1
|
Hogg PW, Haas K. Bulk Dye Loading for In Vivo Calcium Imaging of Visual Responses in Populations of Xenopus Tectal Neurons. Cold Spring Harb Protoc 2022; 2022:pdb.prot106831. [PMID: 33782097 DOI: 10.1101/pdb.prot106831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bulk loading of neurons with fluorescent calcium indicators in transparent albino Xenopus tadpoles offers a rapid and easy method for tracking sensory-evoked activity in large numbers of neurons within an awake developing brain circuit. In vivo two-photon time-lapse imaging of an image plane through the optic tectum allows defining receptive field properties from visual-evoked responses for studies of single-neuron and network-level encoding and plasticity. Here, we describe loading the Xenopus tadpole optic tectum with the membrane-permeable AM ester of Oregon Green 488 BAPTA-1 (OGB-1 AM) for in vivo imaging experiments.
Collapse
Affiliation(s)
- Peter W Hogg
- Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T2B5, Canada
| | - Kurt Haas
- Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T2B5, Canada
| |
Collapse
|
2
|
Hiramoto M, Cline HT. Tetrode Recording in the Xenopus laevis Visual System Using Multichannel Glass Electrodes. Cold Spring Harb Protoc 2021; 2021:pdb.prot107086. [PMID: 33536286 DOI: 10.1101/pdb.prot107086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Xenopus tadpole visual system shows an extraordinary extent of developmental and visual experience-dependent plasticity, establishing sophisticated neuronal response properties that guide essential survival behaviors. The external development and access to the developing visual circuit of Xenopus tadpoles make them an excellent experimental system in which to elucidate plastic changes in neuronal properties and their capacity to encode information about the visual scene. The temporal structure of neural activity encodes a significant amount of information, access to which requires recording methods with high temporal resolution. Conversely, elucidating changes in the temporal structure of neural activity requires recording over extended periods. It is challenging to maintain patch-clamp recordings over extended periods and Ca2+ imaging has limited temporal resolution. Extracellular recordings have been used in other systems for extended recording; however, spike amplitudes in the developing Xenopus visual circuit are not large enough to be captured by distant electrodes. Here we describe a juxtacellular tetrode recording method for continuous long-term recordings from neurons in intact tadpoles, which can also be exposed to diverse visual stimulation protocols. Electrode position in the tectum is stabilized by the large contact area in the tissue. Contamination of the signal from neighboring neurons is minimized by the tight contact between the glass capillaries and the dense arrangement of neurons in the tectum. This recording method enables analysis of developmental and visual experience-dependent plastic changes in neuronal response properties at higher temporal resolution and over longer periods than current methods.
Collapse
Affiliation(s)
- Masaki Hiramoto
- The Dorris Neuroscience Center, Department of Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Hollis T Cline
- The Dorris Neuroscience Center, Department of Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
3
|
Cline HT. Imaging Structural and Functional Dynamics in Xenopus Neurons. Cold Spring Harb Protoc 2021; 2022:pdb.top106773. [PMID: 34531329 DOI: 10.1101/pdb.top106773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In vivo time-lapse imaging has been a fruitful approach to identify structural and functional changes in the Xenopus nervous system in tadpoles and adult frogs. Structural imaging studies have identified fundamental aspects of brain connectivity, development, plasticity, and disease and have been instrumental in elucidating mechanisms regulating these events in vivo. Similarly, assessment of nervous system function using dynamic changes in calcium signals as a proxy for neuronal activity has demonstrated principles of neuron and circuit function and principles of information organization and transfer within the brain of living animals. Because of its many advantages as an experimental system, use of Xenopus has often been at the forefront of developing these imaging methods for in vivo applications. Protocols for in vivo structural and functional imaging-including cellular labeling strategies, image collection, and image analysis-will expand the use of Xenopus to understand brain development, function, and plasticity.
