-606. [PMID: 23793113 PMCID: PMC3717723 DOI: 10.3390/v5061587] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 12/22/2022] Open
Abstract
The principal Epstein-Barr virus (EBV) oncoprotein, Latent Membrane Protein 1 (LMP1), is expressed in most EBV-associated human malignancies. LMP1 mimics CD40 receptor signaling to provide infected cells with constitutive NF-κB, MAP kinase, IRF7, and PI3 kinase pathway stimulation. EBV-transformed B-cells are particularly dependent on constitutive NF-κB activity, and rapidly undergo apoptosis upon NF-κB blockade. Here, we review LMP1 function, with special attention to current understanding of the molecular mechanisms of LMP1-mediated NF-κB and IRF7 pathway activation. Recent advances include the elucidation of transmembrane motifs important for LMP1 trafficking and ligand-independent signaling, analysis of genome-wide LMP1 gene targets, and the identification of novel cell proteins that mediate LMP1 NF-κB and IRF7 pathway activation.
Collapse
Affiliation(s)
| | | | - Benjamin E. Gewurz
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-011-617-525-4263; Fax: +1-011-615-525-4251
| |
Collapse
|
23
|
Chen P, Guo X, Zhou H, Zhang W, Zeng Z, Liao Q, Li X, Xiang B, Yang J, Ma J, Zhou M, Peng S, Xiang J, Li X, LE CW, Xiong W, McCarthy JB, Li G. SPLUNC1 regulates cell progression and apoptosis through the miR-141-PTEN/p27 pathway, but is hindered by LMP1. PLoS One 2013; 8:e56929. [PMID: 23472073 PMCID: PMC3589440 DOI: 10.1371/journal.pone.0056929] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/16/2013] [Indexed: 12/12/2022] Open
Abstract
Little is known about the role of the host defensive protein short palate, lung and nasal epithelium clone 1 (SPLUNC1) in the carcinogenesis of nasopharyngeal carcinoma (NPC). Here we report that SPLUNC1 plays a role at a very early stage of NPC carcinogenesis. SPLUNC1 regulates NPC cell proliferation, differentiation and apoptosis through miR-141, which in turn regulates PTEN and p27 expression. This signaling axis is negatively regulated by the EBV-coded gene LMP1. Therefore we propose that SPLUNC1 suppresses NPC tumor formation and its inhibition by LMP1 provides a route for NPC tumorigenesis.
Collapse
Affiliation(s)
- Pan Chen
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Xiaofang Guo
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Houde Zhou
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Wenling Zhang
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Zhaoyang Zeng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Qianjin Liao
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Bo Xiang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jianbo Yang
- Department of Laboratory Medicine and Pathology and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jian Ma
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Ming Zhou
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Shuping Peng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Juanjuan Xiang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xiaoling Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Colvin Wanshura LE
- Department of Laboratory Medicine and Pathology and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wei Xiong
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - James B. McCarthy
- Department of Laboratory Medicine and Pathology and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (JBM); (GL)
| | - Guiyuan Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- * E-mail: (JBM); (GL)
| |
Collapse
|
24
|
Gourzones C, Busson P, Raab-Traub N. Epstein-Barr Virus and the Pathogenesis of Nasopharyngeal Carcinomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013. [DOI: 10.1007/978-1-4614-5947-7_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Grunert M, Gottschalk K, Kapahnke J, Gündisch S, Kieser A, Jeremias I. The adaptor protein FADD and the initiator caspase-8 mediate activation of NF-κB by TRAIL. Cell Death Dis 2012; 3:e414. [PMID: 23096115 PMCID: PMC3481141 DOI: 10.1038/cddis.2012.154] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Besides inducing apoptosis, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) activates NF-κB. The apoptosis signaling pathway of TRAIL is well characterized involving TRAIL receptors, Fas-associated protein with death domain (FADD) and caspase-8. In contrast, the molecular mechanism of TRAIL signaling to NF-κB remains controversial. Here, we characterized the receptor–proximal mediators of NF-κB activation by TRAIL. Deletion of the DD of TRAIL receptors 1 and 2 revealed that it is essential in NF-κB signaling. Because FADD interacts with the TRAIL receptor DD, FADD was tested. RNAi-mediated knockdown of FADD or