1
|
Wu Y, Tu G, Yuan Y, Liu J, Jiang Q, Liu Y, Wu Q, Wu L, Chen Y. The Molecular Chaperone TCP1 Affects Carcinogenicity and Is a Potential Therapeutic Target for Acute Myeloid Leukemia. Pharmaceutics 2025; 17:557. [PMID: 40430849 PMCID: PMC12114683 DOI: 10.3390/pharmaceutics17050557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Acute myeloid leukemia (AML) is an aggressive malignancy marked by high relapse rates and molecular heterogeneity, necessitating the identification of novel therapeutic targets. T-complex protein 1 (TCP1), a chaperonin implicated in protein folding, remains underexplored in AML pathogenesis. This study investigates the functional role of TCP1 in AML progression and evaluates its therapeutic potential. Methods: Using successive generations of xenografted tumor models, we systematically assessed the correlation between TCP1 expression and AML tumorigenicity. Functional consequences of TCP1 silence were evaluated through in vitro proliferation assays and in vivo tumor growth monitoring. Two distinct inhibitory strategies were employed: miR-340-5p-mediated transcriptional silencing and FTY720-induced disruption of TCP1 chaperone activity. Mechanistic insights were derived from ubiquitin-proteasome pathway analysis, cell cycle profiling, and apoptosis assays. Results: High TCP1 expression correlated strongly with enhanced AML tumorigenicity. Knockdown of TCP1 significantly inhibited AML cell growth and induced degradation of AML1-ETO and PLK1 proteins through the ubiquitin-proteasome pathway. miR-340-5p effectively silenced TCP1 expression, exhibiting an inverse correlation with TCP1 levels. FTY720 disrupted TCP1's chaperone function, leading to cell cycle arrest, apoptosis, and reduced xenograft tumor growth in murine models. Conclusion: Our findings establish TCP1 as a promising therapeutic target for AML. Both miR-340-5p and FTY720 demonstrate potent anti-leukemic effects by suppressing TCP1 activity, highlighting their potential as novel strategies to inhibit AML proliferation and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Yong Wu
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University (FMU), Union Hospital, Fuzhou 350122, China;
| | - Guihui Tu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou 350122, China; (G.T.); (Y.Y.); (J.L.); (Q.J.); (Q.W.)
| | - Yuxia Yuan
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou 350122, China; (G.T.); (Y.Y.); (J.L.); (Q.J.); (Q.W.)
| | - Jingwen Liu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou 350122, China; (G.T.); (Y.Y.); (J.L.); (Q.J.); (Q.W.)
| | - Qingna Jiang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou 350122, China; (G.T.); (Y.Y.); (J.L.); (Q.J.); (Q.W.)
| | - Yang Liu
- Department of Pharmacochemistry, School of Pharmacy, Fujian Medical University (FMU), Fuzhou 350122, China;
| | - Qiurong Wu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou 350122, China; (G.T.); (Y.Y.); (J.L.); (Q.J.); (Q.W.)
| | - Lixian Wu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou 350122, China; (G.T.); (Y.Y.); (J.L.); (Q.J.); (Q.W.)
| | - Yuanzhong Chen
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University (FMU), Union Hospital, Fuzhou 350122, China;
| |
Collapse
|
2
|
Liu H, Chen L, Chen Y, Jin Y, Chen X, Ma N, Yang F, Bi H, Wen X, Xu S, Chen J, Lin Y, Yang Y, Wu Y, Chen Y. TCP1 promotes the progression of malignant tumours by stabilizing c-Myc through the AKT/GSK-3β and ERK signalling pathways. Commun Biol 2025; 8:563. [PMID: 40185866 PMCID: PMC11971430 DOI: 10.1038/s42003-025-07867-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/03/2025] [Indexed: 04/07/2025] Open
Abstract
The chaperonin tailless complex polypeptide 1 (TCP1) is a key subunit of chaperonin containing TCP1 (CCT) that regulates the folding and stability of proteins during cancer progression. Here, the prognostic significance of TCP1 was explored mainly in patients with hepatocellular carcinoma (HCC) and pancreatic ductal adenocarcinoma (PDAC). We showed that TCP1 expression was significantly greater in clinically malignant tumour tissues than in normal tissues and that high TCP1 expression was associated with poor prognosis. TCP1 suppression not only decreased the proliferation and invasion of cancer cells in vitro but also inhibited tumour growth and metastasis in vivo. The underlying mechanisms were determined by ubiquitination assays and Co-IP (Co-Immunoprecipitation) experiments, and it was found that TCP1 regulated the stability of c-Myc through the RAC-alpha serine/threonine-protein kinase (AKT) /Glycogen synthase kinase 3β (GSK-3β) and extracellular regulated protein kinases (ERK) signalling pathways. Moreover, TCP1 knock-in (TCP1-KI) dramatically promoted the occurrence of diethylnitrosamine (DEN) -induced primary HCC in mice. Our results highlight the critical role of TCP1 in HCC and PDAC and reveal a novel mechanism to suppress HCC and PDAC by targeting c-Myc via the TCP1-induced promotion of the AKT/GSK-3β and ERK signalling pathways. TCP1 is able to modulate the stability of target proteins by multiple pathways, thus promoting the progression of HCC and PDAC. Our study identifies TCP1 as a prognostic novel marker and therapeutic target of HCC and PDAC.
Collapse
Affiliation(s)
- Hekun Liu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xuefu North Road, 350122, Fuzhou, Fujian, China
| | - Linying Chen
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, No. 20, Chazhong Road, 350005, Fuzhou, Fujian, China
| | - Yuwen Chen
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xuefu North Road, 350122, Fuzhou, Fujian, China
| | - Yiyi Jin
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xuefu North Road, 350122, Fuzhou, Fujian, China
| | - Xiance Chen
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xuefu North Road, 350122, Fuzhou, Fujian, China
| | - Nengjun Ma
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xuefu North Road, 350122, Fuzhou, Fujian, China
| | - Fan Yang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xuefu North Road, 350122, Fuzhou, Fujian, China
| | - Huixia Bi
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xuefu North Road, 350122, Fuzhou, Fujian, China
| | - Xinxin Wen
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xuefu North Road, 350122, Fuzhou, Fujian, China
| | - Shenmin Xu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xuefu North Road, 350122, Fuzhou, Fujian, China
| | - Juan Chen
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xuefu North Road, 350122, Fuzhou, Fujian, China
| | - Yanping Lin
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xuefu North Road, 350122, Fuzhou, Fujian, China
| | - Yinghong Yang
- Department of Pathology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Yong Wu
- Fujian Institute of Haematology, Fujian Key Laboratory on Haematology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, 350001, Fuzhou, Fujian, China.
| | - Yuanzhong Chen
- Fujian Institute of Haematology, Fujian Key Laboratory on Haematology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, 350001, Fuzhou, Fujian, China.
| |
Collapse
|
3
|
Shen PS, Willardson BM. Protein folding by the CCT/TRiC chaperone complex. Curr Opin Struct Biol 2025; 91:102999. [PMID: 39914052 PMCID: PMC11885017 DOI: 10.1016/j.sbi.2025.102999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 03/08/2025]
Abstract
The chaperonin-containing TCP-1 (CCT) complex, also known as TRiC, is an abundant and essential molecular chaperone responsible for folding a significant portion of the eukaryotic proteome. Prominent CCT folding clients include cytoskeletal proteins such as actin and tubulin, and proteins with β-propeller folds. Recent advances in cryo-EM have provided unprecedented insights into CCT's substrate-specific folding mechanisms. This review summarizes these discoveries, emphasizing how CCT utilizes its unique structural features to recognize and fold diverse substrates.
Collapse
Affiliation(s)
- Peter S Shen
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City UT 84112, USA.
| | - Barry M Willardson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo UT 84602, USA.