Collapse
Affiliation(s)
- Hollis T Cline
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Center, La Jolla, California 92039, USA
| |
Collapse
|
4
|
Mölter J, Avitan L, Goodhill GJ. Detecting neural assemblies in calcium imaging data. BMC Biol 2018; 16:143. [PMID: 30486809 PMCID: PMC6262979 DOI: 10.1186/s12915-018-0606-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Activity in populations of neurons often takes the form of assemblies, where specific groups of neurons tend to activate at the same time. However, in calcium imaging data, reliably identifying these assemblies is a challenging problem, and the relative performance of different assembly-detection algorithms is unknown. RESULTS To test the performance of several recently proposed assembly-detection algorithms, we first generated large surrogate datasets of calcium imaging data with predefined assembly structures and characterised the ability of the algorithms to recover known assemblies. The algorithms we tested are based on independent component analysis (ICA), principal component analysis (Promax), similarity analysis (CORE), singular value decomposition (SVD), graph theory (SGC), and frequent item set mining (FIM-X). When applied to the simulated data and tested against parameters such as array size, number of assemblies, assembly size and overlap, and signal strength, the SGC and ICA algorithms and a modified form of the Promax algorithm performed well, while PCA-Promax and FIM-X did less well, for instance, showing a strong dependence on the size of the neural array. Notably, we identified additional analyses that can improve their importance. Next, we applied the same algorithms to a dataset of activity in the zebrafish optic tectum evoked by simple visual stimuli, and found that the SGC algorithm recovered assemblies closest to the averaged responses. CONCLUSIONS Our findings suggest that the neural assemblies recovered from calcium imaging data can vary considerably with the choice of algorithm, but that some algorithms reliably perform better than others. This suggests that previous results using these algorithms may need to be reevaluated in this light.
Collapse
Affiliation(s)
- Jan Mölter
- Queensland Brian Institute, The University of Queensland, Brisbane, 4072, Australia.,School of Mathematics and Physics, The University of Queensland, Brisbane, 4072, Australia
| | - Lilach Avitan
- Queensland Brian Institute, The University of Queensland, Brisbane, 4072, Australia
| | - Geoffrey J Goodhill
- Queensland Brian Institute, The University of Queensland, Brisbane, 4072, Australia. .,School of Mathematics and Physics, The University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
5
|
Abstract
The ability for cortical neurons to adapt their input/output characteristics and information processing capabilities ultimately relies on the interplay between synaptic plasticity, synapse location, and the nonlinear properties of the dendrite. Collectively, they shape both the strengths and spatial arrangements of convergent afferent inputs to neuronal dendrites. Recent experimental and theoretical studies support a clustered plasticity model, a view that synaptic plasticity promotes the formation of clusters or hotspots of synapses sharing similar properties. We have previously shown that spike timing-dependent plasticity (STDP) can lead to synaptic efficacies being arranged into spatially segregated clusters. This effectively partitions the dendritic tree into a tessellated imprint which we have called a dendritic mosaic. Here, using a biophysically detailed neuron model of a reconstructed layer 2/3 pyramidal cell and STDP learning, we investigated the impact of altered STDP balance on forming such a spatial organization. We show that cluster formation and extend depend on several factors, including the balance between potentiation and depression, the afferents' mean firing rate and crucially on the dendritic morphology. We find that STDP balance has an important role to play for this emergent mode of spatial organization since any imbalances lead to severe degradation- and in some case even destruction- of the mosaic. Our model suggests that, over a broad range of of STDP parameters, synaptic plasticity shapes the spatial arrangement of synapses, favoring the formation of clustered efficacy engrams.