FADD deficiency in JURKAT T-cell leukemia cells decreased or disabled NF-κB signaling by TRAIL. In contrast, TRAIL-induced activation of NF-κB was maintained upon loss of receptor interacting protein 1 (RIP1) or knockdown of FLICE-like inhibitory protein (FLIP). Exogenous expression of FADD rescued TRAIL-induced NF-κB signaling. Loss-of-function mutations of FADD within the RHDLL motif of the death effector domain, which is required for TRAIL-induced apoptosis, abrogated FADD's ability to recruit caspase-8 and mediate NF-κB activation. Accordingly, deficiency of caspase-8 inhibited TRAIL-induced activation of NF-κB, which was rescued by wild-type caspase-8, but not by a catalytically inactive caspase-8 mutant. These data establish the mechanism of TRAIL-induced NF-κB activation involving the TRAIL receptor DD, FADD and caspase-8, but not RIP1 or FLIP. Our results show that signaling of TRAIL-induced apoptosis and NF-κB bifurcates downstream of caspase-8.
Collapse
Affiliation(s)
- M Grunert
- Research Group Apoptosis, Department of Gene Vectors, Helmholtz Center Munich-German Research Center for Environmental Health, Marchioninistrasse 25, 81377 Munich, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Shkoda A, Town JA, Griese J, Romio M, Sarioglu H, Knöfel T, Giehler F, Kieser A. The germinal center kinase TNIK is required for canonical NF-κB and JNK signaling in B-cells by the EBV oncoprotein LMP1 and the CD40 receptor. PLoS Biol 2012; 10:e1001376. [PMID: 22904686 PMCID: PMC3419181 DOI: 10.1371/journal.pbio.1001376] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/06/2012] [Indexed: 01/04/2023] Open
Abstract
TNIK has an important function in physiological activation and viral transformation of human B-cells by interacting with the TRAF6 adapter complex and mediating NF-κB and JNK signal transduction. The tumor necrosis factor-receptor-associated factor 2 (TRAF2)- and Nck-interacting kinase (TNIK) is a ubiquitously expressed member of the germinal center kinase family. The TNIK functions in hematopoietic cells and the role of TNIK-TRAF interaction remain largely unknown. By functional proteomics we identified TNIK as interaction partner of the latent membrane protein 1 (LMP1) signalosome in primary human B-cells infected with the Epstein-Barr tumor virus (EBV). RNAi-mediated knockdown proved a critical role for TNIK in canonical NF-κB and c-Jun N-terminal kinase (JNK) activation by the major EBV oncoprotein LMP1 and its cellular counterpart, the B-cell co-stimulatory receptor CD40. Accordingly, TNIK is mandatory for proliferation and survival of EBV-transformed B-cells. TNIK forms an activation-induced complex with the critical signaling mediators TRAF6, TAK1/TAB2, and IKKβ, and mediates signalosome formation at LMP1. TNIK directly binds TRAF6, which bridges TNIK's interaction with the C-terminus of LMP1. Separate TNIK domains are involved in NF-κB and JNK signaling, the N-terminal TNIK kinase domain being essential for IKKβ/NF-κB and the C-terminus for JNK activation. We therefore suggest that TNIK orchestrates the bifurcation of both pathways at the level of the TRAF6-TAK1/TAB2-IKK complex. Our data establish TNIK as a novel key player in TRAF6-dependent JNK and NF-κB signaling and a transducer of activating and transforming signals in human B-cells. The germinal center kinase family member TNIK was discovered in a yeast-two-hybrid screen for interaction partners of the adapter proteins TRAF2 and Nck, and here we show it is one of the missing molecular players in two key signaling pathways in B-lymphocytes. We found that TNIK is crucial for the activities of the CD40 receptor on Bcells and its viral mimic, the latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV). EBV is a human DNA tumor virus that is associated with various malignancies. It targets and transforms B-cells by hijacking the cellular signaling machinery via its oncogene LMP1. In normal Bcell physiology, the CD40 receptor is central to the immune response by mediating B-cell activation and proliferation. TNIK turns out to be an organizer of the LMP1- and CD40-induced signaling complexes by interacting with the TRAF6 adapter protein, well known for its role in linking distinct signaling pathways. Through this mechanism the two receptors depend on TNIK to activate the canonical NF-κB and JNK signal transduction pathways, which are important for the physiological activation of B-cells (a process that enables antibody production), as well as for their transformation into tumor cells. TNIK thus constitutes a key player in the transmission of physiological and pathological signals in human B-cells that might serve as a future therapeutic target against B-cell malignancies.
