1
|
Ren J, Zhou Y, Hu Y, Yang J, Fang H, Lyu X, Guo J, Shi X, Li Q. A model-based factorization method for scRNA data unveils bifurcating transcriptional modules underlying cell fate determination. eLife 2025; 13:RP97424. [PMID: 39907554 DOI: 10.7554/elife.97424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Manifold-learning is particularly useful to resolve the complex cellular state space from single-cell RNA sequences. While current manifold-learning methods provide insights into cell fate by inferring graph-based trajectory at cell level, challenges remain to retrieve interpretable biology underlying the diverse cellular states. Here, we described MGPfactXMBD, a model-based manifold-learning framework and capable to factorize complex development trajectories into independent bifurcation processes of gene sets, and thus enables trajectory inference based on relevant features. MGPfactXMBD offers a more nuanced understanding of the biological processes underlying cellular trajectories with potential determinants. When bench-tested across 239 datasets, MGPfactXMBD showed advantages in major quantity-control metrics, such as branch division accuracy and trajectory topology, outperforming most established methods. In real datasets, MGPfactXMBD recovered the critical pathways and cell types in microglia development with experimentally valid regulons and markers. Furthermore, MGPfactXMBD discovered evolutionary trajectories of tumor-associated CD8+ T cells and yielded new subtypes of CD8+ T cells with gene expression signatures significantly predictive of the responses to immune checkpoint inhibitor in independent cohorts. In summary, MGPfactXMBD offers a manifold-learning framework in scRNA-seq data which enables feature selection for specific biological processes and contributing to advance our understanding of biological determination of cell fate.
Collapse
Affiliation(s)
- Jun Ren
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, China
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- School of Informatics, Xiamen University, Xiamen, Xiamen, China
| | - Ying Zhou
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, China
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Yudi Hu
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Jing Yang
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Hongkun Fang
- Department of Scientific Research Management, Weifang People's Hospital, Shandong Second Medical University, Weifang, China
| | - Xuejing Lyu
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Jintao Guo
- Department of Scientific Research Management, Weifang People's Hospital, Shandong Second Medical University, Weifang, China
| | - Xiaodong Shi
- School of Informatics, Xiamen University, Xiamen, Xiamen, China
| | - Qiyuan Li
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, China
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Zhu Z, Cao H, Yan H, Liu H, Hong Z, Sun A, Liu T, Mao F. Prognostic iron-metabolism signature robustly stratifies single-cell characteristics of hepatocellular carcinoma. Comput Struct Biotechnol J 2024; 23:929-941. [PMID: 38375529 PMCID: PMC10875160 DOI: 10.1016/j.csbj.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Cancer immunotherapy has shown to be a promising method in treating hepatocellular carcinoma (HCC), but suboptimal responses in patients are attributed to cellular and molecular heterogeneity. Iron metabolism-related genes (IRGs) are important in maintaining immune system homeostasis and have the potential to help develop new strategies for HCC treatment. Herein, we constructed and validated the iron-metabolism gene prognostic index (IPX) using univariate Cox proportional hazards regression and LASSO Cox regression analysis, successfully categorizing HCC patients into two groups with distinct survival risks. Then, we performed single-sample gene set enrichment analysis, weighted correlation network analysis, gene ontology enrichment analysis, cellular lineage analysis, and SCENIC analysis to reveal the key determinants underlying the ability of this model based on bulk and single-cell transcriptomic data. We identified several driver transcription factors specifically activated in specific malignant cell sub-populations to contribute to the adverse survival outcomes in the IPX-high subgroup. Within the tumor microenvironment (TME), T cells displayed significant diversity in their cellular characteristics and experienced changes in their developmental paths within distinct clusters identified by IPX. Interestingly, the proportion of Treg cells was increased in the high-risk group compared with the low-risk group. These results suggest that iron-metabolism could be involved in reshaping the TME, thereby disrupting the cell cycle of immune cells. This study utilized IRGs to construct a novel and reliable model, which can be used to assess the prognosis of patients with HCC and further clarify the molecular mechanisms of IRGs in HCC at single-cell resolution.
Collapse
Affiliation(s)
- Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Huang Cao
- School of Medicine, Xiamen University, Xiamen, Fujian 361100, China
| | - Hongyu Yan
- School of Medicine, Xiamen University, Xiamen, Fujian 361100, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Hanzhi Liu
- The Third Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Zaifa Hong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361103, China
| | - Anran Sun
- Oncology Research Center, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, Guangdong 511300, China
- Research Center for Translational Medicine, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
| | - Tong Liu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Cancer Center, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
3
|
Phan MS, Kim JM, Picciotto C, Couturier L, Veits N, Mazouni K, Schweisguth F. Symmetry breaking and fate divergence during lateral inhibition in Drosophila. Development 2024; 151:dev203165. [PMID: 39373398 DOI: 10.1242/dev.203165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024]
Abstract
Lateral inhibition mediates alternative cell fate decision and produces regular cell fate patterns with fate symmetry breaking (SB) relying on the amplification of small stochastic differences in Notch activity via an intercellular negative-feedback loop. Here, we used quantitative live imaging of endogenous Scute (Sc), a proneural factor, and of a Notch activity reporter to study the emergence of sensory organ precursor cells in the pupal abdomen of Drosophila. SB was observed at low Sc levels and was not preceded by a phase of intermediate Sc expression and Notch activity. Thus, mutual inhibition may only be transient in this context. In support of the intercellular feedback loop model, cell-to-cell variations in Sc levels promoted fate divergence. The size of the apical area of competing cells did not detectably bias this fate choice. Surprisingly, cells that were in direct contact at the time of SB could adopt the sensory organ precursor cell fate, albeit at low frequency (10%). These lateral inhibition defects were corrected by cellular rearrangements, not cell fate change, highlighting the role of cell-cell intercalation in pattern refinement.
Collapse
Affiliation(s)
- Minh-Son Phan
- Institut Pasteur, CNRS UMR3738, Université Paris Cité, 4D Unit, F-75015 Paris, France
| | - Jang-Mi Kim
- Institut Pasteur, CNRS UMR3738, Université Paris Cité, 4D Unit, F-75015 Paris, France
- Cellule Pasteur, Sorbonne Université, F-75015 Paris, France
| | - Cara Picciotto
- Institut Pasteur, CNRS UMR3738, Université Paris Cité, 4D Unit, F-75015 Paris, France
| | - Lydie Couturier
- Institut Pasteur, CNRS UMR3738, Université Paris Cité, 4D Unit, F-75015 Paris, France
| | - Nisha Veits
- Institut Pasteur, CNRS UMR3738, Université Paris Cité, 4D Unit, F-75015 Paris, France
| | - Khallil Mazouni
- Institut Pasteur, CNRS UMR3738, Université Paris Cité, 4D Unit, F-75015 Paris, France
| | - François Schweisguth
- Institut Pasteur, CNRS UMR3738, Université Paris Cité, 4D Unit, F-75015 Paris, France
| |
Collapse
|
4
|
Taskiran II, Spanier KI, Dickmänken H, Kempynck N, Pančíková A, Ekşi EC, Hulselmans G, Ismail JN, Theunis K, Vandepoel R, Christiaens V, Mauduit D, Aerts S. Cell-type-directed design of synthetic enhancers. Nature 2024; 626:212-220. [PMID: 38086419 PMCID: PMC10830415 DOI: 10.1038/s41586-023-06936-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
Transcriptional enhancers act as docking stations for combinations of transcription factors and thereby regulate spatiotemporal activation of their target genes1. It has been a long-standing goal in the field to decode the regulatory logic of an enhancer and to understand the details of how spatiotemporal gene expression is encoded in an enhancer sequence. Here we show that deep learning models2-6, can be used to efficiently design synthetic, cell-type-specific enhancers, starting from random sequences, and that this optimization process allows detailed tracing of enhancer features at single-nucleotide resolution. We evaluate the function of fully synthetic enhancers to specifically target Kenyon cells or glial cells in the fruit fly brain using transgenic animals. We further exploit enhancer design to create 'dual-code' enhancers that target two cell types and minimal enhancers smaller than 50 base pairs that are fully functional. By examining the state space searches towards local optima, we characterize enhancer codes through the strength, combination and arrangement of transcription factor activator and transcription factor repressor motifs. Finally, we apply the same strategies to successfully design human enhancers, which adhere to enhancer rules similar to those of Drosophila enhancers. Enhancer design guided by deep learning leads to better understanding of how enhancers work and shows that their code can be exploited to manipulate cell states.
Collapse
Affiliation(s)
- Ibrahim I Taskiran
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology (VIB.AI), Leuven, Belgium
- VIB-KULeuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Katina I Spanier
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology (VIB.AI), Leuven, Belgium
- VIB-KULeuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Hannah Dickmänken
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology (VIB.AI), Leuven, Belgium
- VIB-KULeuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Niklas Kempynck
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology (VIB.AI), Leuven, Belgium
- VIB-KULeuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Alexandra Pančíková
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology (VIB.AI), Leuven, Belgium
- VIB-KULeuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB-KULeuven Center for Cancer Biology, Leuven, Belgium
| | - Eren Can Ekşi
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology (VIB.AI), Leuven, Belgium
- VIB-KULeuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Gert Hulselmans
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology (VIB.AI), Leuven, Belgium
- VIB-KULeuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Joy N Ismail
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology (VIB.AI), Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Koen Theunis
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology (VIB.AI), Leuven, Belgium
- VIB-KULeuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Roel Vandepoel
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology (VIB.AI), Leuven, Belgium
- VIB-KULeuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Valerie Christiaens
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology (VIB.AI), Leuven, Belgium
- VIB-KULeuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - David Mauduit
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology (VIB.AI), Leuven, Belgium
- VIB-KULeuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Stein Aerts
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology (VIB.AI), Leuven, Belgium.
- VIB-KULeuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Xu D, Wan B, Qiu K, Wang Y, Zhang X, Jiao N, Yan E, Wu J, Yu R, Gao S, Du M, Liu C, Li M, Fan G, Yin J. Single-Cell RNA-Sequencing Provides Insight into Skeletal Muscle Evolution during the Selection of Muscle Characteristics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305080. [PMID: 37870215 PMCID: PMC10724408 DOI: 10.1002/advs.202305080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/27/2023] [Indexed: 10/24/2023]
Abstract
Skeletal muscle comprises a large, heterogeneous assortment of cell populations that interact to maintain muscle homeostasis, but little is known about the mechanism that controls myogenic development in response to artificial selection. Different pig (Sus scrofa) breeds exhibit distinct muscle phenotypes resulting from domestication and selective breeding. Using unbiased single-cell transcriptomic sequencing analysis (scRNA-seq), the impact of artificial selection on cell profiles is investigated in neonatal skeletal muscle of pigs. This work provides panoramic muscle-resident cell profiles and identifies novel and breed-specific cells, mapping them on pseudotime trajectories. Artificial selection has elicited significant changes in muscle-resident cell profiles, while conserving signs of generational environmental challenges. These results suggest that fibro-adipogenic progenitors serve as a cellular interaction hub and that specific transcription factors identified here may serve as candidate target regulons for the pursuit of a specific muscle phenotype. Furthermore, a cross-species comparison of humans, mice, and pigs illustrates the conservation and divergence of mammalian muscle ontology. The findings of this study reveal shifts in cellular heterogeneity, novel cell subpopulations, and their interactions that may greatly facilitate the understanding of the mechanism underlying divergent muscle phenotypes arising from artificial selection.