Collapse
Affiliation(s)
- Nicolangelo Iannella
- School of Mathematical Sciences, University of NottinghamNottingham, United Kingdom.,Computational and Theoretical Neuroscience Laboratory, Institute for Telecommunications Research, University of South AustraliaMawson Lakes, SA, Australia
| | - Thomas Launey
- Laboratory for Synaptic Molecules of Memory Persistence, RIKEN, Brain Science InstituteSaitama, Japan
| |
Collapse
|
6
|
He HY, Shen W, Hiramoto M, Cline HT. Experience-Dependent Bimodal Plasticity of Inhibitory Neurons in Early Development. Neuron 2016; 90:1203-1214. [PMID: 27238867 DOI: 10.1016/j.neuron.2016.04.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/11/2016] [Accepted: 04/14/2016] [Indexed: 02/09/2023]
Abstract
Inhibitory neurons are heterogeneous in the mature brain. It is unclear when and how inhibitory neurons express distinct structural and functional profiles. Using in vivo time-lapse imaging of tectal neuron structure and visually evoked Ca(2+) responses in tadpoles, we found that inhibitory neurons cluster into two groups with opposite valence of plasticity after 4 hr of dark and visual stimulation. Half decreased dendritic arbor size and Ca(2+) responses after dark and increased them after visual stimulation, matching plasticity in excitatory neurons. Half increased dendrite arbor size and Ca(2+) responses following dark and decreased them after stimulation. At the circuit level, visually evoked excitatory and inhibitory synaptic inputs were potentiated by visual experience and E/I remained constant. Our results indicate that developing inhibitory neurons fall into distinct functional groups with opposite experience-dependent plasticity and as such, are well positioned to foster experience-dependent synaptic plasticity and maintain circuit stability during labile periods of circuit development.
Collapse
Affiliation(s)
- Hai-Yan He
- The Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Wanhua Shen
- Key Lab of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Masaki Hiramoto
- The Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hollis T Cline
- The Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
7
|
Hollmann V, Lucks V, Kurtz R, Engelmann J. Adaptation-induced modification of motion selectivity tuning in visual tectal neurons of adult zebrafish. J Neurophysiol 2015; 114:2893-902. [PMID: 26378206 DOI: 10.1152/jn.00568.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/15/2015] [Indexed: 11/22/2022] Open
Abstract
In the developing brain, training-induced emergence of direction selectivity and plasticity of orientation tuning appear to be widespread phenomena. These are found in the visual pathway across different classes of vertebrates. Moreover, short-term plasticity of orientation tuning in the adult brain has been demonstrated in several species of mammals. However, it is unclear whether neuronal orientation and direction selectivity in nonmammalian species remains modifiable through short-term plasticity in the fully developed brain. To address this question, we analyzed motion tuning of neurons in the optic tectum of adult zebrafish by calcium imaging. In total, orientation and direction selectivity was enhanced by adaptation, responses of previously orientation-selective neurons were sharpened, and even adaptation-induced emergence of selectivity in previously nonselective neurons was observed in some cases. The different observed effects are mainly based on the relative distance between the previously preferred and the adaptation direction. In those neurons in which a shift of the preferred orientation or direction was induced by adaptation, repulsive shifts (i.e., away from the adapter) were more prevalent than attractive shifts. A further novel finding for visually induced adaptation that emerged from our study was that repulsive and attractive shifts can occur within one brain area, even with uniform stimuli. The type of shift being induced also depends on the difference between the adapting and the initially preferred stimulus direction. Our data indicate that, even within the fully developed optic tectum, short-term plasticity might have an important role in adjusting neuronal tuning functions to current stimulus conditions.
Collapse
Affiliation(s)
- Vanessa Hollmann
- Active Sensing and Center of Excellence Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany; and
| | - Valerie Lucks
- Active Sensing and Center of Excellence Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany; and
| | - Rafael Kurtz
- Department of Neurobiology, Bielefeld University, Bielefeld, Germany
| | - Jacob Engelmann
- Active Sensing and Center of Excellence Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany; and
| |
Collapse
|
8
|
Freeman J. Open source tools for large-scale neuroscience. Curr Opin Neurobiol 2015; 32:156-63. [PMID: 25982977 DOI: 10.1016/j.conb.2015.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/03/2015] [Accepted: 04/08/2015] [Indexed: 11/24/2022]
Abstract
New technologies for monitoring and manipulating the nervous system promise exciting biology but pose challenges for analysis and computation. Solutions can be found in the form of modern approaches to distributed computing, machine learning, and interactive visualization. But embracing these new technologies will require a cultural shift: away from independent efforts and proprietary methods and toward an open source and collaborative neuroscience.