Collapse
Affiliation(s)
- Anna Shkoda
- Research Unit Gene Vectors, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
| | - Jennifer A. Town
- Research Unit Gene Vectors, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
| | - Janine Griese
- Research Unit Gene Vectors, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
| | - Michael Romio
- Research Unit Gene Vectors, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
| | - Hakan Sarioglu
- Research Unit Protein Science, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
| | - Thomas Knöfel
- Research Unit Gene Vectors, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
| | - Fabian Giehler
- Research Unit Gene Vectors, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
| | - Arnd Kieser
- Research Unit Gene Vectors, Helmholtz Zentrum München - German Research Center for Environmental Health, München, Germany
- * E-mail:
| |
Collapse
|
27
|
Abstract
TRADD (TNFR1-associated death domain protein) was initially identified as an adaptor molecule that transduces the signal downstream of the TNFR1 (tumor necrosis factor receptor 1). TNFR1 belongs to the so-called death receptor (DR) family of receptors that depending on the context can induce either apoptosis or proliferation, as well as NF-κB and MAP kinase activation. The receptors of this group contain death domain (DD) that is necessary for the induction of apoptosis. This review summarizes the recent advances in the field of DR signaling and in particular the role of TRADD.
Collapse
Affiliation(s)
- Yelena L Pobezinskaya
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
28
|
Inhibition of latent membrane protein 1 impairs the growth and tumorigenesis of latency II Epstein-Barr virus-transformed T cells. J Virol 2012; 86:3934-43. [PMID: 22258264 DOI: 10.1128/jvi.05747-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) is a common human herpesvirus. Infection with EBV is associated with several human malignancies in which the virus expresses a set of latent proteins, among which is latent membrane protein 1 (LMP1). LMP1 is able to transform numerous cell types and is considered the main oncogenic protein of EBV. The mechanism of action is based on mimicry of activated members of the tumor necrosis factor (TNF) receptor superfamily, through the ability of LMP1 to bind similar adapters and to activate signaling pathways. We previously generated two unique models: a monocytic cell line and a lymphocytic (NC5) cell line immortalized by EBV that expresses the type II latency program. Here we generated LMP1 dominant negative forms (DNs), based on fusion between green fluorescent protein (GFP) and transformation effector site 1 (TES1) or TES2 of LMP1. Then we generated cell lines conditionally expressing these DNs. These DNs inhibit NF-κB and Akt pathways, resulting in the impairment of survival processes and increased apoptosis in these cell lines. This proapoptotic effect is due to reduced interaction of LMP1 with specific adapters and the recruitment of these adapters to DNs, which enable the generation of an apoptotic complex involving TRADD, FADD, and caspase 8. Similar results were obtained with cell lines displaying a latency III program in which LMP1-DNs decrease cell viability. Finally, we prove that synthetic peptides display similar inhibitory effects in EBV-infected cells. DNs derived from LMP1 could be used to develop therapeutic approaches for malignant diseases associated with EBV.