Collapse
Affiliation(s)
- Doudou Xu
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Boyang Wan
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Kai Qiu
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Yubo Wang
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
- Molecular Design Breeding Frontier Science Center of the Ministry of EducationBeijingChina
| | - Ning Jiao
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Enfa Yan
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Jiangwei Wu
- Key Laboratory of Animal GeneticsBreeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYangling712100China
| | - Run Yu
- Beijing National Day SchoolBeijing100039China
| | - Shuai Gao
- Key Laboratory of Animal GeneticsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Min Du
- Nutrigenomics and Growth Biology LaboratoryDepartment of Animal Sciences and School of Molecular BioscienceWashington State UniversityPullmanWA99164USA
| | | | - Mingzhou Li
- Institute of Animal Genetics and BreedingCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu625014China
| | - Guoping Fan
- Department of Human GeneticsDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition and feedingCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
- Molecular Design Breeding Frontier Science Center of the Ministry of EducationBeijingChina
| |
Collapse
|
6
|
Exploration of the Shared Molecular Mechanisms between COVID-19 and Neurodegenerative Diseases through Bioinformatic Analysis. Int J Mol Sci 2023; 24:ijms24054839. [PMID: 36902271 PMCID: PMC10002862 DOI: 10.3390/ijms24054839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The COVID-19 pandemic has caused millions of deaths and remains a major public health burden worldwide. Previous studies found that a large number of COVID-19 patients and survivors developed neurological symptoms and might be at high risk of neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). We aimed to explore the shared pathways between COVID-19, AD, and PD by using bioinformatic analysis to reveal potential mechanisms, which may explain the neurological symptoms and degeneration of brain that occur in COVID-19 patients, and to provide early intervention. In this study, gene expression datasets of the frontal cortex were employed to detect common differentially expressed genes (DEGs) of COVID-19, AD, and PD. A total of 52 common DEGs were then examined using functional annotation, protein-protein interaction (PPI) construction, candidate drug identification, and regulatory network analysis. We found that the involvement of the synaptic vesicle cycle and down-regulation of synapses were shared by these three diseases, suggesting that synaptic dysfunction might contribute to the onset and progress of neurodegenerative diseases caused by COVID-19. Five hub genes and one key module were obtained from the PPI network. Moreover, 5 drugs and 42 transcription factors (TFs) were also identified on the datasets. In conclusion, the results of our study provide new insights and directions for follow-up studies of the relationship between COVID-19 and neurodegenerative diseases. The hub genes and potential drugs we identified may provide promising treatment strategies to prevent COVID-19 patients from developing these disorders.
Collapse
|
7
|
Ji X, Cai J, Liang L, Shi T, Liu J. Gene expression variability across cells and species shapes the relationship between renal resident macrophages and infiltrated macrophages. BMC Bioinformatics 2023; 24:72. [PMID: 36858955 PMCID: PMC9976410 DOI: 10.1186/s12859-023-05198-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Two main subclasses of macrophages are found in almost all solid tissues: embryo-derived resident tissue macrophages and bone marrow-derived infiltrated macrophages. These macrophage subtypes show transcriptional and functional divergence, and the programs that have shaped the evolution of renal macrophages and related signaling pathways remain poorly understood. To clarify these processes, we performed data analysis based on single-cell transcriptional profiling of renal tissue-resident and infiltrated macrophages in human, mouse and rat. RESULTS In this study, we (i) characterized the transcriptional divergence among species and (ii) illustrated variability in expression among cells of each subtype and (iii) compared the gene regulation network and (iv) ligand-receptor pairs in human and mouse. Using single-cell transcriptomics, we mapped the promoter architecture during homeostasis. CONCLUSIONS Transcriptionally divergent genes, such as the differentially TF-encoding genes expressed in resident and infiltrated macrophages across the three species, vary among cells and include distinct promoter structures. The gene regulatory network in infiltrated macrophages shows comparatively better species-wide consistency than resident macrophages. The conserved transcriptional gene regulatory network in infiltrated macrophages among species is uniquely enriched in pathways related to kinases, and TFs associated with largely conserved regulons among species are uniquely enriched in kinase-related pathways.
Collapse
Affiliation(s)
- Xiangjun Ji
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Junwei Cai
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Lixin Liang
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China. .,Beijing Advanced Innovation Center, for Big Data-Based Precision Medicine, Beihang University and Capital Medical University, Beijing, 100083, China.
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
8
|
Maier D, Bauer M, Boger M, Sanchez Jimenez A, Yuan Z, Fechner J, Scharpf J, Kovall RA, Preiss A, Nagel AC. Genetic and Molecular Interactions between HΔCT, a Novel Allele of the Notch Antagonist Hairless, and the Histone Chaperone Asf1 in Drosophila melanogaster. Genes (Basel) 2023; 14:205. [PMID: 36672946 PMCID: PMC9858708 DOI: 10.3390/genes14010205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Cellular differentiation relies on the highly conserved Notch signaling pathway. Notch activity induces gene expression changes that are highly sensitive to chromatin landscape. We address Notch gene regulation using Drosophila as a model, focusing on the genetic and molecular interactions between the Notch antagonist Hairless and the histone chaperone Asf1. Earlier work implied that Asf1 promotes the silencing of Notch target genes via Hairless (H). Here, we generate a novel HΔCT allele by genome engineering. Phenotypically, HΔCT behaves as a Hairless gain of function allele in several developmental contexts, indicating that the conserved CT domain of H has an attenuator role under native biological contexts. Using several independent methods to assay protein-protein interactions, we define the sequences of the CT domain that are involved in Hairless-Asf1 binding. Based on previous models, where Asf1 promotes Notch repression via Hairless, a loss of Asf1 binding should reduce Hairless repressive activity. However, tissue-specific Asf1 overexpression phenotypes are increased, not rescued, in the HΔCT background. Counterintuitively, Hairless protein binding mitigates the repressive activity of Asf1 in the context of eye development. These findings highlight the complex connections of Notch repressors and chromatin modulators during Notch target-gene regulation and open the avenue for further investigations.
Collapse
Affiliation(s)
- Dieter Maier
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | - Milena Bauer
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| | - Mike Boger
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13–17, D-68167 Mannheim, Germany
| | - Anna Sanchez Jimenez
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | - Zhenyu Yuan
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Medical Sciences Building 2201, Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Johannes Fechner
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
- Institute of Biomedical Genetics (IBMG), University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - Janika Scharpf
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | - Rhett A. Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Medical Sciences Building 2201, Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Anette Preiss
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | - Anja C. Nagel
- Institute of Biology, Genetics Department 190g, University of Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| |
Collapse
|
9
|
Zhang L, Guo M, Liu Z, Liu R, Zheng Y, Yu T, Lv Y, Lu H, Zeng W, Zhang T, Pan C. Single-cell RNA-seq analysis of testicular somatic cell development in pigs. J Genet Genomics 2022; 49:1016-1028. [PMID: 35436608 DOI: 10.1016/j.jgg.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/29/2022]
Abstract
Spermatogenesis is the process by which diploid male germ cells propagate and differentiate into haploid flagellated spermatozoa. This highly complicated process is dependent on testicular somatic cells maturation. While the role of these somatic cells in spermatogenesis is relatively well established, knowledge about their development and maturation, particularly at the molecular level, is limited. In this study, we profiled the testicular single-cell transcriptomes of Guanzhong black pigs at the age of 7, 30, 60, 90, and 150 days. Five types of Sertoli cells, five types of Leydig cells, and four types of peritubular myoid cells were identified. Histological analysis revealed the changes in proliferation levels and marker gene expressions, and the prion-like protein gene (PRND) was identified as a novel marker for Sertoli cells. Additionally, integrated analyses of porcine and human datasets revealed similarities between human and pig testicular somatic cells. Overall, the data obtained in this study contribute to the understanding of testicular development in pigs as a model species.
Collapse
Affiliation(s)
- Lingkai Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zidong Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruifang Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Taiyong Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yinghua Lv
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongzhao Lu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenxian Zeng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China.
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
10
|
Li Y, Liu X, Chang Y, Fan B, Shangguan C, Chen H, Zhang L. Identification and Validation of a DNA Damage Repair-Related Signature for Diffuse Large B-Cell Lymphoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2645090. [PMID: 36281462 PMCID: PMC9587677 DOI: 10.1155/2022/2645090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/27/2022] [Indexed: 10/06/2023]
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin's lymphoma in adults, whose prognostic scoring system remains to be improved. Dysfunction of DNA repair genes is closely associated with the development and prognosis of diffuse large B-cell lymphoma. The aim of this study was to establish and validate a DNA repair-related gene signature associated with the prognosis of DLBCL and to investigate the clinical predictive value of this signature. METHODS DLBCL cases were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. One hundred ninety-nine DNA repair-related gene sets were retrieved from the GeneCards database. The LASSO Cox regression was used to generate the DNA repair-related gene signature. Subsequently, the level of immune cell infiltration and the correlation between the gene signature and immune cells were analyzed using the CIBERSORT algorithm. Based on the Genomics of Drug Sensitivity in Cancer (GDSC) database, the relationship between the signature and drug sensitivity was analyzed, and together with the nomogram and gene set variation analysis (GSVA), the value of the signature for clinical application was evaluated. RESULTS A total of 14 DNA repair genes were screened out and included in the final risk model. Subgroup analysis of the training and validation cohorts showed that the risk model accurately predicted overall survival of DLBCL patients, with patients in the high-risk group having a worse prognosis than patients in the low-risk group. Subsequently, the risk score was confirmed as an independent prognostic factor by multivariate analysis. Furthermore, by CIBERSORT analysis, we discovered that immune cells, such as regulatory T cells (Tregs), activated memory CD4+ T cells, and gamma delta T cells showed significant differences between the high- and low-risk groups. In addition, we found some interesting associations of our signature with immune checkpoint genes (CD96, TGFBR1, and TIGIT). By analyzing drug sensitivity data in the GDSC database, we were able to identify potential therapeutics for DLBCL patients stratified according to our signature. CONCLUSIONS Our study identified and validated a 14-DNA repair-related gene signature for stratification and prognostic prediction of DLBCL patients, which might guide clinical personalization of treatment.
Collapse
Affiliation(s)
- Yang Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450000, China
| | - Xiyang Liu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450000, China
| | - Yu Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450000, China
| | - Bingjie Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450000, China
| | - Chenxing Shangguan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450000, China
| | - Huan Chen
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450000, China
| | - Lei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450000, China
| |
Collapse
|
11
|
Tian Y, Sun P, Liu WX, Shan LY, Hu YT, Fan HT, Shen W, Liu YB, Zhou Y, Zhang T. Single-cell RNA sequencing of the Mongolia sheep testis reveals a conserved and divergent transcriptome landscape of mammalian spermatogenesis. FASEB J 2022; 36:e22348. [PMID: 35583907 DOI: 10.1096/fj.202200152r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/09/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022]
Abstract
Spermatogenesis is a highly coordinated and complex process, and is pivotal for transmitting genetic information between mammalian generations. In this study, we investigated the conservation, differences, and biological functions of homologous genes during spermatogenesis in Mongolia sheep, humans, cynomolgus monkey, and mice using single-cell RNA sequencing technology. We compared X chromosome meiotic inactivation events in Mongolia sheep, humans, cynomolgus monkey, and mice to uncover the concerted activity of X chromosome genes. Subsequently, we focused on the dynamics of gene expression, key biological functions, and signaling pathways at various stages of spermatogenesis in Mongolia sheep and humans. Additionally, the ligand-receptor networks of Mongolia sheep and humans in testicular somatic and germ cells at different developmental stages were mapped to reveal conserved germ cell-soma communication using single-cell resolution. These datasets provided novel information and insights to unravel the molecular regulatory mechanisms of Mongolia sheep spermatogenesis and highlight conservation in gene expression during spermatogenesis between Mongolia sheep and humans, providing a foundation for the establishment of a large mammalian disease model of male infertility.