Collapse
Affiliation(s)
- Jeremy Freeman
- HHMI Janelia Research Center, 19700 Helix Drive, Ashburn, VA 20147, United States.
| |
Collapse
|
9
|
Khakhalin AS, Koren D, Gu J, Xu H, Aizenman CD. Excitation and inhibition in recurrent networks mediate collision avoidance in Xenopus tadpoles. Eur J Neurosci 2014; 40:2948-62. [PMID: 24995793 DOI: 10.1111/ejn.12664] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/23/2014] [Accepted: 05/28/2014] [Indexed: 01/24/2023]
Abstract
Information processing in the vertebrate brain is thought to be mediated through distributed neural networks, but it is still unclear how sensory stimuli are encoded and detected by these networks, and what role synaptic inhibition plays in this process. Here we used a collision avoidance behavior in Xenopus tadpoles as a model for stimulus discrimination and recognition. We showed that the visual system of the tadpole is selective for behaviorally relevant looming stimuli, and that the detection of these stimuli first occurs in the optic tectum. By comparing visually guided behavior, optic nerve recordings, excitatory and inhibitory synaptic currents, and the spike output of tectal neurons, we showed that collision detection in the tadpole relies on the emergent properties of distributed recurrent networks within the tectum. We found that synaptic inhibition was temporally correlated with excitation, and did not actively sculpt stimulus selectivity, but rather it regulated the amount of integration between direct inputs from the retina and recurrent inputs from the tectum. Both pharmacological suppression and enhancement of synaptic inhibition disrupted emergent selectivity for looming stimuli. Taken together these findings suggested that, by regulating the amount of network activity, inhibition plays a critical role in maintaining selective sensitivity to behaviorally-relevant visual stimuli.
Collapse
Affiliation(s)
- Arseny S Khakhalin
- Department of Neuroscience, Brown University, Box G-LN, Providence, RI, 02912, USA
| | | | | | | | | |
Collapse
|
10
|
Pratt KG, Khakhalin AS. Modeling human neurodevelopmental disorders in the Xenopus tadpole: from mechanisms to therapeutic targets. Dis Model Mech 2013; 6:1057-65. [PMID: 23929939 PMCID: PMC3759326 DOI: 10.1242/dmm.012138] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Xenopus tadpole model offers many advantages for studying the molecular, cellular and network mechanisms underlying neurodevelopmental disorders. Essentially every stage of normal neural circuit development, from axon outgrowth and guidance to activity-dependent homeostasis and refinement, has been studied in the frog tadpole, making it an ideal model to determine what happens when any of these stages are compromised. Recently, the tadpole model has been used to explore the mechanisms of epilepsy and autism, and there is mounting evidence to suggest that diseases of the nervous system involve deficits in the most fundamental aspects of nervous system function and development. In this Review, we provide an update on how tadpole models are being used to study three distinct types of neurodevelopmental disorders: diseases caused by exposure to environmental toxicants, epilepsy and seizure disorders, and autism.
Collapse
Affiliation(s)
- Kara G. Pratt
- University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA
| | | |
Collapse
|
11
|
Gebhardt C, Baier H, Del Bene F. Direction selectivity in the visual system of the zebrafish larva. Front Neural Circuits 2013; 7:111. [PMID: 23785314 PMCID: PMC3685220 DOI: 10.3389/fncir.2013.00111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/28/2013] [Indexed: 12/01/2022] Open
Abstract
Neural circuits in the vertebrate retina extract the direction of object motion from visual scenes and convey this information to sensory brain areas, including the optic tectum. It is unclear how computational layers beyond the retina process directional inputs. Recent developmental and functional studies in the zebrafish larva, using minimally invasive optical imaging techniques, indicate that direction selectivity might be a genetically hardwired property of the zebrafish brain. Axons from specific direction-selective (DS) retinal ganglion cells appear to converge on distinct laminae in the superficial tectal neuropil where they serve as inputs to DS postsynaptic neurons of matching specificity. In addition, inhibitory recurrent circuits in the tectum might strengthen the DS response of tectal output neurons. Here we review these recent findings and discuss some controversies with a particular focus on the zebrafish tectum’s role in extracting directional features from moving visual scenes.