Collapse
|
29
|
Glenn WK, Heng B, Delprado W, Iacopetta B, Whitaker NJ, Lawson JS. Epstein-Barr virus, human papillomavirus and mouse mammary tumour virus as multiple viruses in breast cancer. PLoS One 2012; 7:e48788. [PMID: 23183846 PMCID: PMC3501510 DOI: 10.1371/journal.pone.0048788] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The purpose of this investigation is to determine if Epstein Barr virus (EBV), high risk human papillomavirus (HPV), and mouse mammary tumour viruses (MMTV) co-exist in some breast cancers. MATERIALS AND METHODS All the specimens were from women residing in Australia. For investigations based on standard PCR, we used fresh frozen DNA extracts from 50 unselected invasive breast cancers. For normal breast specimens, we used DNA extracts from epithelial cells from milk donated by 40 lactating women. For investigations based on in situ PCR we used 27 unselected archival formalin fixed breast cancer specimens and 18 unselected archival formalin fixed normal breast specimens from women who had breast reduction surgery. Thirteen of these fixed breast cancer specimens were ductal carcinoma in situ (dcis) and 14 were predominantly invasive ductal carcinomas (idc). RESULTS EBV sequences were identified in 68%, high risk HPV sequences in 50%, and MMTV sequences in 78% of DNA extracted from 50 invasive breast cancer specimens. These same viruses were identified in selected normal and breast cancer specimens by in situ PCR. Sequences from more than one viral type were identified in 72% of the same breast cancer specimens. Normal controls showed these viruses were also present in epithelial cells in human milk - EBV (35%), HPV, 20%) and MMTV (32%) of 40 milk samples from normal lactating women, with multiple viruses being identified in 13% of the same milk samples. CONCLUSIONS We conclude that (i) EBV, HPV and MMTV gene sequences are present and co-exist in many human breast cancers, (ii) the presence of these viruses in breast cancer is associated with young age of diagnosis and possibly an increased grade of breast cancer.
Collapse
MESH Headings
- Aged
- Animals
- Base Sequence
- Breast Neoplasms/pathology
- Breast Neoplasms/virology
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Intraductal, Noninfiltrating/virology
- Case-Control Studies
- Cell Nucleus/virology
- DNA, Neoplasm/genetics
- Epstein-Barr Virus Nuclear Antigens/metabolism
- Female
- Genome, Viral/genetics
- Herpesvirus 4, Human/genetics
- Humans
- Lipopolysaccharide Receptors/metabolism
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Middle Aged
- Molecular Sequence Data
- Neoplasm Grading
- Neoplasm Invasiveness
- Papillomaviridae/genetics
- Receptor, ErbB-2/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Tumor Suppressor Protein p53/metabolism
- Viral Matrix Proteins/metabolism
Collapse
Affiliation(s)
- Wendy K. Glenn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Benjamin Heng
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | | | - Barry Iacopetta
- University Department of Surgery, University of Western Australia, Perth, Australia
| | - Noel J. Whitaker
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - James S. Lawson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
30
|
Horton TM, Sheehan AM, López-Terrada D, Hutchison RE, Narendra S, Wu MF, Liu H. Analysis of NF-κB Pathway Proteins in Pediatric Hodgkin Lymphoma: Correlations with EBV Status and Clinical Outcome-A Children's Oncology Group Study. LYMPHOMA 2012; 2012:341629. [PMID: 31406604 PMCID: PMC6690044 DOI: 10.1155/2012/341629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Constitutively active nuclear factor-κB (NF-κB) is integral to the survival of Hodgkin/Reed-Sternberg cells (H/RS) in Hodgkin Lymphoma (HL). To investigate NF-κB pathway proteins in pediatric HL, we utilized a tissue microarray compiled from 102 children enrolled in the Children's Oncology Group intermediate-risk clinical trial AHOD0031 (56 male, 78 Caucasian, median age 15y (range 1-20y), 85 nodular sclerosing subtype, 23 Epstein Barr virus (EBV) positive, 24 refractory/relapsed disease). We examined the intensity, localization, and pathway correlations of NF-κB pathway proteins (Rel-A/p65, Rel-B, c-Rel, NF-κB1, NF-κB2, IκB-α, IKK-α, IKK-β, IKK-γ/NEMO, NIK, A20), as well as their associations with EBV status and clinical outcome. NF-κB pathway proteins were overexpressed in pediatric HL patients compared to controls. Patients with EBV-tumors, or with rapid early therapy response, had tightly coordinated regulation of NF-κB pathway proteins, whereas patients with EBV+ tumors, or slow early therapy response, had little coordinated NF-κB pathway regulation. High NIK expression was associated with a slow response to therapy and decreased EFS. Elevated Rel-B, NIK and the NF-κB inhibitor A20 were associated with decreased EFS in multivariate analysis. These studies suggest a pivotal role for the NF-κB pathway in therapy response and patient survival (clinicaltrials.gov identifier: ).