Collapse
Affiliation(s)
- Yu Tian
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Peng Sun
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China.,Laboratory of Microbiology and Immunology, College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Wen-Xiang Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Li-Ying Shan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yan-Ting Hu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Hai-Tao Fan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yong-Bin Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China.,Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Yang Zhou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Teng Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
12
|
Janssens J, Aibar S, Taskiran II, Ismail JN, Gomez AE, Aughey G, Spanier KI, De Rop FV, González-Blas CB, Dionne M, Grimes K, Quan XJ, Papasokrati D, Hulselmans G, Makhzami S, De Waegeneer M, Christiaens V, Southall T, Aerts S. Decoding gene regulation in the fly brain. Nature 2022; 601:630-636. [PMID: 34987221 DOI: 10.1038/s41586-021-04262-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 11/17/2021] [Indexed: 12/13/2022]
Abstract
The Drosophila brain is a frequently used model in neuroscience. Single-cell transcriptome analysis1-6, three-dimensional morphological classification7 and electron microscopy mapping of the connectome8,9 have revealed an immense diversity of neuronal and glial cell types that underlie an array of functional and behavioural traits in the fly. The identities of these cell types are controlled by gene regulatory networks (GRNs), involving combinations of transcription factors that bind to genomic enhancers to regulate their target genes. Here, to characterize GRNs at the cell-type level in the fly brain, we profiled the chromatin accessibility of 240,919 single cells spanning 9 developmental timepoints and integrated these data with single-cell transcriptomes. We identify more than 95,000 regulatory regions that are used in different neuronal cell types, of which 70,000 are linked to developmental trajectories involving neurogenesis, reprogramming and maturation. For 40 cell types, uniquely accessible regions were associated with their expressed transcription factors and downstream target genes through a combination of motif discovery, network inference and deep learning, creating enhancer GRNs. The enhancer architectures revealed by DeepFlyBrain lead to a better understanding of neuronal regulatory diversity and can be used to design genetic driver lines for cell types at specific timepoints, facilitating their characterization and manipulation.
Collapse
Affiliation(s)
- Jasper Janssens
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Sara Aibar
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Ibrahim Ihsan Taskiran
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Joy N Ismail
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Gabriel Aughey
- Department of Life Sciences, Imperial College London, London, UK
| | - Katina I Spanier
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Florian V De Rop
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Carmen Bravo González-Blas
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Marc Dionne
- Department of Life Sciences, Imperial College London, London, UK
| | - Krista Grimes
- Department of Life Sciences, Imperial College London, London, UK
| | - Xiao Jiang Quan
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Dafni Papasokrati
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Gert Hulselmans
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Samira Makhzami
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Maxime De Waegeneer
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Valerie Christiaens
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Tony Southall
- Department of Life Sciences, Imperial College London, London, UK
| | - Stein Aerts
- VIB Center for Brain & Disease Research, Leuven, Belgium. .,Department of Human Genetics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Houssin E, Pinot M, Bellec K, Le Borgne R. Par3 cooperates with Sanpodo for the assembly of Notch clusters following asymmetric division of Drosophila sensory organ precursor cells. eLife 2021; 10:e66659. [PMID: 34596529 PMCID: PMC8516416 DOI: 10.7554/elife.66659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
In multiple cell lineages, Delta-Notch signalling regulates cell fate decisions owing to unidirectional signalling between daughter cells. In Drosophila pupal sensory organ lineage, Notch regulates the intra-lineage pIIa/pIIb fate decision at cytokinesis. Notch and Delta that localise apically and basally at the pIIa-pIIb interface are expressed at low levels and their residence time at the plasma membrane is in the order of minutes. How Delta can effectively interact with Notch to trigger signalling from a large plasma membrane area remains poorly understood. Here, we report that the signalling interface possesses a unique apico-basal polarity with Par3/Bazooka localising in the form of nano-clusters at the apical and basal level. Notch is preferentially targeted to the pIIa-pIIb interface, where it co-clusters with Bazooka and its cofactor Sanpodo. Clusters whose assembly relies on Bazooka and Sanpodo activities are also positive for Neuralized, the E3 ligase required for Delta activity. We propose that the nano-clusters act as snap buttons at the new pIIa-pIIb interface to allow efficient intra-lineage signalling.
Collapse
Affiliation(s)
- Elise Houssin
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F- 35000RennesFrance
- Equipe Labellisée Ligue Nationale contre le cancerGlasgowUnited Kingdom
| | - Mathieu Pinot
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F- 35000RennesFrance
- Equipe Labellisée Ligue Nationale contre le cancerGlasgowUnited Kingdom
| | - Karen Bellec
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F- 35000RennesFrance
- Equipe Labellisée Ligue Nationale contre le cancerGlasgowUnited Kingdom
| | - Roland Le Borgne
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F- 35000RennesFrance
- Equipe Labellisée Ligue Nationale contre le cancerGlasgowUnited Kingdom
| |
Collapse
|
14
|
Kang Y, Thieffry D, Cantini L. Evaluating the Reproducibility of Single-Cell Gene Regulatory Network Inference Algorithms. Front Genet 2021; 12:617282. [PMID: 33828580 PMCID: PMC8019823 DOI: 10.3389/fgene.2021.617282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
Networks are powerful tools to represent and investigate biological systems. The development of algorithms inferring regulatory interactions from functional genomics data has been an active area of research. With the advent of single-cell RNA-seq data (scRNA-seq), numerous methods specifically designed to take advantage of single-cell datasets have been proposed. However, published benchmarks on single-cell network inference are mostly based on simulated data. Once applied to real data, these benchmarks take into account only a small set of genes and only compare the inferred networks with an imposed ground-truth. Here, we benchmark six single-cell network inference methods based on their reproducibility, i.e., their ability to infer similar networks when applied to two independent datasets for the same biological condition. We tested each of these methods on real data from three biological conditions: human retina, T-cells in colorectal cancer, and human hematopoiesis. Once taking into account networks with up to 100,000 links, GENIE3 results to be the most reproducible algorithm and, together with GRNBoost2, show higher intersection with ground-truth biological interactions. These results are independent from the single-cell sequencing platform, the cell type annotation system and the number of cells constituting the dataset. Finally, GRNBoost2 and CLR show more reproducible performance once a more stringent thresholding is applied to the networks (1,000–100 links). In order to ensure the reproducibility and ease extensions of this benchmark study, we implemented all the analyses in scNET, a Jupyter notebook available at https://github.com/ComputationalSystemsBiology/scNET.
Collapse
Affiliation(s)
- Yoonjee Kang
- Computational Systems Biology Team, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, Ecole Normale Supérieure, Paris Sciences et Lettres Research University, Paris, France
| | - Denis Thieffry
- Computational Systems Biology Team, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, Ecole Normale Supérieure, Paris Sciences et Lettres Research University, Paris, France
| | - Laura Cantini
- Computational Systems Biology Team, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, Ecole Normale Supérieure, Paris Sciences et Lettres Research University, Paris, France
| |
Collapse
|
15
|
Liu R, Billington N, Yang Y, Bond C, Hong A, Siththanandan V, Takagi Y, Sellers JR. A binding protein regulates myosin-7a dimerization and actin bundle assembly. Nat Commun 2021; 12:563. [PMID: 33495456 PMCID: PMC7835385 DOI: 10.1038/s41467-020-20864-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/07/2020] [Indexed: 01/17/2023] Open
Abstract
Myosin-7a, despite being monomeric in isolation, plays roles in organizing actin-based cell protrusions such as filopodia, microvilli and stereocilia, as well as transporting cargoes within them. Here, we identify a binding protein for Drosophila myosin-7a termed M7BP, and describe how M7BP assembles myosin-7a into a motile complex that enables cargo translocation and actin cytoskeletal remodeling. M7BP binds to the autoinhibitory tail of myosin-7a, extending the molecule and activating its ATPase activity. Single-molecule reconstitution show that M7BP enables robust motility by complexing with myosin-7a as 2:2 translocation dimers in an actin-regulated manner. Meanwhile, M7BP tethers actin, enhancing complex’s processivity and driving actin-filament alignment during processive runs. Finally, we show that myosin-7a-M7BP complex assembles actin bundles and filopodia-like protrusions while migrating along them in living cells. Together, these findings provide insights into the mechanisms by which myosin-7a functions in actin protrusions. Myosin-7a is found in actin bundles, microvilli and stereocilia, and plays conserved roles in hearing and vision. Here the authors identify M7BP, a myosin-7a binding protein that activates and dimerizes myosin-7a, enabling cargo transport and assembly of actin bundles and filopodia-like protrusions
Collapse
Affiliation(s)
- Rong Liu
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Neil Billington
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yi Yang
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Laboratory of Functional Proteomics, College of Veterinary Medicine, Hunan Agricultural University, 410128, Changsha, Hunan, China
| | - Charles Bond
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amy Hong
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Verl Siththanandan
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yasuharu Takagi
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - James R Sellers
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
16
|
Quiquand M, Rimesso G, Qiao N, Suo S, Zhao C, Slattery M, White KP, Han JJ, Baker NE. New regulators of Drosophila eye development identified from temporal transcriptome changes. Genetics 2021; 217:6117222. [PMID: 33681970 DOI: 10.1093/genetics/iyab007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 12/28/2020] [Indexed: 11/12/2022] Open
Abstract
In the last larval instar, uncommitted progenitor cells in the Drosophila eye primordium start to adopt individual retinal cell fates, arrest their growth and proliferation, and initiate terminal differentiation into photoreceptor neurons and other retinal cell types. To explore the regulation of these processes, we have performed mRNA-Seq studies of the larval eye and antennal primordial at multiple developmental stages. A total of 10,893 fly genes were expressed during these stages and could be adaptively clustered into gene groups, some of whose expression increases or decreases in parallel with the cessation of proliferation and onset of differentiation. Using in situ hybridization of a sample of 98 genes to verify spatial and temporal expression patterns, we estimate that 534 genes or more are transcriptionally upregulated during retinal differentiation, and 1367 or more downregulated as progenitor cells differentiate. Each group of co-expressed genes is enriched for regulatory motifs recognized by co-expressed transcription factors, suggesting that they represent coherent transcriptional regulatory programs. Using available mutant strains, we describe novel roles for the transcription factors SoxNeuro (SoxN), H6-like homeobox (Hmx), CG10253, without children (woc), Structure specific recognition protein (Ssrp), and multisex combs (mxc).
Collapse
Affiliation(s)
- Manon Quiquand
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gerard Rimesso
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nan Qiao
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shengbao Suo
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chunyu Zhao
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Matthew Slattery
- Institute for Genomics & Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Kevin P White
- Institute for Genomics & Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jackie J Han
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
17
|
Bellec K, Pinot M, Gicquel I, Le Borgne R. The Clathrin adaptor AP-1 and Stratum act in parallel pathways to control Notch activation in Drosophila sensory organ precursors cells. Development 2021; 148:dev191437. [PMID: 33298463 PMCID: PMC7823167 DOI: 10.1242/dev.191437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/24/2020] [Indexed: 11/20/2022]
Abstract
Drosophila sensory organ precursors divide asymmetrically to generate pIIa/pIIb cells, the identity of which relies on activation of Notch at cytokinesis. Although Notch is present apically and basally relative to the midbody at the pIIa-pIIb interface, the basal pool of Notch is reported to be the main contributor for Notch activation in the pIIa cell. Intra-lineage signalling requires appropriate apico-basal targeting of Notch, its ligand Delta and its trafficking partner Sanpodo. We have previously reported that AP-1 and Stratum regulate the trafficking of Notch and Sanpodo from the trans-Golgi network to the basolateral membrane. Loss of AP-1 or Stratum caused mild Notch gain-of-function phenotypes. Here, we report that their concomitant loss results in a penetrant Notch gain-of-function phenotype, indicating that they control parallel pathways. Although unequal partitioning of cell fate determinants and cell polarity were unaffected, we observed increased amounts of signalling-competent Notch as well as Delta and Sanpodo at the apical pIIa-pIIb interface, at the expense of the basal pool of Notch. We propose that AP-1 and Stratum operate in parallel pathways to localize Notch and control where receptor activation takes place.