Collapse
Affiliation(s)
- Christoph Gebhardt
- Institut Curie, Centre de Recherche Paris, France ; CNRS UMR 3215 Paris, France ; INSERM U934 Paris, France
| | | | | |
Collapse
|
12
|
Kassing V, Engelmann J, Kurtz R. Monitoring of single-cell responses in the optic tectum of adult zebrafish with dextran-coupled calcium dyes delivered via local electroporation. PLoS One 2013; 8:e62846. [PMID: 23667529 PMCID: PMC3647071 DOI: 10.1371/journal.pone.0062846] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 03/26/2013] [Indexed: 11/18/2022] Open
Abstract
The zebrafish (Danio rerio) has become one of the major animal models for in vivo examination of sensory and neuronal computation. Similar to Xenopus tadpoles neural activity in the optic tectum, the major region controlling visually guided behavior, can be examined in zebrafish larvae by optical imaging. Prerequisites of these approaches are usually the transparency of larvae up to a certain age and the use of two-photon microscopy. This principle of fluorescence excitation was necessary to suppress crosstalk between signals from individual neurons, which is a critical issue when using membrane-permeant dyes. This makes the equipment to study neuronal processing costly and limits the approach to the study of larvae. Thus there is lack of knowledge about the properties of neurons in the optic tectum of adult animals. We established a procedure to circumvent these problems, enabling in vivo calcium imaging in the optic tectum of adult zebrafish. Following local application of dextran-coupled dyes single-neuron activity of adult zebrafish can be monitored with conventional widefield microscopy, because dye labeling remains restricted to tens of neurons or less. Among the neurons characterized with our technique we found neurons that were selective for a certain pattern orientation as well as neurons that responded in a direction-selective way to visual motion. These findings are consistent with previous studies and indicate that the functional integrity of neuronal circuits in the optic tectum of adult zebrafish is preserved with our staining technique. Overall, our protocol for in vivo calcium imaging provides a useful approach to monitor visual responses of individual neurons in the optic tectum of adult zebrafish even when only widefield microscopy is available. This approach will help to obtain valuable insight into the principles of visual computation in adult vertebrates and thus complement previous work on developing visual circuits.
Collapse
Affiliation(s)
- Vanessa Kassing
- AG Active Sensing and Center of Excellence ‘Cognitive Interaction Technology’, Bielefeld University, Bielefeld, Germany
| | - Jacob Engelmann
- AG Active Sensing and Center of Excellence ‘Cognitive Interaction Technology’, Bielefeld University, Bielefeld, Germany
| | - Rafael Kurtz
- Department of Neurobiology, Bielefeld University, Bielefeld, Germany
- * E-mail:
| |
Collapse
|
13
|
Spatiotemporal dynamics of functional clusters of neurons in the mouse motor cortex during a voluntary movement. J Neurosci 2013; 33:1377-90. [PMID: 23345214 DOI: 10.1523/jneurosci.2550-12.2013] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Functional clustering of neurons is frequently observed in the motor cortex. However, it is unknown if, when, and how fine-scale (<100 μm) functional clusters form relative to voluntary forelimb movements. In addition, the implications of clustering remain unclear. To address these issues, we conducted two-photon calcium imaging of mouse layer 2/3 motor cortex during a self-initiated lever-pull task. In the imaging session after 8-9 days of training, head-restrained mice had to pull a lever for ∼600 ms to receive a water drop, and then had to wait for >3 s to pull it again. We found two types of task-related cells in the mice: cells whose peak activities occurred during lever pulls (pull cells) and cells whose peak activities occurred after the end of lever pulls. The activity of pull cells was strongly associated with lever-pull duration. In ∼40% of imaged fields, functional clusterings were temporally detected during the lever pulls. Spatially, there were ∼70-μm-scale clusters that consisted of more than four pull cells in ∼50% of the fields. Ensemble and individual activities of pull cells within the cluster more accurately predicted lever movement trajectories than activities of pull cells outside the cluster. This was likely because clustered pull cells were more often active in the individual trials than pull cells outside the cluster. This higher fidelity of activity was related to higher trial-to-trial correlations of activities of pairs within the cluster. We propose that strong recurrent network clusters may represent the execution of voluntary movements.