| |
Collapse
|
4
|
Bai YF, Shi XH, Zhang ML, Gu JH, Bai TL, Bai YB. Advances in the study of CCT3 in malignant tumors: A review. Medicine (Baltimore) 2025; 104:e41069. [PMID: 39928781 PMCID: PMC11813047 DOI: 10.1097/md.0000000000041069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 02/12/2025] Open
Abstract
Malignant tumors are among the leading causes of death worldwide, with their underlying mechanisms remaining largely unclear. Tumorigenesis is a complex process involving multiple factors, genes, and pathways. Tumor cells are characterized by abnormal proliferation, infiltration, invasion, and metastasis. Improving tumor diagnosis rates and identifying novel molecular therapeutic targets are of great significance for the advancement of modern medicine. Chaperonin containing TCP-1 subunit 3 (CCT3) is one of the subunits of the chaperonin containing TCP-1 complex, a molecular chaperone involved in protein folding and remodeling. CCT3 plays a crucial role in maintaining protein homeostasis, with key substrates including tubulin and actin. In recent years, CCT3 has been reported to be abnormally expressed in various cancers, correlating with prognosis and therapeutic outcomes. In this review, we summarize the basic structure and function of chaperonin containing TCP-1 complex and CCT3, and discuss the role of CCT3 in tumor development. Additionally, we explore its potential applications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yun-Feng Bai
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Xiao-Hui Shi
- Department of Thyroid Tumor Surgery, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| | | | - Jia-hui Gu
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Ta-La Bai
- Department of Thyroid Tumor Surgery, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| | - Yin-Bao Bai
- Department of Thyroid Tumor Surgery, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| |
Collapse
|
5
|
Jin M, Zang Y, Wang H, Cong Y. The conformational landscape of TRiC ring-opening and its underlying stepwise mechanism revealed by cryo-EM. QRB DISCOVERY 2024; 6:e7. [PMID: 40070846 PMCID: PMC11894413 DOI: 10.1017/qrd.2024.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 03/14/2025] Open
Abstract
The TRiC/CCT complex assists in the folding of approximately 10% of cytosolic proteins through an ATP-driven conformational cycle, playing a crucial role in maintaining protein homeostasis. Despite our understanding of ATP-driven TRiC ring closing and substrate folding, the process and mechanisms underlying TRiC ring-opening and substrate release remain largely unexplored. In this study, by determining an ensemble of cryo-EM structures of yeast TRiC in the presence of ADP, including three intermediate transition states, we present a comprehensive picture of the TRiC ring-opening process. During this process, CCT3 detects the loss of γ-phosphate and initiates with the dynamics of its apical protrusion, and expands to the outward leaning of the consecutive CCT6/8/7/5 subunits. This is followed by significant movements of CCT2, CCT4, and especially CCT1 subunits, resulting in the opening of the TRiC rings. We also observed an unforeseen temporary separation between the two rings in the CCT2 side, coordinating the release of the originally locked CCT4 N-terminus, which potentially participates in the ring-opening process. Collectively, our study reveals a stepwise TRiC ring-opening mechanism, provides a comprehensive view of the TRiC conformational landscape, and sheds lights on its subunit specificity in sensing nucleotide status and substrate release. Our findings deepen our understanding of protein folding assisted by TRiC and may inspire new strategies for the diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Mingliang Jin
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, China
| | - Yunxiang Zang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, China
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huping Wang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, China
| | - Yao Cong
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
6
|
Kwon HJ, Mun H, Oh JK, Choi GM, Yoo DY, Hwang IK, Kim DW, Moon SM. Neuroprotective Effects of Chaperonin Containing TCP1 Subunit 2 (CCT2) on Motor Neurons Following Oxidative or Ischemic Stress. Neurochem Res 2024; 50:42. [PMID: 39614031 DOI: 10.1007/s11064-024-04286-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/11/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024]
Abstract
Chaperonin containing TCP1 (CCT) is an essential protein that controls proteostasis following spinal cord damage. In particular, CCT2 plays an important role in neuronal death in various neurological disorders; however, few studies have investigated the effects of CCT2 on ischemic damage in the spinal cord. In the present study, we synthesized a cell-permeable Tat-CCT2 fusion protein and observed its effects on H2O2-induced oxidative damage in NSC34 motoneuron-like cells and in the spinal cord after ischemic injury. Tat-CCT2, but not its control protein CCTs, was delivered into NSC34 cells in a concentration- and incubation time-dependent manner, and a clear cytosolic location of the delivered protein was observed. In addition, the delivered protein gradually degraded, and nearly control levels were observed 24 h after Tat-CCT2 treatment. Tat-CCT2 treatment significantly ameliorated 200 µM H2O2-induced neuronal damage in NSC34 cells at 8.0 µM protein treatment. Additionally, Tat-CCT2 significantly ameliorated H2O2-induced reactive oxygen species formation and DNA fragmentation. In the rabbit spinal cord, Tat-CCT2 was efficiently delivered into the spinal cord 4 h after 0.125 mg/kg protein treatment. In addition, treatment with Tat-CCT2 significantly improved the neurological scores based on the Tarlov criteria 24 and 72 h after ischemia/reperfusion. Moreover, the number of surviving neurons in the ventral horn of the spinal cord was significantly increased in the Tat-CCT2-treated group 3 and 7 days after ischemia compared to vehicle-treated group. Treatment with Tat-CCT2 alleviated the ischemia-induced oxidative stress and ferroptosis-related factor (malondialdehyde, 8-iso-prostaglandin F2α, and high mobility group box 1) and pro-inflammatory cytokine (interleukin-1β, interleukin-6, and tumor necrosis factor-α) releases in the ventral horn of the spinal cord 8 and 24 h after ischemia/reperfusion. In addition, Tat-CCT2 treatment significantly ameliorated ischemia-induced microglial activation in the ventral horn of spinal cord 24 h after reperfusion. These results suggest that Tat-CCT2 mitigates ischemia-induced neuronal damage in the spinal cord.
Collapse
Affiliation(s)
- Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Hyunwoong Mun
- Department of Neurosurgery, College of Medicine, Hallym University Sacred Heart Hospital, Hallym University, Anyang, 14068, South Korea
| | - Jae Keun Oh
- Department of Neurosurgery, College of Medicine, Hallym University Sacred Heart Hospital, Hallym University, Anyang, 14068, South Korea
| | - Goang-Min Choi
- Department of Thoracic and Cardiovascular Surgery, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon, 24253, South Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea.
| | - Seung Myung Moon
- Department of Neurosurgery, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, 07441, South Korea.
- Research Institute for Complementary & Alternative Medicine, Hallym University, Chuncheon, 24253, South Korea.
| |
Collapse
|
7
|
Córdoba-Beldad CM, Grantham J. The CCTδ subunit of the molecular chaperone CCT is required for correct localisation of p150 Glued to spindle poles during mitosis. Eur J Cell Biol 2024; 103:151430. [PMID: 38897036 DOI: 10.1016/j.ejcb.2024.151430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
Chaperonin Containing Tailless complex polypeptide 1 (CCT) is a molecular chaperone composed of eight distinct subunits that can exist as individual monomers or as components of a double oligomeric ring, which is essential for the folding of actin and tubulin and other substrates. Here we assess the role of CCT subunits in the context of cell cycle progression by individual subunit depletions upon siRNA treatment in mammalian cells. The depletion of individual CCT subunits leads to variation in the distribution of cell cycle phases and changes in mitotic index. Mitotic defects, such as unaligned chromosomes occur when CCTδ is depleted, concurrent with a reduction in spindle pole-localised p150Glued, a component of the dynactin complex and a binding partner of monomeric CCTδ. In CCTδ-depleted cells, changes in the elution profile of p150Glued are observed consistent with altered conformations and or assembly states with the dynactin complex. Addition of monomeric CCTδ, in the form of GFP-CCTδ, restores correct p150Glued localisation to the spindle poles and rescues the mitotic segregation defects that occur when CCTδ is depleted. This study demonstrates a requirement for CCTδ in its monomeric form for correct chromosome segregation via a mechanism that promotes the correct localisation of p150Glued, thus revealing further complexities to the interplay between CCT, tubulin folding and microtubule dynamics.
Collapse
Affiliation(s)
- Carmen M Córdoba-Beldad
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Julie Grantham
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden.
| |
Collapse
|
8
|
Du R, Zhou Z, Huang Y, Li K, Guo K, Han L, Bian H. Chaperonin-containing TCP-1 subunit genes are potential prognostic biomarkers and are correlated with Th2 cell infiltration in lung adenocarcinoma: An observational study. Medicine (Baltimore) 2024; 103:e38387. [PMID: 39259093 PMCID: PMC11142841 DOI: 10.1097/md.0000000000038387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/06/2024] [Accepted: 05/07/2024] [Indexed: 09/12/2024] Open
Abstract
A family of molecular chaperone complexes called chaperonin-containing T-complex protein 1 (TCP-1) subunit genes (CCTs) aids in the folding of numerous proteins. With regard to lung adenocarcinoma (LUAD), this study provided a thorough understanding of the diagnostic and prognostic use of CCTs. The expression of CCTs in LUAD was evaluated by using databases including UALCAN and the Gene Expression Omnibus. Immunohistochemistry (IHC) was conducted to validate the expression of CCTs in LUAD. The mutation in the CCTs was identified through the cBioPortal database, while promoter methylation was measured by the UALCAN database. The prognostic value of CCTs was evaluated using the PrognoScan analysis. The GEPIA2.0 database was used to measure the prognostic value of CCTs and associated Hub genes. Correlation analysis between CCTs expression in LUAD was based on the GEPIA2.0 database. The ROC curves, clinical correlation analysis, gene ontology, Kyoto Encyclopedia of Genes and Genome analysis, and immune cell infiltration analysis were downloaded from The Cancer Genome Atlas database and then analyzed and visualized using the R language. The STRING database was used for protein-protein interaction analysis. Upregulation of CCTs expression in patients with LUAD indicated advanced diseases and a poor prognosis. ROC curve analysis revealed that the CCTs may serve as diagnostic indicators. The functional enrichment analysis showed that CCTs were involved in the mitosis-mediated cell cycle process. Additionally, 10 hub genes associated with CCTs that were linked to LUAD prognosis and tumor progression were identified. Immune cell infiltration analysis showed that CCTs expression in tumor tissues tends to be related to T helper type 2 cell infiltration. This study revealed that CCTs may serve as valuable biomarkers for the diagnosis and targeted therapy of LUAD.
Collapse
Affiliation(s)
- Ruijuan Du
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
| | - Zijun Zhou
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
| | - Yunlong Huang
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
| | - Kai Li
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
| | - Kelei Guo
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
| | - Li Han
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
| | - Hua Bian
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
| |
Collapse
|
9
|
Zhao F, Yao Z, Li Y, Zhao W, Sun Y, Yang X, Zhao Z, Huang B, Wang J, Li X, Chen A. Targeting the molecular chaperone CCT2 inhibits GBM progression by influencing KRAS stability. Cancer Lett 2024; 590:216844. [PMID: 38582394 DOI: 10.1016/j.canlet.2024.216844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
Proper protein folding relies on the assistance of molecular chaperones post-translation. Dysfunctions in chaperones can cause diseases associated with protein misfolding, including cancer. While previous studies have identified CCT2 as a chaperone subunit and an autophagy receptor, its specific involvement in glioblastoma remains unknown. Here, we identified CCT2 promote glioblastoma progression. Using approaches of coimmunoprecipitation, mass spectrometry and surface plasmon resonance, we found CCT2 directly bound to KRAS leading to increased stability and upregulated downstream signaling of KRAS. Interestingly, we found that dihydroartemisinin, a derivative of artemisinin, exhibited therapeutic effects in a glioblastoma animal model. We further demonstrated direct binding between dihydroartemisinin and CCT2. Treatment with dihydroartemisinin resulted in decreased KRAS expression and downstream signaling. Highlighting the significance of CCT2, CCT2 overexpression rescued the inhibitory effect of dihydroartemisinin on glioblastoma. In conclusion, the study demonstrates that CCT2 promotes glioblastoma progression by directly binding to and enhancing the stability of the KRAS protein. Additionally, dihydroartemisinin inhibits glioblastoma by targeting the CCT2 and the following KRAS signaling. Our findings overcome the challenge posed by the undruggable nature of KRAS and offer potential therapeutic strategies for glioblastoma treatment.
Collapse
Affiliation(s)
- Feihu Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China
| | - Zhong Yao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China
| | - Yaquan Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China
| | - Wenbo Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China
| | - Yanfei Sun
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China
| | - Xiaobing Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China
| | - Zhimin Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China; Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China.
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China.
| |
Collapse
|
10
|
Yu SK, Yu T, Wang YM, Sun A, Liu J, Lu KH. CCT6A facilitates lung adenocarcinoma progression and glycolysis via STAT1/HK2 axis. J Transl Med 2024; 22:460. [PMID: 38750462 PMCID: PMC11094951 DOI: 10.1186/s12967-024-05284-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Chaperonin Containing TCP1 Subunit 6 A (CCT6A) is a prominent protein involved in the folding and stabilization of newly synthesized proteins. However, its roles and underlying mechanisms in lung adenocarcinoma (LUAD), one of the most aggressive cancers, remain elusive. METHODS Our study utilized in vitro cell phenotype experiments to assess CCT6A's impact on the proliferation and invasion capabilities of LUAD cell lines. To delve into CCT6A's intrinsic mechanisms affecting glycolysis and proliferation in lung adenocarcinoma, we employed transcriptomic sequencing and liquid chromatography-mass spectrometry analysis. Co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (CHIP) assays were also conducted to substantiate the mechanism. RESULTS CCT6A was found to be significantly overexpressed in LUAD and associated with a poorer prognosis. The silencing of CCT6A inhibited the proliferation and migration of LUAD cells and elevated apoptosis rates. Mechanistically, CCT6A interacted with STAT1 protein, forming a complex that enhances the stability of STAT1 by protecting it from ubiquitin-mediated degradation. This, in turn, facilitated the transcription of hexokinase 2 (HK2), a critical enzyme in aerobic glycolysis, thereby stimulating LUAD's aerobic glycolysis and progression. CONCLUSION Our findings reveal that the CCT6A/STAT1/HK2 axis orchestrated a reprogramming of glucose metabolism and thus promoted LUAD progression. These insights position CCT6A as a promising candidate for therapeutic intervention in LUAD treatment.