Collapse
Affiliation(s)
- Karen Bellec
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Mathieu Pinot
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Isabelle Gicquel
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Roland Le Borgne
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
18
|
Single-Cell RNA Sequencing of the Cynomolgus Macaque Testis Reveals Conserved Transcriptional Profiles during Mammalian Spermatogenesis. Dev Cell 2020; 54:548-566.e7. [PMID: 32795394 DOI: 10.1016/j.devcel.2020.07.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/23/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022]
Abstract
Spermatogenesis is highly orchestrated and involves the differentiation of diploid spermatogonia into haploid sperm. The process is driven by spermatogonial stem cells (SSCs). SSCs undergo mitotic self-renewal, whereas sub-populations undergo differentiation and later gain competence to initiate meiosis. Here, we describe a high-resolution single-cell RNA-seq atlas of cells derived from Cynomolgus macaque testis. We identify gene signatures that define spermatogonial populations and explore self-renewal versus differentiation dynamics. We detail transcriptional changes occurring over the entire process of spermatogenesis and highlight the concerted activity of DNA damage response (DDR) pathway genes, which have dual roles in maintaining genomic integrity and effecting meiotic sex chromosome inactivation (MSCI). We show remarkable similarities and differences in gene expression during spermatogenesis with two other eutherian mammals, i.e., mouse and humans. Sex chromosome expression in the male germline in all three species demonstrates conserved features of MSCI but divergent multicopy and ampliconic gene content.
Collapse
|
19
|
Fu Y, Yuan SS, Zhang LJ, Ji ZL, Quan XJ. Atonal bHLH transcription factor 1 is an important factor for maintaining the balance of cell proliferation and differentiation in tumorigenesis. Oncol Lett 2020; 20:2595-2605. [PMID: 32782577 PMCID: PMC7400680 DOI: 10.3892/ol.2020.11833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022] Open
Abstract
Establishing the link between cellular processes and oncogenesis may aid the elucidation of targeted and effective therapies against tumor cell proliferation and metastasis. Previous studies have investigated the mechanisms involved in maintaining the balance between cell proliferation, differentiation and migration. There is increased interest in determining the conditions that allow cancer stem cells to differentiate as well as the identification of molecules that may serve as novel drug targets. Furthermore, the study of various genes, including transcription factors, which serve a crucial role in cellular processes, may present a promising direction for future therapy. The present review described the role of the transcription factor atonal bHLH transcription factor 1 (ATOH1) in signaling pathways in tumorigenesis, particularly in cerebellar tumor medulloblastoma and colorectal cancer, where ATOH1 serves as an oncogene or tumor suppressor, respectively. Additionally, the present review summarized the associated therapeutic interventions for these two types of tumors and discussed novel clinical targets and approaches.
Collapse
Affiliation(s)
- Ying Fu
- Key Laboratory of Diabetes Prevention and Research, Endocrinology Center, Lu He Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Sha-Sha Yuan
- Key Laboratory of Diabetes Prevention and Research, Endocrinology Center, Lu He Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Li-Jie Zhang
- Key Laboratory of Diabetes Prevention and Research, Endocrinology Center, Lu He Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Zhi-Li Ji
- Key Laboratory of Diabetes Prevention and Research, Endocrinology Center, Lu He Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Xiao-Jiang Quan
- Key Laboratory of Diabetes Prevention and Research, Endocrinology Center, Lu He Hospital, Capital Medical University, Beijing 101149, P.R. China.,Laboratory of Brain Development, Institut du Cerveau et de la Moelle Épinière, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
20
|
Bravo González‐Blas C, Quan X, Duran‐Romaña R, Taskiran II, Koldere D, Davie K, Christiaens V, Makhzami S, Hulselmans G, de Waegeneer M, Mauduit D, Poovathingal S, Aibar S, Aerts S. Identification of genomic enhancers through spatial integration of single-cell transcriptomics and epigenomics. Mol Syst Biol 2020; 16:e9438. [PMID: 32431014 PMCID: PMC7237818 DOI: 10.15252/msb.20209438] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 01/02/2023] Open
Abstract
Single-cell technologies allow measuring chromatin accessibility and gene expression in each cell, but jointly utilizing both layers to map bona fide gene regulatory networks and enhancers remains challenging. Here, we generate independent single-cell RNA-seq and single-cell ATAC-seq atlases of the Drosophila eye-antennal disc and spatially integrate the data into a virtual latent space that mimics the organization of the 2D tissue using ScoMAP (Single-Cell Omics Mapping into spatial Axes using Pseudotime ordering). To validate spatially predicted enhancers, we use a large collection of enhancer-reporter lines and identify ~ 85% of enhancers in which chromatin accessibility and enhancer activity are coupled. Next, we infer enhancer-to-gene relationships in the virtual space, finding that genes are mostly regulated by multiple, often redundant, enhancers. Exploiting cell type-specific enhancers, we deconvolute cell type-specific effects of bulk-derived chromatin accessibility QTLs. Finally, we discover that Prospero drives neuronal differentiation through the binding of a GGG motif. In summary, we provide a comprehensive spatial characterization of gene regulation in a 2D tissue.
Collapse
Affiliation(s)
| | - Xiao‐Jiang Quan
- VIB Center for Brain & Disease ResearchLeuvenBelgium
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| | | | - Ibrahim Ihsan Taskiran
- VIB Center for Brain & Disease ResearchLeuvenBelgium
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| | - Duygu Koldere
- VIB Center for Brain & Disease ResearchLeuvenBelgium
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| | | | - Valerie Christiaens
- VIB Center for Brain & Disease ResearchLeuvenBelgium
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| | - Samira Makhzami
- VIB Center for Brain & Disease ResearchLeuvenBelgium
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| | - Gert Hulselmans
- VIB Center for Brain & Disease ResearchLeuvenBelgium
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| | - Maxime de Waegeneer
- VIB Center for Brain & Disease ResearchLeuvenBelgium
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| | - David Mauduit
- VIB Center for Brain & Disease ResearchLeuvenBelgium
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| | | | - Sara Aibar
- VIB Center for Brain & Disease ResearchLeuvenBelgium
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| | - Stein Aerts
- VIB Center for Brain & Disease ResearchLeuvenBelgium
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| |
Collapse
|
21
|
Chen YC, Desplan C. Gene regulatory networks during the development of the Drosophila visual system. Curr Top Dev Biol 2020; 139:89-125. [PMID: 32450970 DOI: 10.1016/bs.ctdb.2020.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Drosophila visual system integrates input from 800 ommatidia and extracts different features in stereotypically connected optic ganglia. The development of the Drosophila visual system is controlled by gene regulatory networks that control the number of precursor cells, generate neuronal diversity by integrating spatial and temporal information, coordinate the timing of retinal and optic lobe cell differentiation, and determine distinct synaptic targets of each cell type. In this chapter, we describe the known gene regulatory networks involved in the development of the different parts of the visual system and explore general components in these gene networks. Finally, we discuss the advantages of the fly visual system as a model for gene regulatory network discovery in the era of single-cell transcriptomics.
Collapse
Affiliation(s)
- Yen-Chung Chen
- Department of Biology, New York University, New York, NY, United States
| | - Claude Desplan
- Department of Biology, New York University, New York, NY, United States.
| |
Collapse
|
22
|
Xinxin Z, Shuang Y, Xunming Z, Shang W, Juhong Z, Jinghui X. TMT-Based Quantitative Proteomic Profiling of Overwintering Lissorhoptrus oryzophilus. Front Physiol 2020; 10:1623. [PMID: 32038298 PMCID: PMC6985562 DOI: 10.3389/fphys.2019.01623] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/24/2019] [Indexed: 01/05/2023] Open
Abstract
Adaptations to low temperature play a critical role in restricting the geographical distribution of insects. Decreasing day lengths and temperatures trigger seasonal cold adaptations in insects. These adaptions include changes in expression at the miRNA, mRNA and protein levels. The rice water weevil (RWW), Lissorhoptrus oryzophilus, introduced from the Mississippi River, is a globally invasive pest of wetland rice that can survive at the northern border of China. To investigate the changes in expression at the protein level in overwintering female RWW adults, 6-plex tandem mass tags (TMTs) were used in overwintering and summer adults. By using a proteome database available for Curculionidae, 1077 proteins were quantified, 183 of which differed significantly between the overwintering and summer samples. To further understand these differentially expressed proteins (DEPs), bioinformatics analyses such as gene ontology (GO) enrichment analyses were performed. DEPs associated with the terms binding, structural molecule activity, catalytic activity, multicellular organismal process, extracellular region, chitin binding, metabolic process, intracellular part and organic cyclic compound binding were altered by selection during winter. The changes in the expression of these proteins suggest that the proteins are important for RWW survival in winter.
Collapse
Affiliation(s)
- Zhang Xinxin
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yang Shuang
- College of Plant Sciences, Jilin University, Changchun, China
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Zhang Xunming
- College of Plant Sciences, Jilin University, Changchun, China
| | - Wang Shang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Zhang Juhong
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xi Jinghui
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
23
|
Ramaekers A, Claeys A, Kapun M, Mouchel-Vielh E, Potier D, Weinberger S, Grillenzoni N, Dardalhon-Cuménal D, Yan J, Wolf R, Flatt T, Buchner E, Hassan BA. Altering the Temporal Regulation of One Transcription Factor Drives Evolutionary Trade-Offs between Head Sensory Organs. Dev Cell 2019; 50:780-792.e7. [PMID: 31447264 DOI: 10.1016/j.devcel.2019.07.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 04/24/2019] [Accepted: 07/25/2019] [Indexed: 12/30/2022]
Abstract
Size trade-offs of visual versus olfactory organs is a pervasive feature of animal evolution. This could result from genetic or functional constraints. We demonstrate that head sensory organ size trade-offs in Drosophila are genetically encoded and arise through differential subdivision of the head primordium into visual versus non-visual fields. We discover that changes in the temporal regulation of the highly conserved eyeless/Pax6 gene expression during development is a conserved mechanism for sensory trade-offs within and between Drosophila species. We identify a natural single nucleotide polymorphism in the cis-regulatory region of eyeless in a binding site of its repressor Cut that is sufficient to alter its temporal regulation and eye size. Because eyeless/Pax6 is a conserved regulator of head sensory placode subdivision, we propose that its temporal regulation is key to define the relative size of head sensory organs.