Collapse
|
14
|
Podgorski K, Haas K. Fast non-negative temporal deconvolution for laser scanning microscopy. JOURNAL OF BIOPHOTONICS 2013; 6:153-162. [PMID: 22438321 DOI: 10.1002/jbio.201100133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 05/31/2023]
Abstract
Laser scanning microscopy (LSM) is a common technique for high resolution fluorescent imaging. Here we describe a fast algorithm for non-negative deconvolution and apply it to readout of LSM detector photocurrents. By broadening photon impulses and deconvolving sampled photocurrent, effective quantum efficiency of the imaging system is increased. Using simulation and imaging with a custom-built two-photon microscope, we demonstrate improved fidelity of images acquired at short dwell times over a wide range of photon rates. Images formed show increased correlation-to-sample equivalent to a 25% increase in photon rate, lower noise, and reduced bleed-through compared to conventional image generation.
Collapse
Affiliation(s)
- Kaspar Podgorski
- Department of Cellular and Physiological Sciences and the Brain Research Centre, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6T2B5, Canada
| | | |
Collapse
|
15
|
Ultra-bright and -stable red and near-infrared squaraine fluorophores for in vivo two-photon imaging. PLoS One 2012; 7:e51980. [PMID: 23251670 PMCID: PMC3522634 DOI: 10.1371/journal.pone.0051980] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/07/2012] [Indexed: 11/28/2022] Open
Abstract
Fluorescent dyes that are bright, stable, small, and biocompatible are needed for high-sensitivity two-photon imaging, but the combination of these traits has been elusive. We identified a class of squaraine derivatives with large two-photon action cross-sections (up to 10,000 GM) at near-infrared wavelengths critical for in vivo imaging. We demonstrate the biocompatibility and stability of a red-emitting squaraine-rotaxane (SeTau-647) by imaging dye-filled neurons in vivo over 5 days, and utility for sensitive subcellular imaging by synthesizing a specific peptide-conjugate label for the synaptic protein PSD-95.
Collapse
|
16
|
Chen SX, Cherry A, Tari PK, Podgorski K, Kwong YKK, Haas K. The transcription factor MEF2 directs developmental visually driven functional and structural metaplasticity. Cell 2012; 151:41-55. [PMID: 23021214 DOI: 10.1016/j.cell.2012.08.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 06/13/2012] [Accepted: 08/23/2012] [Indexed: 10/27/2022]
Abstract
Natural sensory input shapes both structure and function of developing neurons, but how early experience-driven morphological and physiological plasticity are interrelated remains unclear. Using rapid time-lapse two-photon calcium imaging of network activity and single-neuron growth within the unanesthetized developing brain, we demonstrate that visual stimulation induces coordinated changes to neuronal responses and dendritogenesis. Further, we identify the transcription factor MEF2A/2D as a major regulator of neuronal response to plasticity-inducing stimuli directing both structural and functional changes. Unpatterned sensory stimuli that change plasticity thresholds induce rapid degradation of MEF2A/2D through a classical apoptotic pathway requiring NMDA receptors and caspases-9 and -3/7. Knockdown of MEF2A/2D alone is sufficient to induce a metaplastic shift in threshold of both functional and morphological plasticity. These findings demonstrate how sensory experience acting through altered levels of the transcription factor MEF2 fine-tunes the plasticity thresholds of brain neurons during neural circuit formation.
Collapse
Affiliation(s)
- Simon Xuan Chen
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|