Collapse
Affiliation(s)
- Shao-Kun Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Ming Wang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ao Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jia Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai-Hua Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
11
|
Chen B, Weng Y, Li M, Bian Z, Tao Y, Zhou W, Lu H, He S, Liao R, Huang J, Wang Q, Xu M, Ge Y, Cao W, Lei M, Zhang Y. LINC02454-CCT complex interaction is essential for telomerase activity and cell proliferation in head and neck squamous cell carcinoma. Cancer Lett 2024; 588:216734. [PMID: 38401886 DOI: 10.1016/j.canlet.2024.216734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
Telomerase activity is upregulated in head and neck squamous cell carcinoma (HNSCC), yet its regulatory mechanisms remain unclear. Here, we identified a cancer-specific lncRNA (LINC02454) associated with poor prognosis by using LncRNA chip of our HNSCC cohorts and external datasets. Through employing negative-stain transmission electron microscopy (NS-TEM), we discovered an interaction between LINC02454 and CCT complex which would augment telomerase activity for maintaining telomere homeostasis. Supporting this, in the telomerase repeat amplification protocol (TRAP) assay and quantitative fluorescence in situ hybridization (Q-FISH) analysis, LINC02454 depletion significantly reduced telomerase activity and shortened telomere length. Consistently, pathways related to telomerase, mitosis, and apoptosis were significantly impacted upon LINC02454 knockdown in RNAseq analysis. Functionally, LINC02454-deficient cells exhibited a more significant senescence phenotype in β-galactosidase staining, cell cycle, and apoptosis assays. We further confirmed the role of LINC02454 in HNSCC proliferation through a combination of in vitro and in vivo experiments. The therapeutic potential of targeting LINC02454 was verified by adenovirus-shRNA approach in HNSCC patient-derived xenograft (PDX) models. In summary, our findings provided valuable insights into the molecular mechanisms of HNSCC tumorigenesis and potential targets for future treatment modalities.
Collapse
Affiliation(s)
- Biying Chen
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Yue Weng
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mingyue Li
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhouliang Bian
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Ye Tao
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenkai Zhou
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Hong Lu
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shufang He
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rijing Liao
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Huang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Wang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Ming Xu
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Yunhui Ge
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Cao
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| | - Ming Lei
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yanjie Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
| |
Collapse
|
12
|
Zeng C, Han S, Pan Y, Huang Z, Zhang B, Zhang B. Revisiting the chaperonin T-complex protein-1 ring complex in human health and disease: A proteostasis modulator and beyond. Clin Transl Med 2024; 14:e1592. [PMID: 38363102 PMCID: PMC10870801 DOI: 10.1002/ctm2.1592] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Disrupted protein homeostasis (proteostasis) has been demonstrated to facilitate the progression of various diseases. The cytosolic T-complex protein-1 ring complex (TRiC/CCT) was discovered to be a critical player in orchestrating proteostasis by folding eukaryotic proteins, guiding intracellular localisation and suppressing protein aggregation. Intensive investigations of TRiC/CCT in different fields have improved the understanding of its role and molecular mechanism in multiple physiological and pathological processes. MAIN BODY In this review, we embark on a journey through the dynamic protein folding cycle of TRiC/CCT, unraveling the intricate mechanisms of its substrate selection, recognition, and intriguing folding and assembly processes. In addition to discussing the critical role of TRiC/CCT in maintaining proteostasis, we detail its involvement in cell cycle regulation, apoptosis, autophagy, metabolic control, adaptive immunity and signal transduction processes. Furthermore, we meticulously catalogue a compendium of TRiC-associated diseases, such as neuropathies, cardiovascular diseases and various malignancies. Specifically, we report the roles and molecular mechanisms of TRiC/CCT in regulating cancer formation and progression. Finally, we discuss unresolved issues in TRiC/CCT research, highlighting the efforts required for translation to clinical applications, such as diagnosis and treatment. CONCLUSION This review aims to provide a comprehensive view of TRiC/CCT for researchers to inspire further investigations and explorations of potential translational possibilities.
Collapse
Affiliation(s)
- Chenglong Zeng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Shenqi Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yonglong Pan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Binhao Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Organ Transplantation, Ministry of EducationWuhanChina
- Key Laboratory of Organ Transplantation, National Health CommissionWuhanChina
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical SciencesWuhanChina
| |
Collapse
|
13
|
Zheng L, Chen X, Zhang L, Qin N, An J, Zhu J, Jin H, Tuo B. A potential tumor marker: Chaperonin containing TCP‑1 controls the development of malignant tumors (Review). Int J Oncol 2023; 63:106. [PMID: 37539774 PMCID: PMC10552740 DOI: 10.3892/ijo.2023.5554] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023] Open
Abstract
Due to concealment, high invasiveness and a lack of indicators, malignant tumors have emerged as one of the deadliest diseases worldwide and their incidence is rising yearly. Research has revealed that the chaperonin family member, chaperonin containing TCP‑1 (CCT), serves a crucial role in malignant tumors. CCT is involved in the growth of numerous malignant tumors such as lung cancer, breast cancer, hepatocellular carcinoma and colorectal cancer and assists the folding of a number of proteins linked to cancer, such as KRAS, p53 and STAT3. According to clinical data, CCT is highly expressed in a range of tumor cells and is associated with poor patient prognosis. In addition, through controlling the cell cycle or interacting with other proteins (including YAP1, HoXB2 and SMAD2), CCT has an effect on the proliferation, invasion and migration of cancer cells. As a result, it is possible that CCT will become a new tumor marker or therapeutic target, which will provide some guidance for early tumor screening or late tumor prognosis. In the present review, the molecular properties of CCT are introduced, alongside a summary of its interactions with other cancer‑related proteins and a discussion of its function in common malignant tumors. It is expected that the present review will offer fresh approaches to the treatment of cancer.
Collapse
Affiliation(s)
- Liming Zheng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Xingyue Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Nannan Qin
- Department of Critical Care Medicine of the First People's Hospital of Zunyi (The Third Affiliated Hospital), Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| |
Collapse
|
14
|
Yu T, Zhang Q, Yu SK, Nie FQ, Zhang ML, Wang Q, Lu KH. THOC3 interacts with YBX1 to promote lung squamous cell carcinoma progression through PFKFB4 mRNA modification. Cell Death Dis 2023; 14:475. [PMID: 37500615 PMCID: PMC10374565 DOI: 10.1038/s41419-023-06008-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
The THO complex (THOC) is ubiquitously involved in RNA modification and various THOC proteins have been reported to regulate tumor development. However, the role of THOC3 in lung cancer remains unknown. In this study, we identified that THOC3 was highly expressed in lung squamous cell carcinoma (LUSC) and negatively associated with prognosis. THOC3 knockdown inhibited LUSC cell growth, migration, and glycolysis. THOC3 expression was regulated by TRiC proteins, such as CCT8 and CCT6A, which supported protein folding. Furthermore, THOC3 could form a complex with YBX1 to promote PFKFB4 transcription. THOC3 was responsible for exporting PFKFB4 mRNA to the cytoplasm, while YBX1 ensured the stability of PFKFB4 mRNA by recognizing m5C sites in its 3'UTR. Downregulation of PFKFB4 suppressed the biological activities of LUSC. Collectively, these findings suggest that THOC3, folded by CCT proteins can collaborate with YBX1 to maintain PFKFB4 expression and facilitate LUSC development. Therefore, THOC3 could be considered as a novel promising therapeutic target for LUSC.
Collapse
Affiliation(s)
- Tao Yu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Qi Zhang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
- Department of Oncology, the Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Shao-Kun Yu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Feng-Qi Nie
- Department of Oncology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mei-Ling Zhang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Qian Wang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Kai-Hua Lu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China.
| |
Collapse
|
15
|
Liu C, Jin M, Wang S, Han W, Zhao Q, Wang Y, Xu C, Diao L, Yin Y, Peng C, Bao L, Wang Y, Cong Y. Pathway and mechanism of tubulin folding mediated by TRiC/CCT along its ATPase cycle revealed using cryo-EM. Commun Biol 2023; 6:531. [PMID: 37193829 DOI: 10.1038/s42003-023-04915-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023] Open
Abstract
The eukaryotic chaperonin TRiC/CCT assists the folding of about 10% of cytosolic proteins through an ATP-driven conformational cycle, and the essential cytoskeleton protein tubulin is the obligate substrate of TRiC. Here, we present an ensemble of cryo-EM structures of endogenous human TRiC throughout its ATPase cycle, with three of them revealing endogenously engaged tubulin in different folding stages. The open-state TRiC-tubulin-S1 and -S2 maps show extra density corresponding to tubulin in the cis-ring chamber of TRiC. Our structural and XL-MS analyses suggest a gradual upward translocation and stabilization of tubulin within the TRiC chamber accompanying TRiC ring closure. In the closed TRiC-tubulin-S3 map, we capture a near-natively folded tubulin-with the tubulin engaging through its N and C domains mainly with the A and I domains of the CCT3/6/8 subunits through electrostatic and hydrophilic interactions. Moreover, we also show the potential role of TRiC C-terminal tails in substrate stabilization and folding. Our study delineates the pathway and molecular mechanism of TRiC-mediated folding of tubulin along the ATPase cycle of TRiC, and may also inform the design of therapeutic agents targeting TRiC-tubulin interactions.