Collapse
Affiliation(s)
- Ariane Ramaekers
- Institut du Cerveau et de la Moelle Epinière (ICM) - Hôpital Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, France.
| | - Annelies Claeys
- VIB Center for Brain and Disease, VIB, Leuven, Belgium; Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium
| | - Martin Kapun
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Emmanuèle Mouchel-Vielh
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement, Institut de Biologie Paris Seine, LBD-IBPS), Paris, France
| | - Delphine Potier
- Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Simon Weinberger
- VIB Center for Brain and Disease, VIB, Leuven, Belgium; Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium
| | - Nicola Grillenzoni
- Institut du Cerveau et de la Moelle Epinière (ICM) - Hôpital Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, France
| | - Delphine Dardalhon-Cuménal
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement, Institut de Biologie Paris Seine, LBD-IBPS), Paris, France
| | - Jiekun Yan
- VIB Center for Brain and Disease, VIB, Leuven, Belgium; Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium
| | - Reinhard Wolf
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Erich Buchner
- Institute for Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Bassem A Hassan
- Institut du Cerveau et de la Moelle Epinière (ICM) - Hôpital Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, France.
| |
Collapse
|
24
|
Vuilleumier R, Lian T, Flibotte S, Khan ZN, Fuchs A, Pyrowolakis G, Allan DW. Retrograde BMP signaling activates neuronal gene expression through widespread deployment of a conserved BMP-responsive cis-regulatory activation element. Nucleic Acids Res 2019; 47:679-699. [PMID: 30476189 PMCID: PMC6344883 DOI: 10.1093/nar/gky1135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/25/2018] [Indexed: 12/29/2022] Open
Abstract
Retrograde Bone Morphogenetic Protein (BMP) signaling in neurons is essential for the differentiation and synaptic function of many neuronal subtypes. BMP signaling regulates these processes via Smad transcription factor activity, yet the scope and nature of Smad-dependent gene regulation in neurons are mostly unknown. Here, we applied a computational approach to predict Smad-binding cis-regulatory BMP-Activating Elements (BMP-AEs) in Drosophila, followed by transgenic in vivo reporter analysis to test their neuronal subtype enhancer activity in the larval central nervous system (CNS). We identified 34 BMP-AE-containing genomic fragments that are responsive to BMP signaling in neurons, and showed that the embedded BMP-AEs are required for this activity. RNA-seq analysis identified BMP-responsive genes in the CNS and revealed that BMP-AEs selectively enrich near BMP-activated genes. These data suggest that functional BMP-AEs control nearby BMP-activated genes, which we validated experimentally. Finally, we demonstrated that the BMP-AE motif mediates a conserved Smad-responsive function in the Drosophila and vertebrate CNS. Our results provide evidence that BMP signaling controls neuronal function by directly coordinating the expression of a battery of genes through widespread deployment of a conserved Smad-responsive cis-regulatory motif.
Collapse
Affiliation(s)
- Robin Vuilleumier
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tianshun Lian
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephane Flibotte
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zaynah N Khan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alisa Fuchs
- BIOSS, Centre for Biological Signaling Studies and Institute for Biology I, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - George Pyrowolakis
- BIOSS, Centre for Biological Signaling Studies and Institute for Biology I, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Douglas W Allan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
Gao X, Sun Y, Li X. Identification of key gene modules and transcription factors for human osteoarthritis by weighted gene co-expression network analysis. Exp Ther Med 2019; 18:2479-2490. [PMID: 31572500 PMCID: PMC6755469 DOI: 10.3892/etm.2019.7848] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 07/08/2019] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is one of the most prevalent causes of joint disease. However, the pathological mechanisms of OA have remained to be completely elucidated, and further investigation into the underlying mechanisms of OA development and the identification of novel therapeutic targets are urgently required. In the present study, the dataset GSE114007 was downloaded from the Gene Expression Omnibus database. Based on weighted gene co-expression network analysis (WGCNA) and the identification of differentially expressed genes (DEGs), the microarray data were further analyzed to identify hub genes, key transcription factors (TFs) and pivotal signaling pathways involved in the pathogenesis of OA. A total of 1,898 genes were identified to be differentially expressed between OA samples and normal samples. Based on WGCNA, the present study identified 5 hub modules closely associated with OA, and the potential key TFs for hub modules were further explored based on CisTargetX. The results demonstrated that B-Cell Lymphoma 6, Myelin Gene Expression Factor 2, Activating Transcription Factor 3, CCAAT Enhancer Binding Protein γ, Nuclear Factor Interleukin-3-Regulated, FOS Like Antigen-2, FOS-Like Antigen-1, Fos Proto-Oncogene, JunD Proto-Oncogene, Transcription Factor CP2 Like 1, RELA proto-oncogene NF-kB subunit, SRY-box transcription factor 3, V-Ets Avian Erythroblastosis Virus E26 Oncogene Homolog 2, Interferon Regulatory Factor 4 and REL proto-oncogene, NF-kB subunit were the potential key TFs. In addition, osteoclast differentiation, FoxO, MAPK and PI3K/Akt signaling pathways were revealed to be imperative for the pathogenesis of OA, as these 4 pivotal signaling pathways were observed to be tightly linked through 4 key TFs Fos Proto-Oncogene, JUN, JunD Proto-Oncogene and MYC, and 4 DEGs Vascular Endothelial Growth Factor A, Growth Arrest and DNA Damage Inducible α, Growth Arrest and DNA Damage Inducible β and Cyclin D1. The present study identified a set of potential key genes and signaling pathways, and provided an important opportunity to advance the current understanding of OA.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Orthopedic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Yu Sun
- Department of Orthopedic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Xu Li
- Department of Orthopedic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
26
|
Activation of Arp2/3 by WASp Is Essential for the Endocytosis of Delta Only during Cytokinesis in Drosophila. Cell Rep 2019; 28:1-10.e3. [DOI: 10.1016/j.celrep.2019.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/26/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
|
27
|
Alexandre PA, Naval-Sanchez M, Porto-Neto LR, Ferraz JBS, Reverter A, Fukumasu H. Systems Biology Reveals NR2F6 and TGFB1 as Key Regulators of Feed Efficiency in Beef Cattle. Front Genet 2019; 10:230. [PMID: 30967894 PMCID: PMC6439317 DOI: 10.3389/fgene.2019.00230] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 03/04/2019] [Indexed: 11/20/2022] Open
Abstract
Systems biology approaches are used as strategy to uncover tissue-specific perturbations and regulatory genes related to complex phenotypes. We applied this approach to study feed efficiency (FE) in beef cattle, an important trait both economically and environmentally. Poly-A selected RNA of five tissues (adrenal gland, hypothalamus, liver, skeletal muscle and pituitary) of eighteen young bulls, selected for high and low FE, were sequenced (Illumina HiSeq 2500, 100 bp, pared-end). From the 17,354 expressed genes considering all tissues, 1,335 were prioritized by five selection categories (differentially expressed, harboring SNPs associated with FE, tissue-specific, secreted in plasma and key regulators) and used for network construction. NR2F6 and TGFB1 were identified and validated by motif discovery as key regulators of hepatic inflammatory response and muscle tissue development, respectively, two biological processes demonstrated to be associated with FE. Moreover, we indicated potential biomarkers of FE, which are related to hormonal control of metabolism and sexual maturity. By using robust methodologies and validation strategies, we confirmed the main biological processes related to FE in Bos indicus and indicated candidate genes as regulators or biomarkers of superior animals.
Collapse
Affiliation(s)
- Pâmela A. Alexandre
- Department of Veterinary Medicine, College of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| | - Marina Naval-Sanchez
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| | - Laercio R. Porto-Neto
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| | - José Bento S. Ferraz
- Department of Veterinary Medicine, College of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Antonio Reverter
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| | - Heidge Fukumasu
- Department of Veterinary Medicine, College of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| |
Collapse
|
28
|
Jacobs J, Atkins M, Davie K, Imrichova H, Romanelli L, Christiaens V, Hulselmans G, Potier D, Wouters J, Taskiran II, Paciello G, González-Blas CB, Koldere D, Aibar S, Halder G, Aerts S. The transcription factor Grainy head primes epithelial enhancers for spatiotemporal activation by displacing nucleosomes. Nat Genet 2018; 50:1011-1020. [PMID: 29867222 PMCID: PMC6031307 DOI: 10.1038/s41588-018-0140-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 04/06/2018] [Indexed: 12/21/2022]
Abstract
Transcriptional enhancers function as docking platforms for combinations of transcription factors (TFs) to control gene expression. How enhancer sequences determine nucleosome occupancy, TF recruitment and transcriptional activation in vivo remains unclear. Using ATAC-seq across a panel of Drosophila inbred strains, we found that SNPs affecting binding sites of the TF Grainy head (Grh) causally determine the accessibility of epithelial enhancers. We show that deletion and ectopic expression of Grh cause loss and gain of DNA accessibility, respectively. However, although Grh binding is necessary for enhancer accessibility, it is insufficient to activate enhancers. Finally, we show that human Grh homologs-GRHL1, GRHL2 and GRHL3-function similarly. We conclude that Grh binding is necessary and sufficient for the opening of epithelial enhancers but not for their activation. Our data support a model positing that complex spatiotemporal expression patterns are controlled by regulatory hierarchies in which pioneer factors, such as Grh, establish tissue-specific accessible chromatin landscapes upon which other factors can act.
Collapse
Affiliation(s)
- Jelle Jacobs
- VIB Center for Brain and Disease Research, Laboratory of Computational Biology, Leuven, Belgium
- KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Mardelle Atkins
- VIB Center for Cancer Biology, Leuven, Belgium
- KU Leuven, Department of Oncology, Leuven, Belgium
| | - Kristofer Davie
- VIB Center for Brain and Disease Research, Laboratory of Computational Biology, Leuven, Belgium
- KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Hana Imrichova
- VIB Center for Brain and Disease Research, Laboratory of Computational Biology, Leuven, Belgium
- KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Lucia Romanelli
- VIB Center for Cancer Biology, Leuven, Belgium
- KU Leuven, Department of Oncology, Leuven, Belgium
| | - Valerie Christiaens
- VIB Center for Brain and Disease Research, Laboratory of Computational Biology, Leuven, Belgium
- KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Gert Hulselmans
- VIB Center for Brain and Disease Research, Laboratory of Computational Biology, Leuven, Belgium
- KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Delphine Potier
- VIB Center for Brain and Disease Research, Laboratory of Computational Biology, Leuven, Belgium
- KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Jasper Wouters
- VIB Center for Brain and Disease Research, Laboratory of Computational Biology, Leuven, Belgium
- KU Leuven, Department of Human Genetics, Leuven, Belgium
| | | | - Giulia Paciello
- Politecnico di Torino, Automatics and Informatics, Turin, Italy
| | - Carmen B González-Blas
- VIB Center for Brain and Disease Research, Laboratory of Computational Biology, Leuven, Belgium
- KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Duygu Koldere
- VIB Center for Brain and Disease Research, Laboratory of Computational Biology, Leuven, Belgium
- KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Sara Aibar
- VIB Center for Brain and Disease Research, Laboratory of Computational Biology, Leuven, Belgium
- KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Georg Halder
- VIB Center for Cancer Biology, Leuven, Belgium
- KU Leuven, Department of Oncology, Leuven, Belgium
| | - Stein Aerts
- VIB Center for Brain and Disease Research, Laboratory of Computational Biology, Leuven, Belgium.
- KU Leuven, Department of Human Genetics, Leuven, Belgium.
| |
Collapse
|
29
|
Mora N, Oliva C, Fiers M, Ejsmont R, Soldano A, Zhang TT, Yan J, Claeys A, De Geest N, Hassan BA. A Temporal Transcriptional Switch Governs Stem Cell Division, Neuronal Numbers, and Maintenance of Differentiation. Dev Cell 2018; 45:53-66.e5. [DOI: 10.1016/j.devcel.2018.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 02/12/2018] [Accepted: 02/26/2018] [Indexed: 01/06/2023]
|
30
|
Torres-Oliva M, Schneider J, Wiegleb G, Kaufholz F, Posnien N. Dynamic genome wide expression profiling of Drosophila head development reveals a novel role of Hunchback in retinal glia cell development and blood-brain barrier integrity. PLoS Genet 2018; 14:e1007180. [PMID: 29360820 PMCID: PMC5796731 DOI: 10.1371/journal.pgen.1007180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 02/02/2018] [Accepted: 01/01/2018] [Indexed: 01/01/2023] Open
Abstract
Drosophila melanogaster head development represents a valuable process to study the developmental control of various organs, such as the antennae, the dorsal ocelli and the compound eyes from a common precursor, the eye-antennal imaginal disc. While the gene regulatory network underlying compound eye development has been extensively studied, the key transcription factors regulating the formation of other head structures from the same imaginal disc are largely unknown. We obtained the developmental transcriptome of the eye-antennal discs covering late patterning processes at the late 2nd larval instar stage to the onset and progression of differentiation at the end of larval development. We revealed the expression profiles of all genes expressed during eye-antennal disc development and we determined temporally co-expressed genes by hierarchical clustering. Since co-expressed genes may be regulated by common transcriptional regulators, we combined our transcriptome dataset with publicly available ChIP-seq data to identify central transcription factors that co-regulate genes during head development. Besides the identification of already known and well-described transcription factors, we show that the transcription factor Hunchback (Hb) regulates a significant number of genes that are expressed during late differentiation stages. We confirm that hb is expressed in two polyploid subperineurial glia cells (carpet cells) and a thorough functional analysis shows that loss of Hb function results in a loss of carpet cells in the eye-antennal disc. Additionally, we provide for the first time functional data indicating that carpet cells are an integral part of the blood-brain barrier. Eventually, we combined our expression data with a de novo Hb motif search to reveal stage specific putative target genes of which we find a significant number indeed expressed in carpet cells. The development of different cell types must be tightly coordinated, and the eye-antennal imaginal discs of Drosophila melanogaster represent an excellent model to study the molecular mechanisms underlying this coordination. These imaginal discs contain the anlagen of nearly all adult head structures, such as the antennae, the head cuticle, the ocelli and the compound eyes. While large scale screens have been performed to unravel the gene regulatory network underlying compound eye development, a comprehensive understanding of genome wide expression dynamics throughout head development is still missing to date. We studied the genome wide gene expression dynamics during eye-antennal disc development in D. melanogaster to identify new central regulators of the underlying gene regulatory network. Expression based gene clustering and transcription factor motif enrichment analyses revealed a central regulatory role of the transcription factor Hunchback (Hb). We confirmed that hb is expressed in two polyploid retinal subperineurial glia cells (carpet cells). Our functional analysis shows that Hb is necessary for carpet cell development and we show for the first time that the carpet cells are an integral part of the blood-brain barrier.