Collapse
Affiliation(s)
- Terzah M. Horton
- Texas Children’s Hospital and Dan L. Duncan Cancer
Center, Baylor College of Medicine, Houston, TX, USA
| | - Andrea M. Sheehan
- Department of Pathology, Texas Children’s Hospital
and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Dolores López-Terrada
- Department of Pathology, Texas Children’s Hospital
and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Sonia Narendra
- Department of Laboratory Medicine and Pathology, Mayo
Clinic, Rochester, MN, USA
| | - Meng-Fen Wu
- Division of Biostatistics, Dan L. Duncan Cancer Center,
Baylor College of Medicine, Houston, TX, USA
| | - Hao Liu
- Division of Biostatistics, Dan L. Duncan Cancer Center,
Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
31
|
Varfolomeev E, Vucic D. Inhibitor of apoptosis proteins: fascinating biology leads to attractive tumor therapeutic targets. Future Oncol 2011; 7:633-48. [PMID: 21568679 DOI: 10.2217/fon.11.40] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cell death inhibition is a very successful strategy that cancer cells employ to combat the immune system and various anticancer therapies. Inhibitor of apoptosis (IAP) proteins possess a wide range of biological activities that promote cancer survival and proliferation. One of them, X-chromosome-linked IAP is a direct inhibitor of proapoptotic executioners, caspases. Cellular IAP proteins regulate expression of antiapoptotic molecules and prevent assembly of proapoptotic protein signaling complexes, while survivin regulates cell division. In addition, amplifications, mutations and chromosomal translocations of IAP genes are associated with various malignancies. Several therapeutic strategies have been designed to target IAP proteins, including a small-molecule approach that is based on mimicking the IAP-binding motif of an endogenous IAP antagonist - the second mitochondrial activator of caspases. Other strategies involve antisense nucleotides and transcriptional repression. The main focus of this article is to provide an update on IAP protein biology and perspectives on the development of IAP-targeting therapeutics.
Collapse
Affiliation(s)
- Eugene Varfolomeev
- Department of Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, M/S 40, South San Francisco, CA 94080, USA
| | | |
Collapse
|
32
|
Canonical NF-kappaB activation is essential for Epstein-Barr virus latent membrane protein 1 TES2/CTAR2 gene regulation. J Virol 2011; 85:6764-73. [PMID: 21543491 DOI: 10.1128/jvi.00422-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) transforms rodent fibroblasts and is expressed in most EBV-associated malignancies. LMP1 (transformation effector site 2 [TES2]/C-terminal activation region 2 [CTAR2]) activates NF-κB, p38, Jun N-terminal protein kinase (JNK), extracellular signal-regulated kinase (ERK), and interferon regulatory factor 7 (IRF7) pathways. We have investigated LMP1 TES2 genome-wide RNA effects at 4 time points after LMP1 TES2 expression in HEK-293 cells. By using a false discovery rate (FDR) of <0.001 after correction for multiple hypotheses, LMP1 TES2 caused >2-fold changes in 1,916 mRNAs; 1,479 RNAs were upregulated and 437 were downregulated. In contrast to tumor necrosis factor alpha (TNF-α) stimulation, which transiently upregulates many target genes, LMP1 TES2 maintained most RNA effects through the time course, despite robust and sustained induction of negative feedback regulators, such as IκBα and A20. LMP1 TES2-regulated RNAs encode many NF-κB signaling proteins and secondary interacting proteins. Consequently, many LMP1 TES2-regulated RNAs encode proteins that form an extensive interactome. Gene set enrichment analyses found LMP1 TES2-upregulated genes to be significantly enriched for pathways in cancer, B- and T-cell receptor signaling, and Toll-like receptor signaling. Surprisingly, LMP1 TES2 and IκBα superrepressor coexpression decreased LMP1 TES2 RNA effects to only 5 RNAs, with FDRs of <0.001-fold and >2-fold changes. Thus, canonical NF-κB activation is critical for almost all LMP1 TES2 RNA effects in HEK-293 cells and a more significant therapeutic target than previously appreciated.