Collapse
Affiliation(s)
- Caixuan Liu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Mingliang Jin
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Shutian Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wenyu Han
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qiaoyu Zhao
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yifan Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Cong Xu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lei Diao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, CAS, 201210, Shanghai, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, CAS, 201210, Shanghai, China
| | - Lan Bao
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yanxing Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yao Cong
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
16
|
Wang H, Zhang L, Liu B, Su J, Ni X. Role of CCT4/ErbB signaling in nephroblastoma: Implications for a biomarker of Wilms tumor. Medicine (Baltimore) 2023; 102:e33219. [PMID: 37058032 PMCID: PMC10101284 DOI: 10.1097/md.0000000000033219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/16/2023] [Indexed: 04/15/2023] Open
Abstract
Wilms tumor is a common abdominal malignant tumor in children. However, the molecular mechanism of Wilms tumor is unclear. GSE66405 and GSE197047 were obtained from the Gene Expression Omnibus database. To identify differentially expressed genes (DEGs) in Wilms tumor, the R package "limma" was used. Weighted gene co-expression network analysis was performed to identify the significant module. The list of DEGs was input into the Search Tool for the Retrieval of Interacting Genes database to construct a protein-protein interaction network for predicting core genes. Gene Ontology analysis and the Kyoto Encyclopedia of Genes and Genomes analysis are computational methods for assessing gene function and biological pathways. The genome was analyzed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes and developed by gene set enrichment analysis. Comparative Toxicogenomics Database analysis was performed to find the diseases most related to the core genes. TargetScan was used to screen for miRNAs that regulate hub genes. A total of 925 DEGs were identified. The differently expressed genes were mainly enriched in the metabolic pathway, AMPK signaling pathway, ErbB signaling pathway, mRNA detection pathway, and folded protein binding. A total of 16 core genes (HNRNPK, PABPC1, HNRNPD, NCL, YBX1, EIF4G1, KHDRBS1, HNRNPAB, HSPA4, EEF2, HSP90AA1, EEF1A1, A TP5A1, SDHA, CCT4, CCT5) were obtained. chaperonin containing TCP-1 subunit 4 (CCT4) was downregulated in tumor tissue samples, which may have reverse regulatory significance for Wilms tumor. CCT4, HSP90AA1, NCL, PABPC1, and YBX1 were found to be associated with kidney disease, acute kidney injury, edema, tumor metastasis, transitional cell carcinoma, necrosis, and inflammation. The research found that the related miRNA of the CCT4 gene was hsamiR-7-5p. CCT4 might play an essential role in the occurrence and development of Wilms tumor, and they may participate in the occurrence and development of Wilms tumor through the ERBB signal pathway. CCT4 may be a promising biomarker of Wilms tumor.
Collapse
Affiliation(s)
- Haoyuan Wang
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Lei Zhang
- Department of Urology Surgery, Fuxing Hospital Affiliated to Capital Medical University, Xicheng District, Beijing, PR China
| | - Bin Liu
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Jianzhi Su
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Xiaochen Ni
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| |
Collapse
|
17
|
Kasembeli MM, Kaparos E, Bharadwaj U, Allaw A, Khouri A, Acot B, Tweardy DJ. Aberrant function of pathogenic STAT3 mutant proteins is linked to altered stability of monomers and homodimers. Blood 2023; 141:1411-1424. [PMID: 36240433 PMCID: PMC10651785 DOI: 10.1182/blood.2021015330] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 11/20/2022] Open
Abstract
STAT3 mutations, predominantly in the DNA-binding domain (DBD) and Src-homology 2 domain (SH2D), cause rare cases of immunodeficiency, malignancy, and autoimmunity. The exact mechanisms by which these mutations abrogate or enhance STAT3 function are not completely understood. Here, we examined how loss-of-function (LOF) and gain-of-function (GOF) STAT3 mutations within the DBD and SH2D affect monomer and homodimer protein stability as well as their effect on key STAT3 activation events, including recruitment to phosphotyrosine (pY) sites within peptide hormone receptors, tyrosine phosphorylation at Y705, dimerization, nuclear translocation, and DNA binding. The DBD LOF mutants showed reduced DNA binding when homodimerized, whereas the DBD GOF mutants showed increased DNA binding. DBD LOF and GOF mutants showed minimal changes in other STAT3 functions or in monomer or homodimer protein stability. However, SH2D LOF mutants demonstrated reduced conformational stability as either monomers or homodimers, leading to decreased pY-peptide recruitment, tyrosine phosphorylation, dimerization, nuclear localization, and DNA binding. In contrast, cancer-causing SH2D GOF mutants showed increased STAT3 homodimer stability, which increased their DNA binding. Of note, a small-molecule inhibitor of STAT3 that targets the tyrosine phosphopeptide-binding pocket within the STAT3 SH2D potently inhibited cell proliferation driven by STAT3 SH2D GOF mutants. These findings indicate that the stability of STAT3 protein monomer and homodimer is critical for the pathogenesis of diseases caused by SH2D LOF and GOF mutations and suggest that agents that modulate STAT3 monomer and/or homodimer protein stability may have therapeutic value in diseases caused by these mutations.
Collapse
Affiliation(s)
- Moses M. Kasembeli
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Efiyenia Kaparos
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Uddalak Bharadwaj
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ahmad Allaw
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alain Khouri
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bianca Acot
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - David J. Tweardy
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
18
|
Han W, Jin M, Liu C, Zhao Q, Wang S, Wang Y, Yin Y, Peng C, Wang Y, Cong Y. Structural basis of plp2-mediated cytoskeletal protein folding by TRiC/CCT. SCIENCE ADVANCES 2023; 9:eade1207. [PMID: 36921056 PMCID: PMC10017041 DOI: 10.1126/sciadv.ade1207] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
The cytoskeletal proteins tubulin and actin are the obligate substrates of TCP-1 ring complex/Chaperonin containing TCP-1 (TRiC/CCT), and their folding involves co-chaperone. Through cryo-electron microscopy analysis, we present a more complete picture of TRiC-assisted tubulin/actin folding along TRiC adenosine triphosphatase cycle, under the coordination of co-chaperone plp2. In the open S1/S2 states, plp2 and tubulin/actin engaged within opposite TRiC chambers. Notably, we captured an unprecedented TRiC-plp2-tubulin complex in the closed S3 state, engaged with a folded full-length β-tubulin and loaded with a guanosine triphosphate, and a plp2 occupying opposite rings. Another closed S4 state revealed an actin in the intermediate folding state and a plp2. Accompanying TRiC ring closure, plp2 translocation could coordinate substrate translocation on the CCT6 hemisphere, facilitating substrate stabilization and folding. Our findings reveal the folding mechanism of the major cytoskeletal proteins tubulin/actin under the coordination of the biogenesis machinery TRiC and plp2 and extend our understanding of the links between cytoskeletal proteostasis and related human diseases.
Collapse
Affiliation(s)
- Wenyu Han
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingliang Jin
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Caixuan Liu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiaoyu Zhao
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shutian Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yifan Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, CAS, Shanghai 201210, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, CAS, Shanghai 201210, China
| | - Yanxing Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yao Cong
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Chen Y, Kang J, Zhen R, Zhang L, Chen C. A genome-wide CRISPR screen identifies the CCT chaperonin as a critical regulator of vesicle trafficking. FASEB J 2023; 37:e22757. [PMID: 36607310 DOI: 10.1096/fj.202201580r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
Vesicle trafficking is a fundamental cellular process that controls the transport of various proteins and cargos between cellular compartments in eukaryotes. Using a combination of genome-wide CRISPR screening in mammalian cells and RNAi screening in Caenorhabditis elegans, we identify chaperonin containing TCP-1 subunit 4 (CCT4) as a critical regulator of protein secretion and vesicle trafficking. In C. elegans, deficiency of cct-4 as well as other CCT subunits impairs the trafficking of endocytic markers in intestinal cells, and this defect resembles that of dyn-1 RNAi worms. Consistent with these findings, the silencing of CCT4 in human cells leads to defective endosomal trafficking, and this defect can be rescued by the dynamin activator Ryngo 1-23. These results suggest that the cytosolic chaperonin CCT may regulate vesicle trafficking by promoting the folding of dynamin in addition to its known substrate tubulin. Our findings establish an essential role for the CCT chaperonin in regulating vesicle trafficking, and provide new insights into the regulation of vesicle trafficking and the cellular function of the cytosolic chaperonin.
Collapse
Affiliation(s)
- Yongtian Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jing Kang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ru Zhen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Liyang Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Caiyong Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Li M, Zeng J, Chang Y, Lv L, Ye G. CCT3 as a Diagnostic and Prognostic Biomarker in Cervical Cancer. Crit Rev Eukaryot Gene Expr 2023; 33:17-28. [PMID: 37522542 DOI: 10.1615/critreveukaryotgeneexpr.2023048208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The chaperonin-containing TCP1 complex subunit 3 (CCT3) has been reported to be involved in the development and prognosis of many tumors, including cervical cancer (CC). This study aimed to analyze the expression and prognostic value of CCT3 in CC by bioinformatics and retrospective study. CCT3 gene expression profiles and clinical information in CC were downloaded from the cancer genome atlas (TCGA) and gene expression omnibus (GEO) databases. CCT3 expression was verified by quantitative real-time polymerase chain reaction (RT-qPCR), Western blot, and immunohistochemistry (IHC). Logistic regression and chi-square testing were used to analyze the relationship between CCT3 expression and the clinical characteristics of CC. Kaplan-Meier and Cox analyses were used to evaluate whether CCT3 affects the prognosis of CC. Nomogram and calibration curves were used to test the predictive value of CCT3. The expression of CCT3 in CC tissues was significantly upregulated compared with that in adjacent benign tissues, and was related to HPV16/18 infection, grade, and positive lymph nodes. High expression of CCT3 is associated with poor prognosis of CC and can be used as an independent risk factor for CC. The prognostic model based on CCT3 and CC clinical features has good predictive ability. CCT3 is overexpressed in CC, which is related to poor prognosis and expected to become a biomarker for CC.
Collapse
Affiliation(s)
- Man Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233030, China
| | - Jianmin Zeng
- Affiliated Hospital of Kunming University of Science and Technology, First People's Hospital of Yunnan Province, Kunming, 650500, China
| | - Yuhuan Chang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233030, China
| | - Lili Lv
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233030, China
| | - Guoliu Ye
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233030, China
| |
Collapse
|
21
|
Zeng W, Wu M, Cheng Y, Liu L, Han Y, Xie Q, Li J, Wei L, Fang Y, Chen Y, Peng J, Shen A. CCT6A knockdown suppresses osteosarcoma cell growth and Akt pathway activation in vitro. PLoS One 2022; 17:e0279851. [PMID: 36584147 PMCID: PMC9803215 DOI: 10.1371/journal.pone.0279851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
We assessed the role of the protein-coding gene chaperonin-containing TCP1 subunit 6A (CCT6A) in osteosarcoma, as this is currently unknown. Using data from the R2 online genomic analysis and visualization application, we found that CCT6A messenger ribonucleic acid (RNA) expression is increased in osteosarcoma tissue and cells. Transfection of CCT6A small interfering RNA into cultured osteosarcoma cells revealed that CCT6A knockdown attenuates cell growth, cell viability, cell survival, and induced apoptosis and cell cycle progression at the G0/G1 phases. Moreover, CCT6A knockdown downregulated phospho-protein kinase B (p-Akt), cyclinD1 and B-cell lymphoma-2, whereas upregulated Bcl-2-associated X-protein expression. Thus, CCT6A knockdown inhibits cell proliferation, induces cell apoptosis, and suppresses the Akt pathway.