Collapse
Affiliation(s)
- Montserrat Torres-Oliva
- Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Göttingen, Germany
| | - Julia Schneider
- Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Göttingen, Germany
| | - Gordon Wiegleb
- Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Göttingen, Germany
| | - Felix Kaufholz
- Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Göttingen, Germany
| | - Nico Posnien
- Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Göttingen, Germany
- * E-mail:
| |
Collapse
|
31
|
SCENIC: single-cell regulatory network inference and clustering. Nat Methods 2017; 14:1083-1086. [PMID: 28991892 PMCID: PMC5937676 DOI: 10.1038/nmeth.4463] [Citation(s) in RCA: 3069] [Impact Index Per Article: 383.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 09/07/2017] [Indexed: 11/21/2022]
Abstract
Although single-cell RNA-seq is revolutionizing biology, data interpretation remains a challenge. We present SCENIC for the simultaneous reconstruction of gene regulatory networks and identification of cell states. We apply SCENIC to a compendium of single-cell data from tumors and brain, and demonstrate that the genomic regulatory code can be exploited to guide the identification of transcription factors and cell states. SCENIC provides critical biological insights into the mechanisms driving cellular heterogeneity.
Collapse
|
32
|
Spanier KI, Jansen M, Decaestecker E, Hulselmans G, Becker D, Colbourne JK, Orsini L, De Meester L, Aerts S. Conserved Transcription Factors Steer Growth-Related Genomic Programs in Daphnia. Genome Biol Evol 2017; 9:1821-1842. [PMID: 28854641 PMCID: PMC5569996 DOI: 10.1093/gbe/evx127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2017] [Indexed: 02/06/2023] Open
Abstract
Ecological genomics aims to understand the functional association between environmental gradients and the genes underlying adaptive traits. Many genes that are identified by genome-wide screening in ecologically relevant species lack functional annotations. Although gene functions can be inferred from sequence homology, such approaches have limited power. Here, we introduce ecological regulatory genomics by presenting an ontology-free gene prioritization method. Specifically, our method combines transcriptome profiling with high-throughput cis-regulatory sequence analysis in the water fleas Daphnia pulex and Daphnia magna. It screens coexpressed genes for overrepresented DNA motifs that serve as transcription factor binding sites, thereby providing insight into conserved transcription factors and gene regulatory networks shaping the expression profile. We first validated our method, called Daphnia-cisTarget, on a D. pulex heat shock data set, which revealed a network driven by the heat shock factor. Next, we performed RNA-Seq in D. magna exposed to the cyanobacterium Microcystis aeruginosa. Daphnia-cisTarget identified coregulated gene networks that associate with the moulting cycle and potentially regulate life history changes in growth rate and age at maturity. These networks are predicted to be regulated by evolutionary conserved transcription factors such as the homologues of Drosophila Shavenbaby and Grainyhead, nuclear receptors, and a GATA family member. In conclusion, our approach allows prioritising candidate genes in Daphnia without bias towards prior knowledge about functional gene annotation and represents an important step towards exploring the molecular mechanisms of ecological responses in organisms with poorly annotated genomes.
Collapse
Affiliation(s)
- Katina I. Spanier
- Department of Biology, Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Belgium
- Department of Human Genetics, Laboratory of Computational Biology, KU Leuven, Belgium
- VIB Center for Brain and Disease Research, KU Leuven, Belgium
| | - Mieke Jansen
- Department of Biology, Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Belgium
| | - Ellen Decaestecker
- Department of Biology, Laboratory of Aquatic Biology, Science and Technology, KU Leuven Campus Kulak, Kortrjik, Belgium
| | - Gert Hulselmans
- Department of Human Genetics, Laboratory of Computational Biology, KU Leuven, Belgium
- VIB Center for Brain and Disease Research, KU Leuven, Belgium
| | - Dörthe Becker
- Environmental Genomics Group, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, United Kingdom
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, United Kingdom
| | - John K. Colbourne
- Environmental Genomics Group, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, United Kingdom
| | - Luisa Orsini
- Environmental Genomics Group, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, United Kingdom
| | - Luc De Meester
- Department of Biology, Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Belgium
| | - Stein Aerts
- Department of Human Genetics, Laboratory of Computational Biology, KU Leuven, Belgium
- VIB Center for Brain and Disease Research, KU Leuven, Belgium
| |
Collapse
|
33
|
Identification of novel direct targets of Drosophila Sine oculis and Eyes absent by integration of genome-wide data sets. Dev Biol 2016; 415:157-167. [PMID: 27178668 DOI: 10.1016/j.ydbio.2016.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/06/2016] [Accepted: 05/07/2016] [Indexed: 12/12/2022]
Abstract
Drosophila eye development is a complex process that involves many transcription factors (TFs) and interactions with their cofactors and targets. The TF Sine oculis (So) and its cofactor Eyes absent (Eya) are highly conserved and are both necessary and sufficient for eye development. Despite their many important roles during development, the direct targets of So are still largely unknown. Therefore the So-dependent regulatory network governing eye determination and differentiation is poorly understood. In this study, we intersected gene expression profiles of so or eya mutant eye tissue prepared from three different developmental stages and identified 1731 differentially expressed genes across the Drosophila genome. A combination of co-expression analyses and motif discovery identified a set of twelve putative direct So targets, including three known and nine novel targets. We also used our previous So ChIP-seq data to assess motif predictions for So and identified a canonical So binding motif. Finally, we performed in vivo enhancer reporter assays to test predicted enhancers from six candidate target genes and find that at least one enhancer from each gene is expressed in the developing eye disc and that their expression patterns overlap with that of So. We furthermore confirmed that the expression level of predicted direct So targets, for which antibodies are available, are reduced in so or eya post-mitotic knockout eye discs. In summary, we expand the set of putative So targets and show for the first time that the combined use of expression profiling of so with its cofactor eya is an effective method to identify novel So targets. Moreover, since So is highly conserved throughout the metazoa, our results provide the basis for future functional studies in a wide variety of organisms.
Collapse
|
34
|
Blick AJ, Mayer-Hirshfeld I, Malibiran BR, Cooper MA, Martino PA, Johnson JE, Bateman JR. The Capacity to Act in Trans Varies Among Drosophila Enhancers. Genetics 2016; 203:203-18. [PMID: 26984057 PMCID: PMC4858774 DOI: 10.1534/genetics.115.185645] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/07/2016] [Indexed: 01/10/2023] Open
Abstract
The interphase nucleus is organized such that genomic segments interact in cis, on the same chromosome, and in trans, between different chromosomes. In Drosophila and other Dipterans, extensive interactions are observed between homologous chromosomes, which can permit enhancers and promoters to communicate in trans Enhancer action in trans has been observed for a handful of genes in Drosophila, but it is as yet unclear whether this is a general property of all enhancers or specific to a few. Here, we test a collection of well-characterized enhancers for the capacity to act in trans Specifically, we tested 18 enhancers that are active in either the eye or wing disc of third instar Drosophila larvae and, using two different assays, found evidence that each enhancer can act in trans However, the degree to which trans-action was supported varied greatly between enhancers. Quantitative analysis of enhancer activity supports a model wherein an enhancer's strength of transcriptional activation is a major determinant of its ability to act in trans, but that additional factors may also contribute to an enhancer's trans-activity. In sum, our data suggest that a capacity to activate a promoter on a paired chromosome is common among Drosophila enhancers.
Collapse
Affiliation(s)
- Amanda J Blick
- Biology Department, Bowdoin College, Brunswick, Maine 04011
| | | | | | | | | | | | - Jack R Bateman
- Biology Department, Bowdoin College, Brunswick, Maine 04011
| |
Collapse
|
35
|
Bernardo-Garcia FJ, Fritsch C, Sprecher SG. The transcription factor Glass links eye field specification with photoreceptor differentiation in Drosophila. Development 2016; 143:1413-23. [PMID: 26952983 DOI: 10.1242/dev.128801] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 02/22/2016] [Indexed: 12/12/2022]
Abstract
Eye development requires an evolutionarily conserved group of transcription factors, termed the retinal determination network (RDN). However, little is known about the molecular mechanism by which the RDN instructs cells to differentiate into photoreceptors. We show that photoreceptor cell identity in Drosophila is critically regulated by the transcription factor Glass, which is primarily expressed in photoreceptors and whose role in this process was previously unknown. Glass is both required and sufficient for the expression of phototransduction proteins. Our results demonstrate that the RDN member Sine oculis directly activates glass expression, and that Glass activates the expression of the transcription factors Hazy and Otd. We identified hazy as a direct target of Glass. Induced expression of Hazy in the retina partially rescues the glass mutant phenotype. Together, our results provide a transcriptional link between eye field specification and photoreceptor differentiation in Drosophila, placing Glass at a central position in this developmental process.
Collapse
Affiliation(s)
| | - Cornelia Fritsch
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
| | - Simon G Sprecher
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
| |
Collapse
|
36
|
Quan XJ, Yuan L, Tiberi L, Claeys A, De Geest N, Yan J, van der Kant R, Xie W, Klisch T, Shymkowitz J, Rousseau F, Bollen M, Beullens M, Zoghbi H, Vanderhaeghen P, Hassan B. Post-translational Control of the Temporal Dynamics of Transcription Factor Activity Regulates Neurogenesis. Cell 2016; 164:460-75. [DOI: 10.1016/j.cell.2015.12.048] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 10/12/2015] [Accepted: 12/22/2015] [Indexed: 11/28/2022]
|
37
|
Regulation of transcription factors on sexual dimorphism of fig wasps. Sci Rep 2015; 5:10696. [PMID: 26031454 PMCID: PMC4451555 DOI: 10.1038/srep10696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/27/2015] [Indexed: 11/08/2022] Open
Abstract
Fig wasps exhibit extreme intraspecific morphological divergence in the wings, compound eyes, antennae, body color, and size. Corresponding to this, behaviors and lifestyles between two sexes are also different: females can emerge from fig and fly to other fig tree to oviposit and pollinate, while males live inside fig for all their lifetime. Genetic regulation may drive these extreme intraspecific morphological and behavioral divergence. Transcription factors (TFs) involved in morphological development and physiological activity may exhibit sex-specific expressions. Herein, we detect 865 TFs by using genomic and transcriptomic data of the fig wasp Ceratosolen solmsi. Analyses of transcriptomic data indicated that up-regulated TFs in females show significant enrichment in development of the wing, eye and antenna in all stages, from larva to adult. Meanwhile, TFs related to the development of a variety of organs display sex-specific patterns of expression in the adults and these may contribute significantly to their sexual dimorphism. In addition, up-regulated TFs in adult males exhibit enrichment in genitalia development and circadian rhythm, which correspond with mating and protandry. This finding is consistent with their sex-specific behaviors. In conclusion, our results strongly indicate that TFs play important roles in the sexual dimorphism of fig wasps.