Collapse
|
33
|
Graham JP, Arcipowski KM, Bishop GA. Differential B-lymphocyte regulation by CD40 and its viral mimic, latent membrane protein 1. Immunol Rev 2010; 237:226-48. [PMID: 20727039 DOI: 10.1111/j.1600-065x.2010.00932.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
CD40 plays a vital role in humoral immunity, via its potent and multifaceted function as an activating receptor of various immune cells, most notably B lymphocytes. The Epstein-Barr virus-encoded transforming protein latent membrane protein 1 (LMP1) serves as a functional mimic of CD40 signals to B cells but lacks key regulatory controls that restrain CD40 signaling. This allows LMP1 to activate B cells in an abnormal manner that can contribute to the pathogenesis of human B-cell lymphoma and autoimmune disease. This review focuses upon a comparative analysis of CD40 versus LMP1 functions and mechanisms of action in B lymphocytes, discussing how this comparison can provide valuable information on both how CD40 signaling is normally regulated and how LMP1 disrupts the normal CD40 pathways, which can provide information of value to therapeutic design.
Collapse
Affiliation(s)
- John P Graham
- Interdisciplinary Graduate Program in Immunology, The University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
34
|
Viruses and breast cancer. Cancers (Basel) 2010; 2:752-72. [PMID: 24281093 PMCID: PMC3835103 DOI: 10.3390/cancers2020752] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 04/07/2010] [Accepted: 04/26/2010] [Indexed: 12/21/2022] Open
Abstract
Viruses are the accepted cause of many important cancers including cancers of the cervix and anogenital area, the liver, some lymphomas, head and neck cancers and indirectly human immunodeficiency virus associated cancers. For over 50 years, there have been serious attempts to identify viruses which may have a role in breast cancer. Despite these efforts, the establishment of conclusive evidence for such a role has been elusive. However, the development of extremely sophisticated new experimental techniques has allowed the recent development of evidence that human papilloma virus, Epstein-Barr virus, mouse mammary tumor virus and bovine leukemia virus may each have a role in the causation of human breast cancers. This is potentially good news as effective vaccines are already available to prevent infections from carcinogenic strains of human papilloma virus, which causes cancer of the uterine cervix.
Collapse
|
35
|
Sakakibara S, Tosato G. Regulation of angiogenesis in malignancies associated with Epstein–Barr virus and Kaposi’s sarcoma-associated herpes virus. Future Microbiol 2009; 4:903-17. [DOI: 10.2217/fmb.09.49] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tumor angiogenesis is the process by which new blood vessels are formed within emerging or progressing malignancies. The human Epstein–Barr virus and Kaposi’s sarcoma-associated herpesvirus critically contribute to the pathogenesis of selected tumor types, including nasopharyngeal carcinoma and Kaposi’s sarcoma, respectively, where angiogenesis is robust and often disrupted. Lymphangiogenesis, the process by which new lymphatic vessels are formed, is also induced in Epstein–Barr virus and Kaposi’s sarcoma-associated herpesvirus-associated malignancies and in some cases may contribute to metastasis. Recent studies have identified a number of molecules and signaling pathways that underlie angiogenesis and lymphangiogenesis, and clarified the pivotal role of the VEGF family of proteins and their receptors. New treatment modalities that target members of this family have gained approval for clinical use in cancer. Pathogenetic steps are often difficult to dissect in many cancer types, but virus-induced malignancies provide a unique opportunity for understanding the molecular regulation of cancer progression, including angiogenesis. Dissection of viral gene contribution to tumor angiogenesis could result in a better understanding of the angiogenic process, its contribution to cancer and help in the design of rational therapies that target tumor growth and vascularization.