Collapse
Affiliation(s)
- Weiquan Zeng
- Department of Orthopaedics, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Liya Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yuying Han
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Qiurong Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jiapeng Li
- Department of Physical Education, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Lihui Wei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yi Fang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Youqin Chen
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children’s Hospital, Cleveland, Ohio, United States of America
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- * E-mail: (JP); (AS)
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- * E-mail: (JP); (AS)
| |
Collapse
|
22
|
Cox A, Nierenberg D, Camargo O, Lee E, Khaled AS, Mazar J, Boohaker RJ, Westmoreland TJ, Khaled AR. Chaperonin containing TCP-1 (CCT/TRiC) is a novel therapeutic and diagnostic target for neuroblastoma. Front Oncol 2022; 12:975088. [PMID: 36185250 PMCID: PMC9520665 DOI: 10.3389/fonc.2022.975088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Chaperonin containing TCP1 (CCT/TRiC) is a multi-subunit protein folding complex that enables the cancer phenotype to emerge from the mutational landscape that drives oncogenesis. We and others linked increased expression of CCT subunits to advanced tumor stage and invasiveness that inversely correlates with cancer patient outcomes. In this study, we examined the expression of the second CCT subunit, CCT2, using genomic databases of adult and pediatric tumors and normal tissues, and found that it was highly expressed in pediatric cancers, showing a significant difference compared to normal tissues. Histologic staining confirmed that CCT subunits are highly expressed in tumor tissues, which was exemplified in neuroblastoma. Using two neuroblastoma cells, MYCN-amplified, IMR-32 cells, and non-amplified, SK-N-AS cells, we assessed baseline levels for CCT subunits and found expressions comparable to the highly invasive triple-negative breast cancer (TNBC) cell line, MDA-MB-231. Exogenous expression of CCT2 in both SK-N-AS and IMR-32 cells resulted in morphological changes, such as larger cell size and increased adherence, with significant increases in the CCT substrates, actin, and tubulin, as well as increased migration. Depletion of CCT2 reversed these effects and reduced cell viability. We evaluated CCT as a therapeutic target in IMR-32 cells by testing a novel peptide CCT inhibitor, CT20p. Treatment with CT20p induced cell death in these neuroblastoma cells. The use of CCT2 as a biological indicator for detection of neuroblastoma cells shed in blood was examined by spiking IMR-32 cells into human blood and using an anti-CCT2 antibody for the identification of spiked cancer cells with the CellSearch system. Results showed that using CCT2 for the detection of neuroblastoma cells in blood was more effective than the conventional approach of using epithelial markers like cytokeratins. CCT2 plays an essential role in promoting the invasive capacity of neuroblastoma cells and thus offers the potential to act as a molecular target in the development of novel therapeutics and diagnostics for pediatric cancers.
Collapse
Affiliation(s)
- Amanda Cox
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Daniel Nierenberg
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Oscar Camargo
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Eunkyung Lee
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL, United States
| | - Amr S. Khaled
- Pathology and Laboratory Medicine, Orlando VA Medical Center, Orlando, FL, United States
| | - Joseph Mazar
- Department of Oncology, Southern Research Institute, Nemours Children’s Hospital, Orlando, FL, United States
| | - Rebecca J. Boohaker
- Department of Biomedical Research, Nemours Children’s Hospital, Southern Research, Birmingham, AL, United States
| | - Tamarah J. Westmoreland
- Department of Oncology, Southern Research Institute, Nemours Children’s Hospital, Orlando, FL, United States
| | - Annette R. Khaled
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
- *Correspondence: Annette R. Khaled,
| |
Collapse
|
23
|
Liu W, Lu Y, Yan X, Lu Q, Sun Y, Wan X, Li Y, Zhao J, Li Y, Jiang G. Current understanding on the role of CCT3 in cancer research. Front Oncol 2022; 12:961733. [PMID: 36185198 PMCID: PMC9520704 DOI: 10.3389/fonc.2022.961733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Chaperonin containing TCP1 Subunit 3 (CCT3) is an important member of the chaperone protein family, providing a favorable environment for the correct folding of proteins in cell division, proliferation, and apoptosis pathways, which is involved in a variety of biological processes as well as the development and invasion of many malignant tumors. Many malignancies have been extensively examined with CCT3. It is presently used as a possible target for the treatment of many malignancies since it is not only a novel biomarker for the screening and diagnosis of different tumors, but it is also closely associated with tumor progression, prognosis, and survival. Recent studies have shown that the expression of CCT3 is up-regulated in some tumors, such as liver cancer, breast cancer, colon cancer, acute myeloid leukemia, etc. In this paper, we review the role of CCT3 in various tumors.
Collapse
Affiliation(s)
- Wenlou Liu
- Department of Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yu Lu
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiang Yan
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Quansheng Lu
- Department of Dermatology, The People’s Hospital of Jiawang District of Xuzhou, Xuzhou, China
| | - Yujin Sun
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiao Wan
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yizhi Li
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jiaqin Zhao
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuchen Li
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- *Correspondence: Guan Jiang,
| |
Collapse
|
24
|
Chaperonin containing TCP1 as a marker for identification of circulating tumor cells in blood. PLoS One 2022; 17:e0264651. [PMID: 35749519 PMCID: PMC9232171 DOI: 10.1371/journal.pone.0264651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
Herein we report the use of Chaperonin-Containing TCP-1 (CCT or TRiC) as a marker to detect circulating tumor cells (CTCs) that are shed from tumors during oncogenesis. Most detection methods used in liquid biopsy approaches for enumeration of CTCs from blood, employ epithelial markers like cytokeratin (CK). However, such markers provide little information on the potential of these shed tumor cells, which are normally short-lived, to seed metastatic sites. To identify a marker that could go beyond enumeration and provide actionable data on CTCs, we evaluated CCT. CCT is a protein-folding complex composed of eight subunits. Previously, we found that expression of the second subunit (CCT2 or CCTβ) inversely correlated with cancer patient survival and was essential for tumorigenesis in mice, driving tumor-promoting processes like proliferation and anchorage-independent growth. In this study, we examined CCT2 expression in cancer compared to normal tissues and found statistically significant increases in tumors. Because not all blood samples from cancer patients contain detectable CTCs, we used the approach of spiking a known number of cancer cells into blood from healthy donors to test a liquid biopsy approach using CCT2 to distinguish rare cancer cells from the large number of non-cancer cells in blood. Using a clinically validated method for capturing CTCs, we evaluated detection of intracellular CCT2 staining for visualization of breast cancer and small cell lung (SCLC) cancer cells. We demonstrated that CCT2 staining could be incorporated into a CTC capture and staining protocol, providing biologically relevant information to improve detection of cancer cells shed in blood. These results were confirmed with a pilot study of blood from SCLC patients. Our studies demonstrate that detection of CCT2 could identify rare cancer cells in blood and has application in liquid biopsy approaches to enhance the use of minimally invasive methods for cancer diagnosis.
Collapse
|
25
|
Ghozlan H, Cox A, Nierenberg D, King S, Khaled AR. The TRiCky Business of Protein Folding in Health and Disease. Front Cell Dev Biol 2022; 10:906530. [PMID: 35602608 PMCID: PMC9117761 DOI: 10.3389/fcell.2022.906530] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 01/03/2023] Open
Abstract
Maintenance of the cellular proteome or proteostasis is an essential process that when deregulated leads to diseases like neurological disorders and cancer. Central to proteostasis are the molecular chaperones that fold proteins into functional 3-dimensional (3D) shapes and prevent protein aggregation. Chaperonins, a family of chaperones found in all lineages of organisms, are efficient machines that fold proteins within central cavities. The eukaryotic Chaperonin Containing TCP1 (CCT), also known as Tailless complex polypeptide 1 (TCP-1) Ring Complex (TRiC), is a multi-subunit molecular complex that folds the obligate substrates, actin, and tubulin. But more than folding cytoskeletal proteins, CCT differs from most chaperones in its ability to fold proteins larger than its central folding chamber and in a sequential manner that enables it to tackle proteins with complex topologies or very large proteins and complexes. Unique features of CCT include an asymmetry of charges and ATP affinities across the eight subunits that form the hetero-oligomeric complex. Variable substrate binding capacities endow CCT with a plasticity that developed as the chaperonin evolved with eukaryotes and acquired functional capacity in the densely packed intracellular environment. Given the decades of discovery on the structure and function of CCT, much remains unknown such as the scope of its interactome. New findings on the role of CCT in disease, and potential for diagnostic and therapeutic uses, heighten the need to better understand the function of this essential molecular chaperone. Clues as to how CCT causes cancer or neurological disorders lie in the early studies of the chaperonin that form a foundational knowledgebase. In this review, we span the decades of CCT discoveries to provide critical context to the continued research on the diverse capacities in health and disease of this essential protein-folding complex.
Collapse
Affiliation(s)
- Heba Ghozlan
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
- Department of Physiology and Biochemistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Amanda Cox
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Daniel Nierenberg
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Stephen King
- Division of Neuroscience, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Annette R. Khaled
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
26
|
Anticarin- β shows a promising anti-osteosarcoma effect by specifically inhibiting CCT4 to impair proteostasis. Acta Pharm Sin B 2022; 12:2268-2279. [PMID: 35646538 PMCID: PMC9136613 DOI: 10.1016/j.apsb.2021.12.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/04/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022] Open
Abstract
Unlike healthy, non-transformed cells, the proteostasis network of cancer cells is taxed to produce proteins involved in tumor development. Cancer cells have a higher dependency on molecular chaperones to maintain proteostasis. The chaperonin T-complex protein ring complex (TRiC) contains eight paralogous subunits (CCT1-8), and assists the folding of as many as 10% of cytosolic proteome. TRiC is essential for the progression of some cancers, but the roles of TRiC subunits in osteosarcoma remain to be explored. Here, we show that CCT4/TRiC is significantly correlated in human osteosarcoma, and plays a critical role in osteosarcoma cell survival. We identify a compound anticarin-β that can specifically bind to and inhibit CCT4. Anticarin-β shows higher selectivity in cancer cells than in normal cells. Mechanistically, anticarin-β potently impedes CCT4-mediated STAT3 maturation. Anticarin-β displays remarkable antitumor efficacy in orthotopic and patient-derived xenograft models of osteosarcoma. Collectively, our data uncover a key role of CCT4 in osteosarcoma, and propose a promising treatment strategy for osteosarcoma by disrupting CCT4 and proteostasis.