Collapse
|
38
|
Naval-Sánchez M, Potier D, Hulselmans G, Christiaens V, Aerts S. Identification of Lineage-Specific Cis-Regulatory Modules Associated with Variation in Transcription Factor Binding and Chromatin Activity Using Ornstein-Uhlenbeck Models. Mol Biol Evol 2015; 32:2441-55. [PMID: 25944915 PMCID: PMC4540964 DOI: 10.1093/molbev/msv107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Scoring the impact of noncoding variation on the function of cis-regulatory regions, on their chromatin state, and on the qualitative and quantitative expression levels of target genes is a fundamental problem in evolutionary genomics. A particular challenge is how to model the divergence of quantitative traits and to identify relationships between the changes across the different levels of the genome, the chromatin activity landscape, and the transcriptome. Here, we examine the use of the Ornstein-Uhlenbeck (OU) model to infer selection at the level of predicted cis-regulatory modules (CRMs), and link these with changes in transcription factor binding and chromatin activity. Using publicly available cross-species ChIP-Seq and STARR-Seq data we show how OU can be applied genome-wide to identify candidate transcription factors for which binding site and CRM turnover is correlated with changes in regulatory activity. Next, we profile open chromatin in the developing eye across three Drosophila species. We identify the recognition motifs of the chromatin remodelers, Trithorax-like and Grainyhead as mostly correlating with species-specific changes in open chromatin. In conclusion, we show in this study that CRM scores can be used as quantitative traits and that motif discovery approaches can be extended towards more complex models of divergence.
Collapse
Affiliation(s)
- Marina Naval-Sánchez
- Laboratory of Computational Biology, Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Delphine Potier
- Laboratory of Computational Biology, Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Gert Hulselmans
- Laboratory of Computational Biology, Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Valerie Christiaens
- Laboratory of Computational Biology, Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Stein Aerts
- Laboratory of Computational Biology, Department of Human Genetics, University of Leuven, Leuven, Belgium
| |
Collapse
|
39
|
Allan DW, Thor S. Transcriptional selectors, masters, and combinatorial codes: regulatory principles of neural subtype specification. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:505-28. [PMID: 25855098 PMCID: PMC4672696 DOI: 10.1002/wdev.191] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 01/08/2023]
Abstract
The broad range of tissue and cellular diversity of animals is generated to a large extent by the hierarchical deployment of sequence-specific transcription factors and co-factors (collectively referred to as TF's herein) during development. Our understanding of these developmental processes has been facilitated by the recognition that the activities of many TF's can be meaningfully described by a few functional categories that usefully convey a sense for how the TF's function, and also provides a sense for the regulatory organization of the developmental processes in which they participate. Here, we draw on examples from studies in Caenorhabditis elegans, Drosophila melanogaster, and vertebrates to discuss how the terms spatial selector, temporal selector, tissue/cell type selector, terminal selector and combinatorial code may be usefully applied to categorize the activities of TF's at critical steps of nervous system construction. While we believe that these functional categories are useful for understanding the organizational principles by which TF's direct nervous system construction, we however caution against the assumption that a TF's function can be solely or fully defined by any single functional category. Indeed, most TF's play diverse roles within different functional categories, and their roles can blur the lines we draw between these categories. Regardless, it is our belief that the concepts discussed here are helpful in clarifying the regulatory complexities of nervous system development, and hope they prove useful when interpreting mutant phenotypes, designing future experiments, and programming specific neuronal cell types for use in therapies. WIREs Dev Biol 2015, 4:505–528. doi: 10.1002/wdev.191 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Douglas W Allan
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| |
Collapse
|
40
|
Suryamohan K, Halfon MS. Identifying transcriptional cis-regulatory modules in animal genomes. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:59-84. [PMID: 25704908 PMCID: PMC4339228 DOI: 10.1002/wdev.168] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/04/2014] [Accepted: 11/16/2014] [Indexed: 11/08/2022]
Abstract
UNLABELLED Gene expression is regulated through the activity of transcription factors (TFs) and chromatin-modifying proteins acting on specific DNA sequences, referred to as cis-regulatory elements. These include promoters, located at the transcription initiation sites of genes, and a variety of distal cis-regulatory modules (CRMs), the most common of which are transcriptional enhancers. Because regulated gene expression is fundamental to cell differentiation and acquisition of new cell fates, identifying, characterizing, and understanding the mechanisms of action of CRMs is critical for understanding development. CRM discovery has historically been challenging, as CRMs can be located far from the genes they regulate, have few readily identifiable sequence characteristics, and for many years were not amenable to high-throughput discovery methods. However, the recent availability of complete genome sequences and the development of next-generation sequencing methods have led to an explosion of both computational and empirical methods for CRM discovery in model and nonmodel organisms alike. Experimentally, CRMs can be identified through chromatin immunoprecipitation directed against TFs or histone post-translational modifications, identification of nucleosome-depleted 'open' chromatin regions, or sequencing-based high-throughput functional screening. Computational methods include comparative genomics, clustering of known or predicted TF-binding sites, and supervised machine-learning approaches trained on known CRMs. All of these methods have proven effective for CRM discovery, but each has its own considerations and limitations, and each is subject to a greater or lesser number of false-positive identifications. Experimental confirmation of predictions is essential, although shortcomings in current methods suggest that additional means of validation need to be developed. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Kushal Suryamohan
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
- NY State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| | - Marc S. Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
- Department of Biological Sciences, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
- Department of Biomedical Informatics, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
- NY State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
- Molecular and Cellular Biology Department and Program in Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
41
|
Oliva C, Molina-Fernandez C, Maureira M, Candia N, López E, Hassan B, Aerts S, Cánovas J, Olguín P, Sierralta J. Hindsight regulates photoreceptor axon targeting through transcriptional control of jitterbug/Filamin and multiple genes involved in axon guidance in Drosophila. Dev Neurobiol 2015; 75:1018-32. [PMID: 25652545 DOI: 10.1002/dneu.22271] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 01/20/2023]
Abstract
During axon targeting, a stereotyped pattern of connectivity is achieved by the integration of intrinsic genetic programs and the response to extrinsic long and short-range directional cues. How this coordination occurs is the subject of intense study. Transcription factors play a central role due to their ability to regulate the expression of multiple genes required to sense and respond to these cues during development. Here we show that the transcription factor HNT regulates layer-specific photoreceptor axon targeting in Drosophila through transcriptional control of jbug/Filamin and multiple genes involved in axon guidance and cytoskeleton organization.Using a microarray analysis we identified 235 genes whose expression levels were changed by HNT overexpression in the eye primordia. We analyzed nine candidate genes involved in cytoskeleton regulation and axon guidance, six of which displayed significantly altered gene expression levels in hnt mutant retinas. Functional analysis confirmed the role of OTK/PTK7 in photoreceptor axon targeting and uncovered Tiggrin, an integrin ligand, and Jbug/Filamin, a conserved actin- binding protein, as new factors that participate of photoreceptor axon targeting. Moreover, we provided in silico and molecular evidence that supports jbug/Filamin as a direct transcriptional target of HNT and that HNT acts partially through Jbug/Filamin in vivo to regulate axon guidance. Our work broadens the understanding of how HNT regulates the coordinated expression of a group of genes to achieve the correct connectivity pattern in the Drosophila visual system. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1018-1032, 2015.
Collapse
Affiliation(s)
- Carlos Oliva
- Laboratorio de Neurobiología Celular y Molecular, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile.,Biomedical Neurosciences Institute, ICM, Facultad de Medicina, Universidad de Chile
| | - Claudia Molina-Fernandez
- Laboratorio de Genética del Desarrollo de Drosophila, Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Miguel Maureira
- Laboratorio de Genética del Desarrollo de Drosophila, Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Noemi Candia
- Laboratorio de Genética del Desarrollo de Drosophila, Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Estefanía López
- Laboratorio de Neurobiología Celular y Molecular, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile.,Biomedical Neurosciences Institute, ICM, Facultad de Medicina, Universidad de Chile
| | - Bassem Hassan
- Laboratory of Neurogenetics, Department of Molecular and Developmental Genetics, VIB, K.U. Leuven, Leuven, Belgium
| | - Stein Aerts
- Laboratory of Neurogenetics, Department of Molecular and Developmental Genetics, VIB, K.U. Leuven, Leuven, Belgium
| | - José Cánovas
- Laboratorio de Neurobiología Celular y Molecular, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile.,Biomedical Neurosciences Institute, ICM, Facultad de Medicina, Universidad de Chile
| | - Patricio Olguín
- Laboratorio de Genética del Desarrollo de Drosophila, Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Jimena Sierralta
- Laboratorio de Neurobiología Celular y Molecular, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile.,Biomedical Neurosciences Institute, ICM, Facultad de Medicina, Universidad de Chile
| |
Collapse
|
42
|
Mapping Gene Regulatory Networks in Drosophila Eye Development by Large-Scale Transcriptome Perturbations and Motif Inference. Cell Rep 2014; 9:2290-303. [DOI: 10.1016/j.celrep.2014.11.038] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/24/2014] [Accepted: 11/22/2014] [Indexed: 11/20/2022] Open
|
43
|
Neural precursor-specific expression of multiple Drosophila genes is driven by dual enhancer modules with overlapping function. Proc Natl Acad Sci U S A 2014; 111:17194-9. [PMID: 25404315 DOI: 10.1073/pnas.1415308111] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcriptional cis-regulatory modules (CRMs), or enhancers, are responsible for directing gene expression in specific territories and cell types during development. In some instances, the same gene may be served by two or more enhancers with similar specificities. Here we show that the utilization of dual, or "shadow", enhancers is a common feature of genes that are active specifically in neural precursor (NP) cells in Drosophila. By genome-wide computational discovery of statistically significant clusters of binding motifs for both proneural activator (P) proteins and basic helix-loop-helix (bHLH) repressor (R) factors (a "P+R" regulatory code), we have identified NP-specific enhancer modules associated with multiple genes expressed in this cell type. These CRMs are distinct from those previously identified for the corresponding gene, establishing the existence of a dual-enhancer arrangement in which both modules reside close to the gene they serve. Using wild-type and mutant reporter gene constructs in vivo, we show that P sites in these modules mediate activation by proneural factors in "proneural cluster" territories, whereas R sites mediate repression by bHLH repressors, which serves to restrict expression specifically to NP cells. To our knowledge, our results identify the first direct targets of these bHLH repressors. Finally, using genomic rescue constructs for neuralized (neur), we demonstrate that each of the gene's two NP-specific enhancers is sufficient to rescue neur function in the lateral inhibition process by which adult sensory organ precursor (SOP) cells are specified, but that deletion of both enhancers results in failure of this event.