Collapse
Affiliation(s)
- Shuhei Sakakibara
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 4124, Bethesda, MD 20892, USA
| |
Collapse
|
36
|
Kieser A. Pursuing different 'TRADDes': TRADD signaling induced by TNF-receptor 1 and the Epstein-Barr virus oncoprotein LMP1. Biol Chem 2009; 389:1261-71. [PMID: 18713013 DOI: 10.1515/bc.2008.144] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The pro-apoptotic tumor necrosis factor (TNF)-receptor 1-associated death domain protein (TRADD) was initially identified as the central signaling adapter molecule of TNF-receptor 1 (TNFR1). Upon stimulation with the pro-inflammatory cytokine TNFalpha, TRADD is recruited to the activated TNFR1 by direct interaction between the death domains of both molecules. TRADD mediates TNFR1 activation of NF-kappaB and c-Jun N-terminal kinase (JNK), as well as caspase-dependent apoptosis. Surprisingly, TRADD is also recruited by latent membrane protein 1 (LMP1), the major oncoprotein of the human Epstein-Barr tumor virus. By mimicking a constitutively active receptor, LMP1 is essential for B-cell transformation by the virus, activating NF-kappaB, phosphatidylinositol 3-kinase, JAK/STAT and mitogen-activated protein kinase signaling. In contrast to TNFR1, LMP1's interaction with TRADD is independent of a functional death domain. The unique structure of the LMP1-TRADD complex dictates an unusual type of TRADD-dependent NF-kappaB signaling and subverts TRADD's potential to induce apoptosis. This article provides an overview of TNFR1 and LMP1 signal transduction with a focus on TRADD's functions in apoptotic and transforming signaling, incorporating recent results from TRADD RNAi and knockout studies.
Collapse
Affiliation(s)
- Arnd Kieser
- Abteilung Genvektoren, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Marchioninistrasse 25, D-81377 München, Germany.
| |
Collapse
|
37
|
Association between human papillomavirus and Epstein-Barr virus infections in human oral carcinogenesis. Med Hypotheses 2009; 73:184-6. [PMID: 19361933 DOI: 10.1016/j.mehy.2009.02.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 02/18/2009] [Accepted: 02/21/2009] [Indexed: 11/21/2022]
Abstract
Infection by high-risk human papillomaviruses (HPVs) and Epstein-Barr virus (EBV) are very frequent in the adult human population, and have been associated with several human carcinomas, especially oral cancers. However, a small number of studies have examined the association between high-risk HPV and EBV in the progression of human oral cancers. Currently, the role of high-risk HPV and EBV co-infections in human oral cancers, particularly nasopharyngeal carcinomas, remain uncertain because of the limited number of investigations. This raises the question whether high-risk HPV and EBV co-infections play a significant role in the development of human nasopharyngeal carcinomas. In this paper, we propose the hypothesis that human oral normal epithelial cells, especially nasopharyngeal cells, are very susceptible to persistent HPV and EBV co-infections; therefore, high-risk HPV and EBV co-infections play an important role in the initiation of a neoplastic transformation of human oral epithelial cells. We believe that significant studies, using different cells and animal models as well as clinical samples, are necessary to answer these important questions.