Collapse
|
27
|
Tang W, Lu Q, Zhu J, Zheng X, Fang N, Ji S, Lu F. Identification of a Prognostic Signature Composed of GPI, IL22RA1, CCT6A and SPOCK1 for Lung Adenocarcinoma Based on Bioinformatic Analysis of lncRNA-Mediated ceRNA Network and Sample Validation. Front Oncol 2022; 12:844691. [PMID: 35433415 PMCID: PMC9012227 DOI: 10.3389/fonc.2022.844691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most common malignant tumors with high morbidity and mortality in China and worldwide. Long non-coding RNAs (lncRNAs) as the competing endogenous RNA (ceRNA) play an essential role in the occurrence and development of LUAD. However, identifying lncRNA-related biomarkers to improve the accuracy of LUAD prognosis remains to be determined. This study downloaded RNA sequence data from The Cancer Genome Atlas (TCGA) database and identified the differential RNAs by bioinformatics. A total of 214 lncRNA, 198 miRNA and 2989 mRNA were differentially identified between LUAD and adjacent nontumor samples. According to the ceRNA hypothesis, we constructed a lncRNA-miRNA-mRNA network including 95 protein-coding mRNAs, 7 lncRNAs and 15 miRNAs, and found 24 node genes in this network were significantly associated with the overall survival of LUAD patients. Subsequently, through LASSO regression and multivariate Cox regression analyses, a four-gene prognostic signature composed of GPI, IL22RA1, CCT6A and SPOCK1 was developed based on the node genes of the lncRNA-mediated ceRNA network, demonstrating high performance in predicting the survival and chemotherapeutic responses of low- and high-risk LUAD patients. Finally, independent prognostic factors were further analyzed and combined into a well-executed nomogram that showed strong potential for clinical applications. In summary, the data from the current study suggested that the four-gene signature obtained from analysis of lncRNA-mediated ceRNA could serve as a reliable biomarker for LUAD prognosis and evaluation of chemotherapeutic response.
Collapse
Affiliation(s)
- Wenjun Tang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China.,Department of Immunology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Qiaonan Lu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jianling Zhu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China.,Department of Immunology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xiaowei Zheng
- Department of Clinical Laboratory, Puyang Hospital of Traditional Chinese Medicine, Puyang, China
| | - Na Fang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shaoping Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Feng Lu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China.,Department of Immunology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
28
|
Phan TH, Kim SY, Rudge C, Chrzanowski W. Made by cells for cells - extracellular vesicles as next-generation mainstream medicines. J Cell Sci 2022; 135:273969. [PMID: 35019142 DOI: 10.1242/jcs.259166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Current medicine has only taken us so far in reducing disease and tissue damage. Extracellular vesicles (EVs), which are membranous nanostructures produced naturally by cells, have been hailed as a next-generation medicine. EVs deliver various biomolecules, including proteins, lipids and nucleic acids, which can influence the behaviour of specific target cells. Since EVs not only mirror composition of their parent cells but also modify the recipient cells, they can be used in three key areas of medicine: regenerative medicine, disease detection and drug delivery. In this Review, we discuss the transformational and translational progress witnessed in EV-based medicine to date, focusing on two key elements: the mechanisms by which EVs aid tissue repair (for example, skin and bone tissue regeneration) and the potential of EVs to detect diseases at an early stage with high sensitivity and specificity (for example, detection of glioblastoma). Furthermore, we describe the progress and results of clinical trials of EVs and demonstrate the benefits of EVs when compared with traditional medicine, including cell therapy in regenerative medicine and solid biopsy in disease detection. Finally, we present the challenges, opportunities and regulatory framework confronting the clinical application of EV-based products.
Collapse
Affiliation(s)
- Thanh Huyen Phan
- The University of Sydney, Sydney Nano Institute, Faculty of Medicine and Health, Sydney School of Pharmacy, Pharmacy and Bank Building A15, Camperdown, NSW 2006, Australia
| | - Sally Yunsun Kim
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Christopher Rudge
- The University of Sydney, Sydney Health Law, New Law Building F10, Camperdown, NSW 2006, Australia
| | - Wojciech Chrzanowski
- The University of Sydney, Sydney Nano Institute, Faculty of Medicine and Health, Sydney School of Pharmacy, Pharmacy and Bank Building A15, Camperdown, NSW 2006, Australia
| |
Collapse
|
29
|
Identification of CCT3 as a prognostic factor and correlates with cell survival and invasion of head and neck squamous cell carcinoma. Biosci Rep 2021; 41:229752. [PMID: 34505628 PMCID: PMC8529339 DOI: 10.1042/bsr20211137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Recurrent locally advanced or metastatic head and neck squamous cell carcinoma (HNSCC) is associated with dismal prognosis because of its highly invasive behavior and resistance to conventional intensive chemotherapy. The identification of effective markers for early diagnosis and prognosis is important for reducing mortality and ensuring that therapy for HNSCC is effective. Chaperonin-containing TCP-1 3 (CCT3) folds cancer-related proteins to control carcinogenesis. The prognostic value and growth association of CCT3 and HNSCC remain unknown. METHODS The GEO, Oncomine and UALCAN databases were used to examine CCT3 expression in HNSCC. A few clinical HNSCC samples with normal tissues were used to detect CCT3 expression by using immunohistochemistry method. The TCGA-HNSC dataset was used to evaluate the association between expression of CCT3 and prognosis. The molecular mechanism was investigated with gene set enrichment analysis (GSEA). CCK-8 and wound healing assays were used to detect cell growth and invasion of HNSCC, respectively. RESULTS CCT3 expression was significantly up-regulated in HNSCC in both mRNA and protein levels. In addition, up-regulated CCT3 expression was associated with various clinicopathological parameters. High expression of CCT3 was significantly correlated with inferior survival of HNSCC patients. Knockdown of CCT3 significantly inhibited cell growth and invasion of HNSCC cell lines. GSEA analysis indicated that CCT3 was closely correlated with tumor-related signaling pathways and HNSCC cell survival. CONCLUSION Our findings suggest that CCT3 is a biomarker of poor prognosis and related to the process of HNSCC.
Collapse
|
30
|
Liu J, Huang L, Zhu Y, He Y, Zhang W, Lei T, Xuan J, Xiao B, Li L, Zhou Q, Sun Z. Exploring the Expression and Prognostic Value of the TCP1 Ring Complex in Hepatocellular Carcinoma and Overexpressing Its Subunit 5 Promotes HCC Tumorigenesis. Front Oncol 2021; 11:739660. [PMID: 34676169 PMCID: PMC8525800 DOI: 10.3389/fonc.2021.739660] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/08/2021] [Indexed: 01/20/2023] Open
Abstract
T-complex protein-1 ring complex (TRiC), also known as Chaperonin Containing T-complex protein-1 (CCT), is a multisubunit chaperonin required for the folding of nascent proteins. Mounting evidence suggests that TRiC also contributes to the development and progression of tumors, but there are limited studies on pathogenic functions in hepatocellular carcinoma (HCC). We comprehensively evaluated the expression pattern and biological functions of TRiC subunits using The Cancer Genome Atlas and The Human Protein Atlas. Expression levels of TRiC subunits TCP1, CCT2/3/4/5/6A/7/8 were significantly upregulated in HCC tissues at both transcript and protein levels, which predicted shorter overall survival (OS). Moreover, high mutation rates were found in several CCT subunits, and patients with altered CCT genes exhibited poorer clinical outcomes. Functional enrichment analysis showed that co-regulated genes were preferentially involved in 'protein folding' and 'microtubule-based process', while genes co-expressed with CCT subunits were primarily involved in 'ribosome' and 'spliceosome'. Knockout of CCT5 in a HCC cell line reduced while overexpression enhanced proliferation rate, cycle transition, migration, and invasion. In conclusion, these findings suggest that subunits of the TRiC may be potential biomarkers for the diagnosis of HCC and play an important role in the occurrence and development of HCC.
Collapse
Affiliation(s)
- Jiahui Liu
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Laboratory Medicine, General Hospital of Southern Theater Command of People's Liberation Army (PLA), Guangzhou, China
| | - Ling Huang
- Department of Laboratory Medicine, General Hospital of Southern Theater Command of People's Liberation Army (PLA), Guangzhou, China
| | - Yi Zhu
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Laboratory Medicine, General Hospital of Southern Theater Command of People's Liberation Army (PLA), Guangzhou, China
| | - Yongyin He
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Laboratory Medicine, General Hospital of Southern Theater Command of People's Liberation Army (PLA), Guangzhou, China
| | - Weiyun Zhang
- Department of Laboratory Medicine, General Hospital of Southern Theater Command of People's Liberation Army (PLA), Guangzhou, China
| | - Ting Lei
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Laboratory Medicine, General Hospital of Southern Theater Command of People's Liberation Army (PLA), Guangzhou, China
| | - Junfeng Xuan
- Department of Laboratory Medicine, General Hospital of Southern Theater Command of People's Liberation Army (PLA), Guangzhou, China
| | - Bin Xiao
- Department of Laboratory Medicine, General Hospital of Southern Theater Command of People's Liberation Army (PLA), Guangzhou, China.,Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Linhai Li
- Department of Laboratory Medicine, General Hospital of Southern Theater Command of People's Liberation Army (PLA), Guangzhou, China.,Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Quan Zhou
- Department of Laboratory Medicine, General Hospital of Southern Theater Command of People's Liberation Army (PLA), Guangzhou, China.,Laboratory of Basic Medical Science, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Zhaohui Sun
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Laboratory Medicine, General Hospital of Southern Theater Command of People's Liberation Army (PLA), Guangzhou, China
| |
Collapse
|
31
|
Danni X, Jiangzheng Z, Huamao S, Yinglian P, Changcheng Y, Yanda L. Chaperonin containing TCP1 subunit 3 (CCT3) promotes cisplatin resistance of lung adenocarcinoma cells through targeting the Janus kinase 2/signal transducers and activators of transcription 3 (JAK2/STAT3) pathway. Bioengineered 2021; 12:7335-7347. [PMID: 34612768 PMCID: PMC8806702 DOI: 10.1080/21655979.2021.1971030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cisplatin resistance remains a major obstacle to effective chemotherapies for non-small cell lung cancer (NSCLC). Chaperonin containing TCP1 subunit 3 (CCT3) has been extensively investigated in various cancers, but not in the context of drug resistance. In the present study, we aimed to investigate the role of CCT3 in cisplatin resistance of lung adenocarcinoma (LUAD) cells. By surveying the Gene Expression Profiling Interactive Analysis (GEPIA) website, we found CCT3 expression to be up-regulated in NSCLCs, which correlated with the poor prognosis of LUAD patients. Furthermore, both mRNA and protein levels of CCT3 were upregulated in the cisplatin-resistant A549/DDP cells compared to the cisplatin-sensitive A549 cells. Importantly, upon cisplatin treatment, short hairpin RNA (shRNA)-mediated CCT3 knockdown significantly inhibited the proliferation, invasion and migration of A549/DDP cells, and induced significant G2/M cell cycle arrest and apoptosis in A549/DDP cells. Moreover, CCT3 knockdown significantly weakened the tumorigenicity of the cisplatin-treated A549/DDP cells in vitro and in vivo. Finally, CCT3 knockdown re-sensitized A549/DDP cells to cisplatin through inhibiting the Janus kinase 2/signal transducers and activators of transcription 3 (JAK2/STAT3) pathway. In conclusion, our results demonstrated that CCT3 could promote cisplatin resistance of LUAD cells via activating the JAK2/STAT3 pathway, indicating that CCT3 may be a novel molecular target for overcoming cisplatin resistance in LUAD patients.