Collapse
|
44
|
Couturier L, Trylinski M, Mazouni K, Darnet L, Schweisguth F. A fluorescent tagging approach in Drosophila reveals late endosomal trafficking of Notch and Sanpodo. ACTA ACUST UNITED AC 2014; 207:351-63. [PMID: 25365996 PMCID: PMC4226730 DOI: 10.1083/jcb.201407071] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Signaling and endocytosis are highly integrated processes that regulate cell fate. In the Drosophila melanogaster sensory bristle lineages, Numb inhibits the recycling of Notch and its trafficking partner Sanpodo (Spdo) to regulate cell fate after asymmetric cell division. In this paper, we have used a dual GFP/Cherry tagging approach to study the distribution and endosomal sorting of Notch and Spdo in living pupae. The specific properties of GFP, i.e., quenching at low pH, and Cherry, i.e., slow maturation time, revealed distinct pools of Notch and Spdo: cargoes exhibiting high GFP/low Cherry fluorescence intensities localized mostly at the plasma membrane and early/sorting endosomes, whereas low GFP/high Cherry cargoes accumulated in late acidic endosomes. These properties were used to show that Spdo is sorted toward late endosomes in a Numb-dependent manner. This dual-tagging approach should be generally applicable to study the trafficking dynamics of membrane proteins in living cells and tissues.
Collapse
Affiliation(s)
- Lydie Couturier
- Developmental and Stem Cell Biology Department, Institut Pasteur, 75015 Paris, France Centre National de la Recherche Scientifique, URA2578, 75015 Paris, France
| | - Mateusz Trylinski
- Developmental and Stem Cell Biology Department, Institut Pasteur, 75015 Paris, France Centre National de la Recherche Scientifique, URA2578, 75015 Paris, France Master Biosciences, École Normale Supérieure de Lyon, 75015 Paris, France
| | - Khallil Mazouni
- Developmental and Stem Cell Biology Department, Institut Pasteur, 75015 Paris, France Centre National de la Recherche Scientifique, URA2578, 75015 Paris, France
| | - Léa Darnet
- Developmental and Stem Cell Biology Department, Institut Pasteur, 75015 Paris, France Centre National de la Recherche Scientifique, URA2578, 75015 Paris, France
| | - François Schweisguth
- Developmental and Stem Cell Biology Department, Institut Pasteur, 75015 Paris, France Centre National de la Recherche Scientifique, URA2578, 75015 Paris, France
| |
Collapse
|
45
|
Tarrant AM, Gilmore TD, Reitzel AM, Levy O, Technau U, Martindale MQ. Current directions and future perspectives from the third Nematostella research conference. ZOOLOGY 2014; 118:135-40. [PMID: 25450665 DOI: 10.1016/j.zool.2014.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 12/16/2022]
Abstract
The third Nematostella vectensis Research Conference took place in December 2013 in Eilat, Israel, as a satellite to the 8th International Conference on Coelenterate Biology. The starlet sea anemone, N. vectensis, has emerged as a powerful cnidarian model, in large part due to the extensive genomic and transcriptomic resources and molecular approaches that are becoming available for Nematostella, which were the focus of several presentations. In addition, research was presented highlighting the broader utility of this species for studies of development, circadian rhythms, signal transduction, and gene-environment interactions.
Collapse
Affiliation(s)
- Ann M Tarrant
- Biology Department, Woods Hole Oceanographic Institution, 45 Water Street, Woods Hole, MA 02543, USA.
| | - Thomas D Gilmore
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Adam M Reitzel
- Department of Biological Sciences, The University of North Carolina at Charlotte, Woodward Hall 245, Charlotte, NC 28223, USA
| | - Oren Levy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel
| | - Ulrich Technau
- Department of Molecular Evolution and Development, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St. Augustine, FL 32136, USA
| |
Collapse
|
46
|
Fernandes VM, Panchapakesan SSS, Braid LR, Verheyen EM. Nemo promotes Notch-mediated lateral inhibition downstream of proneural factors. Dev Biol 2014; 392:334-43. [PMID: 24880113 DOI: 10.1016/j.ydbio.2014.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 04/30/2014] [Accepted: 05/15/2014] [Indexed: 12/27/2022]
Abstract
During neurogenesis, conserved tissue-specific proneural factors establish a cell's competence to take on neural fate from within a field of unspecified cells. Proneural genes encode basic helix-loop-helix transcription factors that promote the expression of 'core' and subtype-specific target genes. Target genes include both pan-neuronal genes and genes that aid in the process of refinement, known as lateral inhibition. In this process, proneural gene expression is increased in the neural progenitor while simultaneously down-regulated in the surrounding cells, in a Notch signalling-dependent manner. Here, we identify nemo (nmo) as a target of members of both Drosophila Atonal and Achaete-Scute proneural factor families and find that mammalian proneural homologs induce Nemo-like-kinase (Nlk) expression in cell culture. We find that nmo loss of function leads to reduced expression of Notch targets and to perturbations in Notch-mediated lateral inhibition. Furthermore, Notch hyperactivity can compensate for nmo loss in the Drosophila eye. Thus nmo promotes Notch-mediated lateral inhibition downstream of proneural factors during neurogenesis.
Collapse
Affiliation(s)
- Vilaiwan M Fernandes
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A1S6
| | - Shanker S S Panchapakesan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A1S6
| | - Lorena R Braid
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A1S6; Defence Research and Development Canada - Suffield, Biotechnology Section, Medicine Hat, AB, Canada T1A 8K6
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A1S6.
| |
Collapse
|
47
|
iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS Comput Biol 2014; 10:e1003731. [PMID: 25058159 PMCID: PMC4109854 DOI: 10.1371/journal.pcbi.1003731] [Citation(s) in RCA: 633] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/27/2014] [Indexed: 01/17/2023] Open
Abstract
Identifying master regulators of biological processes and mapping their downstream gene networks are key challenges in systems biology. We developed a computational method, called iRegulon, to reverse-engineer the transcriptional regulatory network underlying a co-expressed gene set using cis-regulatory sequence analysis. iRegulon implements a genome-wide ranking-and-recovery approach to detect enriched transcription factor motifs and their optimal sets of direct targets. We increase the accuracy of network inference by using very large motif collections of up to ten thousand position weight matrices collected from various species, and linking these to candidate human TFs via a motif2TF procedure. We validate iRegulon on gene sets derived from ENCODE ChIP-seq data with increasing levels of noise, and we compare iRegulon with existing motif discovery methods. Next, we use iRegulon on more challenging types of gene lists, including microRNA target sets, protein-protein interaction networks, and genetic perturbation data. In particular, we over-activate p53 in breast cancer cells, followed by RNA-seq and ChIP-seq, and could identify an extensive up-regulated network controlled directly by p53. Similarly we map a repressive network with no indication of direct p53 regulation but rather an indirect effect via E2F and NFY. Finally, we generalize our computational framework to include regulatory tracks such as ChIP-seq data and show how motif and track discovery can be combined to map functional regulatory interactions among co-expressed genes. iRegulon is available as a Cytoscape plugin from http://iregulon.aertslab.org. Gene regulatory networks control developmental, homeostatic, and disease processes by governing precise levels and spatio-temporal patterns of gene expression. Determining their topology can provide mechanistic insight into these processes. Gene regulatory networks consist of interactions between transcription factors and their direct target genes. Each regulatory interaction represents the binding of the transcription factor to a specific DNA binding site near its target gene. Here we present a computational method, called iRegulon, to identify master regulators and direct target genes in a human gene signature, i.e. a set of co-expressed genes. iRegulon relies on the analysis of the regulatory sequences around each gene in the gene set to detect enriched TF motifs or ChIP-seq peaks, using databases of nearly 10.000 TF motifs and 1000 ChIP-seq data sets or “tracks”. Next, it associates enriched motifs and tracks with candidate transcription factors and determines the optimal subset of direct target genes. We validate iRegulon on ENCODE data, and use it in combination with RNA-seq and ChIP-seq data to map a p53 downstream network with new predicted co-factors and targets. iRegulon is available as a Cytoscape plugin, supporting human, mouse, and Drosophila genes, and provides access to hundreds of cancer-related TF-target subnetworks or “regulons”.
Collapse
|
48
|
Potier D, Seyres D, Guichard C, Iche-Torres M, Aerts S, Herrmann C, Perrin L. Identification of cis-regulatory modules encoding temporal dynamics during development. BMC Genomics 2014; 15:534. [PMID: 24972496 PMCID: PMC4097164 DOI: 10.1186/1471-2164-15-534] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/13/2014] [Indexed: 12/02/2022] Open
Abstract
Background Developmental transcriptional regulatory networks are circuits of transcription factors (TFs) and cis-acting DNA elements (Cis Regulatory Modules, CRMs) that dynamically control expression of downstream genes. Comprehensive knowledge of these networks is an essential step towards our understanding of developmental processes. However, this knowledge is mostly based on genome-wide mapping of transcription factor binding sites, and therefore requires prior knowledge regarding the TFs involved in the network. Results Focusing on how temporal control of gene expression is integrated within a developmental network, we applied an in silico approach to discover regulatory motifs and CRMs of co-expressed genes, with no prior knowledge about the involved TFs. Our aim was to identify regulatory motifs and potential trans-acting factors which regulate the temporal expression of co-expressed gene sets during a particular process of organogenesis, namely adult heart formation in Drosophila. Starting from whole genome tissue specific expression dynamics, we used an in silico method, cisTargetX, to predict TF binding motifs and CRMs. Potential Nuclear Receptor (NR) binding motifs were predicted to control the temporal expression profile of a gene set with increased expression levels during mid metamorphosis. The predicted CRMs and NR motifs were validated in vivo by reporter gene essays. In addition, we provide evidence that three NRs modulate CRM activity and behave as temporal regulators of target enhancers. Conclusions Our approach was successful in identifying CRMs and potential TFs acting on the temporal regulation of target genes. In addition, our results suggest a modular architecture of the regulatory machinery, in which the temporal and spatial regulation can be uncoupled and encoded by distinct CRMs. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-534) contains supplementary material, which is available to authorized users.
Collapse
|
49
|
Ejsmont RK, Hassan BA. The Little Fly that Could: Wizardry and Artistry of Drosophila Genomics. Genes (Basel) 2014; 5:385-414. [PMID: 24827974 PMCID: PMC4094939 DOI: 10.3390/genes5020385] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/16/2014] [Accepted: 04/21/2014] [Indexed: 12/30/2022] Open
Abstract
For more than 100 years now, the fruit fly Drosophila melanogaster has been at the forefront of our endeavors to unlock the secrets of the genome. From the pioneering studies of chromosomes and heredity by Morgan and his colleagues, to the generation of fly models for human disease, Drosophila research has been at the forefront of genetics and genomics. We present a broad overview of some of the most powerful genomics tools that keep Drosophila research at the cutting edge of modern biomedical research.
Collapse
Affiliation(s)
| | - Bassem A Hassan
- VIB Center for the Biology of Disease, VIB, 3000 Leuven, Belgium.
| |
Collapse
|
50
|
Dissection of thousands of cell type-specific enhancers identifies dinucleotide repeat motifs as general enhancer features. Genome Res 2014; 24:1147-56. [PMID: 24714811 PMCID: PMC4079970 DOI: 10.1101/gr.169243.113] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gene expression is determined by genomic elements called enhancers, which contain short motifs bound by different transcription factors (TFs). However, how enhancer sequences and TF motifs relate to enhancer activity is unknown, and general sequence requirements for enhancers or comprehensive sets of important enhancer sequence elements have remained elusive. Here, we computationally dissect thousands of functional enhancer sequences from three different Drosophila cell lines. We find that the enhancers display distinct cis-regulatory sequence signatures, which are predictive of the enhancers’ cell type-specific or broad activities. These signatures contain transcription factor motifs and a novel class of enhancer sequence elements, dinucleotide repeat motifs (DRMs). DRMs are highly enriched in enhancers, particularly in enhancers that are broadly active across different cell types. We experimentally validate the importance of the identified TF motifs and DRMs for enhancer function and show that they can be sufficient to create an active enhancer de novo from a nonfunctional sequence. The function of DRMs as a novel class of general enhancer features that are also enriched in human regulatory regions might explain their implication in several diseases and provides important insights into gene regulation.
Collapse
|