Collapse
|
38
|
Accurate prediction of peptide binding sites on protein surfaces. PLoS Comput Biol 2009; 5:e1000335. [PMID: 19325869 PMCID: PMC2653190 DOI: 10.1371/journal.pcbi.1000335] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 02/18/2009] [Indexed: 11/19/2022] Open
Abstract
Many important protein-protein interactions are mediated by the binding of a short peptide stretch in one protein to a large globular segment in another. Recent efforts have provided hundreds of examples of new peptides binding to proteins for which a three-dimensional structure is available (either known experimentally or readily modeled) but where no structure of the protein-peptide complex is known. To address this gap, we present an approach that can accurately predict peptide binding sites on protein surfaces. For peptides known to bind a particular protein, the method predicts binding sites with great accuracy, and the specificity of the approach means that it can also be used to predict whether or not a putative or predicted peptide partner will bind. We used known protein-peptide complexes to derive preferences, in the form of spatial position specific scoring matrices, which describe the binding-site environment in globular proteins for each type of amino acid in bound peptides. We then scan the surface of a putative binding protein for sites for each of the amino acids present in a peptide partner and search for combinations of high-scoring amino acid sites that satisfy constraints deduced from the peptide sequence. The method performed well in a benchmark and largely agreed with experimental data mapping binding sites for several recently discovered interactions mediated by peptides, including RG-rich proteins with SMN domains, Epstein-Barr virus LMP1 with TRADD domains, DBC1 with Sir2, and the Ago hook with Argonaute PIWI domain. The method, and associated statistics, is an excellent tool for predicting and studying binding sites for newly discovered peptides mediating critical events in biology.
Collapse
|
39
|
Middeldorp JM, Pegtel DM. Multiple roles of LMP1 in Epstein-Barr virus induced immune escape. Semin Cancer Biol 2008; 18:388-96. [PMID: 19013244 DOI: 10.1016/j.semcancer.2008.10.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 10/16/2008] [Indexed: 12/21/2022]
Abstract
The life cycle of Epstein-Barr virus (EBV) is intriguing in that the virus resides within the immune system and utilizes distinct latency expression programs to establish a persistent infection yet escaping elimination. To achieve this EBV has hijacked cellular signaling pathways to its own benefit, but deregulated viral gene expression can turn into oncogenesis. EBV like many other persistent herpes viruses has evolved ingenious tricks to evade the immune system in part by mimicking host gene function(s). Latent membrane protein 1 (LMP1) mimics CD40 signaling as part of its "normal" biological function and when deregulated, functions as a viral oncogene. LMP1 also affects cell-cell contact, cytokine and chemokine production, Ag presentation and is secreted in the extracellular milieu via immunogenic exosomes. Thus, besides its well-known growth promoting properties LMP1 modulates immune responses. Herein we discuss current knowledge regarding the role of LMP1 in immune evasion of EBV and how this strategy for establishment of persistence contributes to immune escape of EBV+ tumors.
Collapse
Affiliation(s)
- J M Middeldorp
- VU University Medical Center, Department of Pathology and Cancer Center Amsterdam, The Netherlands.
| | | |
Collapse
|
40
|
Restricted expression of Epstein-Barr virus latent genes in murine B cells derived from embryonic stem cells. PLoS One 2008; 3:e1996. [PMID: 18414672 PMCID: PMC2289878 DOI: 10.1371/journal.pone.0001996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 03/10/2008] [Indexed: 12/15/2022] Open
Abstract
Background Several human malignancies are associated with Epstein-Barr virus (EBV) and more than 95% of the adult human population carries this virus lifelong. EBV efficiently infects human B cells and persists in this cellular compartment latently. EBV-infected B cells become activated and growth transformed, express a characteristic set of viral latent genes, and acquire the status of proliferating lymphoblastoid cell lines in vitro. Because EBV infects only primate cells, it has not been possible to establish a model of infection in immunocompetent rodents. Such a model would be most desirable in order to study EBV's pathogenesis and latency in a suitable and amenable host. Methodology/Principal Findings We stably introduced recombinant EBV genomes into mouse embryonic stem cells and induced their differentiation to B cells in vitro to develop the desired model. In vitro differentiated murine B cells maintained the EBV genomes but expression of viral genes was restricted to the latent membrane proteins (LMPs). In contrast to human B cells, EBV's nuclear antigens (EBNAs) were not expressed detectably and growth transformed murine B cells did not arise in vitro. Aberrant splicing and premature termination of EBNA mRNAs most likely prevented the expression of EBNA genes required for B-cell transformation. Conclusions/Significance Our findings indicate that fundamental differences in gene regulation between mouse and man might block the route towards a tractable murine model for EBV.
Collapse
|