Collapse
Affiliation(s)
- Xu Danni
- Department of Oncology, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China
| | - Zeng Jiangzheng
- Department of Oncology, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China
| | - Sun Huamao
- Department of Oncology, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China
| | - Pan Yinglian
- Department of Oncology, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China
| | - Yang Changcheng
- Department of Oncology, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China
| | - Lu Yanda
- Department of Oncology, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China
| |
Collapse
|
32
|
Green AM, DeWeerd RA, O'Leary DR, Hansen AR, Hayer KE, Kulej K, Dineen AS, Szeto JH, Garcia BA, Weitzman MD. Interaction with the CCT chaperonin complex limits APOBEC3A cytidine deaminase cytotoxicity. EMBO Rep 2021; 22:e52145. [PMID: 34347354 DOI: 10.15252/embr.202052145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/09/2022] Open
Abstract
The APOBEC3 cytidine deaminases are implicated as the cause of a prevalent somatic mutation pattern found in cancer genomes. The APOBEC3 enzymes act as viral restriction factors by mutating viral genomes. Mutation of the cellular genome is presumed to be an off-target activity of the enzymes, although the regulatory measures for APOBEC3 expression and activity remain undefined. It is therefore difficult to predict circumstances that enable APOBEC3 interaction with cellular DNA that leads to mutagenesis. The APOBEC3A (A3A) enzyme is the most potent deaminase of the family. Using proteomics, we evaluate protein interactors of A3A to identify potential regulators. We find that A3A interacts with the chaperonin-containing TCP-1 (CCT) complex, a cellular machine that assists in protein folding and function. Importantly, depletion of CCT results in A3A-induced DNA damage and cytotoxicity. Evaluation of cancer genomes demonstrates an enrichment of A3A mutational signatures in cancers with silencing mutations in CCT subunit genes. Together, these data suggest that the CCT complex interacts with A3A, and that disruption of CCT function results in increased A3A mutational activity.
Collapse
Affiliation(s)
- Abby M Green
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel A DeWeerd
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - David R O'Leary
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ava R Hansen
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Katharina E Hayer
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Katarzyna Kulej
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ariel S Dineen
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Julia H Szeto
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.,Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
33
|
Meng Y, Yang L, Wei X, Luo H, Hu Y, Tao X, He J, Zheng X, Xu Q, Luo K, Yu G, Luo Q. CCT5 interacts with cyclin D1 promoting lung adenocarcinoma cell migration and invasion. Biochem Biophys Res Commun 2021; 567:222-229. [PMID: 34217974 DOI: 10.1016/j.bbrc.2021.04.105] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Abstract
Cyclin D1 (CCND1) has been identified as a metastatic promoter in various tumors including lung adenocarcinoma (LUAD), a subtype of non small cell lung cancer (NSCLC). The previous observation revealed that CCND1 was upregulated in NSCLC and predicted poor prognosis of LUAD patients. In this study, we examined a chaperonin containing TCP1 subunit 5 (CCT5) protein interacts with CCND1 in LUAD. Immunofluorescence demonstrated the co-localization of CCT5 and CCND1 protein in LUAD cells. CCT5 expression was detected with both immunohistochemistry (IHC) and bioinformatics analyses. Similar with the expression pattern of CCND1, CCT5 displayed a high level in LUAD tissues compared to non cancerous lung specimens. Patients with high CCT5 expression showed a significant shorter overall survival relative to those with low expression level. Furthermore, upregulated CCT5 exhibited significant positive correlation with TNM stage of LUAD patients in both IHC analyses and bioinformatics. Knocking down CCT5 remarkably inhibited LUAD cell migration and invasion in vitro by inactivating PI3K/AKT and its downstream EMT signals, which could abrogated the accelerated migration and invasion caused by CCND1 overexpression. In summary, our study discovered a highly expressed protein CCT5 in LUAD which interacted with CCND1 and promoted migration and invasion of LUAD cells by positively moderating PI3K/AKT-induced EMT pathway.
Collapse
Affiliation(s)
- Yiliang Meng
- Department of Oncology, Baise People's Hospital, Guangxi, Baise, 33000, Guangxi, China
| | - Liu Yang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510095, PR China
| | - Xiao Wei
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510095, PR China
| | | | - Yingying Hu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510095, PR China
| | - Xingyu Tao
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510095, PR China
| | - Jingjing He
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510095, PR China
| | - Xuesong Zheng
- Department of Oncology, Baise People's Hospital, Guangxi, Baise, 33000, Guangxi, China
| | - Qunying Xu
- Department of Oncology, Baise People's Hospital, Guangxi, Baise, 33000, Guangxi, China
| | - Kunxiang Luo
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, BaiSe, 533000, China
| | - Guifang Yu
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Qisheng Luo
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, BaiSe, 533000, China.
| |
Collapse
|
34
|
Genetic program activity delineates risk, relapse, and therapy responsiveness in multiple myeloma. NPJ Precis Oncol 2021; 5:60. [PMID: 34183722 PMCID: PMC8239045 DOI: 10.1038/s41698-021-00185-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 05/13/2021] [Indexed: 01/19/2023] Open
Abstract
Despite recent advancements in the treatment of multiple myeloma (MM), nearly all patients ultimately relapse and many become refractory to multiple lines of therapies. Therefore, we not only need the ability to predict which patients are at high risk for disease progression but also a means to understand the mechanisms underlying their risk. Here, we report a transcriptional regulatory network (TRN) for MM inferred from cross-sectional multi-omics data from 881 patients that predicts how 124 chromosomal abnormalities and somatic mutations causally perturb 392 transcription regulators of 8549 genes to manifest in distinct clinical phenotypes and outcomes. We identified 141 genetic programs whose activity profiles stratify patients into 25 distinct transcriptional states and proved to be more predictive of outcomes than did mutations. The coherence of these programs and accuracy of our network-based risk prediction was validated in two independent datasets. We observed subtype-specific vulnerabilities to interventions with existing drugs and revealed plausible mechanisms for relapse, including the establishment of an immunosuppressive microenvironment. Investigation of the t(4;14) clinical subtype using the TRN revealed that 16% of these patients exhibit an extreme-risk combination of genetic programs (median progression-free survival of 5 months) that create a distinct phenotype with targetable genes and pathways.
Collapse
|
35
|
Ghozlan H, Showalter A, Lee E, Zhu X, Khaled AR. Chaperonin-Containing TCP1 Complex (CCT) Promotes Breast Cancer Growth Through Correlations With Key Cell Cycle Regulators. Front Oncol 2021; 11:663877. [PMID: 33996588 PMCID: PMC8121004 DOI: 10.3389/fonc.2021.663877] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Uncontrolled proliferation as a result of dysregulated cell cycling is one of the hallmarks of cancer. Therapeutically targeting pathways that control the cell cycle would improve patient outcomes. However, the development of drug resistance and a limited number of inhibitors that target multiple cell cycle modulators are challenges that impede stopping the deregulated growth that leads to malignancy. To advance the discovery of new druggable targets for cell cycle inhibition, we investigated the role of Chaperonin-Containing TCP1 (CCT or TRiC) in breast cancer cells. CCT, a type II chaperonin, is a multi-subunit protein-folding complex that interacts with many oncoproteins and mutant tumor suppressors. CCT subunits are highly expressed in a number of cancers, including breast cancer. We found that expression of one of the CCT subunits, CCT2, inversely correlates with breast cancer patient survival and is subject to copy number alterations through genomic amplification. To investigate a role for CCT2 in the regulation of the cell cycle, we expressed an exogenous CCT2-FLAG construct in T47D and MCF7 luminal A breast cancer cells and examined cell proliferation under conditions of two-dimensional (2D) monolayer and three-dimensional (3D) spheroid cultures. Exogenous CCT2 increased the proliferation of cancer cells, resulting in larger and multiple spheroids as compared to control cells. CCT2-expressing cells were also able to undergo spheroid growth reversal, re-attaching, and resuming growth in 2D cultures. Such cells gained anchorage-independent growth. CCT2 expression in cells correlated with increased expression of MYC, especially in spheroid cultures, and other cell cycle regulators like CCND1 and CDK2, indicative of a novel activity that could contribute to the increase in cell growth. Statistically significant correlations between CCT2, MYC, and CCND1 were shown. Since CCT2 is located on chromosome 12q15, an amplicon frequently found in soft tissue cancers as well as breast cancer, CCT2 may have the basic characteristics of an oncogene. Our findings suggest that CCT2 could be an essential driver of cell division that may be a node through which pathways involving MYC, cyclin D1 and other proliferative factors could converge. Hence the therapeutic inhibition of CCT2 may have the potential to achieve multi-target inhibition, overcoming the limitations associated with single agent inhibitors.
Collapse
Affiliation(s)
- Heba Ghozlan
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Adrian Showalter
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Eunkyung Lee
- Department of Health Sciences, College of Health Professions and Sciences, University of Central Florida, Orlando, FL, United States
| | - Xiang Zhu
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Annette R Khaled
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
36
|
Liu Q, Qi Y, Kong X, Wang X, Zhang W, Zhai J, Yang Y, Fang Y, Wang J. Molecular and Clinical Characterization of CCT2 Expression and Prognosis via Large-Scale Transcriptome Profile of Breast Cancer. Front Oncol 2021; 11:614497. [PMID: 33869000 PMCID: PMC8050343 DOI: 10.3389/fonc.2021.614497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Molecular chaperones play important roles in regulating various cellular processes and malignant transformation. Expression of some subunits of molecular chaperone CCT/TRiC complex have been reported to be correlated with cancer development and patient survival. However, little is known about the expression and prognostic significance of Chaperonin Containing TCP1 Subunit 2 (CCT2). CCT2 is a gene encoding a molecular chaperone that is a member of the chaperonin containing TCP1 complex (CCT), also known as the TCP1 ring complex (TRiC). Through the Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) databases, we systematically reviewed a total of 2,994 cases with transcriptome data and analyzed the functional annotation of CCT2 by Gene ontology and KEGG analysis. Univariate and multivariate survival analysis were performed to investigate the prognostic value of CCT2 in breast cancer. We found CCT2 was significantly upregulated in various tumors. In breast cancer, CCT2 expression was significantly upregulated in HER2-positive (HER2+) group, and more malignant group. In addition, we investigated correlations between CCT2 and other CCT members. Interestingly, almost all CCTs expression were positively correlated with each other, but not CCT6B. Survival analysis suggested that CCT2 overexpression was independently associated with worse prognosis of patients with breast cancer, especially in luminal A subtype. In summary, our results revealed that CCT2 might be involved in regulating cell cycle pathway, and independently predicted worse prognosis in breast cancer patients. These findings may expand understanding of potential anti-CCT2 treatments. To our knowledge, this is the largest and most comprehensive study characterizing the expression pattern of CCT2 together with its prognostic values in breast cancer.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yihang Qi
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenxiang Zhang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Zhai
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yazhe Yang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
37
|
Vallin J, Córdoba-Beldad CM, Grantham J. Sequestration of the Transcription Factor STAT3 by the Molecular Chaperone CCT: A Potential Mechanism for Modulation of STAT3 Phosphorylation. J Mol Biol 2021; 433:166958. [PMID: 33774038 DOI: 10.1016/j.jmb.2021.166958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/02/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Chaperonin Containing Tailless complex polypeptide 1 (CCT) is an essential molecular chaperone required for the folding of the abundant proteins actin and tubulin. The CCT oligomer also folds a range of other proteins and participates in non-folding activities such as providing assembly support for complexes of the von Hippel Lindau tumor suppressor protein and elongins. Here we show that the oncogenic transcription factor STAT3 binds to the CCT oligomer, but does not display the early binding upon translation in rabbit reticulocyte lysate typical of an obligate CCT folding substrate. Consistent with this, depletion of each of the CCT subunits by siRNA targeting indicates that loss of CCT oligomer does not suppress the activation steps of STAT3 upon stimulation with IL-6: phosphorylation, dimerisation and nuclear translocation. Furthermore, the transcriptional activity of STAT3 is not negatively affected by reduction in CCT levels. Instead, loss of CCT oligomer in MCF7 cells leads to an enhancement of STAT3 phosphorylation at Tyr705, implicating a role for the CCT oligomer in the sequestration of non-phosphorylated STAT3. Thus, as CCT is dynamic oligomer, the assembly state and also abundance of CCT oligomer may provide a means to modulate STAT3 phosphorylation.
Collapse
Affiliation(s)
- Josefine Vallin
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Carmen M Córdoba-Beldad
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Julie Grantham
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
38
|
Xu WX, Song W, Jiang MP, Yang SJ, Zhang J, Wang DD, Tang JH. Systematic Characterization of Expression Profiles and Prognostic Values of the Eight Subunits of the Chaperonin TRiC in Breast Cancer. Front Genet 2021; 12:637887. [PMID: 33815471 PMCID: PMC8009990 DOI: 10.3389/fgene.2021.637887] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/22/2021] [Indexed: 01/03/2023] Open
Abstract
Background Chaperonin-containing TCP-1 (TRiC or CCT) was demonstrated to be involved in oncogenesis of cancers carcinogenesis and development of various malignancies. Increasing experimental evidence indicated that dysregulation of TRiC was implicated in the tumor progression of breast cancer (BCa). However, few definitive studies have addressed the diverse expression patterns and prognostic values of eight TRiC subunits. Thus, we aimed to investigate the clinical significance of TRiC subunit expression and prognostic values for their possible implications in diagnosis and treatment of BCa. Methods Based on updated public resources and comprehensive bioinformatics analysis, we used some online databases (e.g., UALCAN, GEPIA, cBioPortal, TIMER, BC-GenExMiner, metascape, and GeneMANIA) to comprehensively explore the expression levels and the prognostic effects of eight TRiC subunits in patients with BCa. Results The transcriptional levels of most subunits of the Chaperonin TRiC (CCT2, CCT3, CCT4, CCT5, CCT6A, and CCT7) were significantly elevated compared with normal breast tissues, whereas TCP1, CCT4, and CCT6B were lower in BCa tissues than in normal tissues. Besides, copy-number alterations (CNA) of eight TRiC subunits positively regulated their mRNA expressions. Furthermore, high mRNA expression of TCP1/CCT2/CCT4/CCT5/CCT6A/CCT7/CCT8 was significantly associated with poor overall survival (OS) in BCa patients. The eight subunits of the chaperonin TRiC was related to tumor purity and immune infiltration levels of BCa. Co-expression analysis showed CCT6B was negatively associated with other subunits of TRiC and other subunits of TRiC were positively correlated with each other. Additionally, TRiC and their interactive proteins were correlated with positive regulation of biological process, localization, and biological regulation. Conclusion This study systematically illustrated the expression profiles and distinct prognostic values of chaperonin TRiC in BCa, providing insights for further investigation of subunits of the chaperonin TRiC as novel therapeutic targets and potential prognostic biomarkers in BCa.
Collapse
Affiliation(s)
- Wen-Xiu Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Song
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meng-Ping Jiang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Su-Jin Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dan-Dan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Hai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
39
|
Kim D, Kim S, Na AY, Sohn CH, Lee S, Lee HS. Identification of Decrease in TRiC Proteins as Novel Targets of Alpha-Amanitin-Derived Hepatotoxicity by Comparative Proteomic Analysis In Vitro. Toxins (Basel) 2021; 13:toxins13030197. [PMID: 33803263 PMCID: PMC7999322 DOI: 10.3390/toxins13030197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 11/30/2022] Open
Abstract
Alpha-amanitin (α-AMA) is a cyclic peptide and one of the most lethal mushroom amatoxins found in Amanita phalloides. α-AMA is known to cause hepatotoxicity through RNA polymerase II inhibition, which acts in RNA and DNA translocation. To investigate the toxic signature of α-AMA beyond known mechanisms, we used quantitative nanoflow liquid chromatography–tandem mass spectrometry analysis coupled with tandem mass tag labeling to examine proteome dynamics in Huh-7 human hepatoma cells treated with toxic concentrations of α-AMA. Among the 1828 proteins identified, we quantified 1563 proteins, which revealed that four subunits in the T-complex protein 1-ring complex protein decreased depending on the α-AMA concentration. We conducted bioinformatics analyses of the quantified proteins to characterize the toxic signature of α-AMA in hepatoma cells. This is the first report of global changes in proteome abundance with variations in α-AMA concentration, and our findings suggest a novel molecular regulation mechanism for hepatotoxicity.
Collapse
Affiliation(s)
- Doeun Kim
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (D.K.); (A.-Y.N.)
| | - Sunjoo Kim
- BK21 Four-Sponsored Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea;
| | - Ann-Yae Na
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (D.K.); (A.-Y.N.)
| | - Chang Hwan Sohn
- Department of Emergency Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 05505, Korea;
| | - Sangkyu Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (D.K.); (A.-Y.N.)
- Correspondence: (S.L.); (H.S.L.); Tel.: +82-53-950-8571 (S.L.); +82-2-2164-4061 (H.S.L.)
| | - Hye Suk Lee
- BK21 Four-Sponsored Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea;
- Correspondence: (S.L.); (H.S.L.); Tel.: +82-53-950-8571 (S.L.); +82-2-2164-4061 (H.S.L.)
| |
Collapse
|
40
|
Temiz E, Koyuncu İ, Sahin E. CCT3 suppression prompts apoptotic machinery through oxidative stress and energy deprivation in breast and prostate cancers. Free Radic Biol Med 2021; 165:88-99. [PMID: 33508424 DOI: 10.1016/j.freeradbiomed.2021.01.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/20/2022]
Abstract
Mediated by chaperon proteins, protein misfolding plays a crucial role in cancer pathogenesis. Chaperonin Containing TCP1 Subunit 3 (CCT3) is one of eight subunits forming eukaryotic chaperons that catalyzes correct folding of the proteins employed in cell division, proliferation, and apoptosis pathway. Moreover, CCT3 expression increases responsively with carcinogenesis. However, how CCT3 drives the cancerous process has not been documented. Here we probed the mechanistic and functional interactions between CCT3 and apoptotic pathways and cell stressors. First, we profiled CCT3 expression levels of different 16 cell lines and found that CCT3 expression levels of CRL-2329 and PC3 were significantly increased. Then, we suppressed CCT3 levels in CRL-2329 and PC3 lines by miR-24-3p, miR-128-3p, and miR-149-5p mimics, and measured apoptotic response of the cell lines to the knockdown of CCT3 by acridine orange/ethidium bromide and Annexin V/PI staining, cell-cycle and mitochondria membrane potential (MMP) analyses, intracellular reactive oxygen species (ROS) measurement and analysis of expression levels of the apoptotic genes. After having suppressed CCT3, the cell cycle was arrested in the G0/G1 phase, MMP was impaired, and the intracellular ROS level was increased. These signs of apoptotic flux were corroborated by morphological images, statistically enhanced expression levels of the apoptotic pathway modulators and intracellular free amino acids profile. The free amino acid profile, which is heavily implicated in energy metabolism and cell division, is fluctuated in the progress of canceration. Strikingly, suppressed CCT3 shifted intracellular levels of glutamine, beta-alanine, glycine, serin, asparagine and sarcosine, which are employed in energy metabolism. Consequently, miRNA-mediated CCT3 suppression spur apoptosis by unbalancing the homeostasis in intracellular ROS and the profile of free amino acids in energy metabolism. Taken together, we anticipate that miRNA-mediated CCT3 suppression might provide a "dual therapeutic strategy" through conventional cellular toxicity as well as energy withdrawal.
Collapse
Affiliation(s)
- Ebru Temiz
- Program of Medical Promotion and Marketing, Health Services Vocational School, Harran University, Sanliurfa, Turkey; Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - İsmail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Emel Sahin
- Department of Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey.
| |
Collapse
|
41
|
McClatchy DB, Martínez-Bartolomé S, Gao Y, Lavallée-Adam M, Yates JR. Quantitative analysis of global protein stability rates in tissues. Sci Rep 2020; 10:15983. [PMID: 32994440 PMCID: PMC7524747 DOI: 10.1038/s41598-020-72410-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
Protein degradation is an essential mechanism for maintaining proteostasis in response to internal and external perturbations. Disruption of this process is implicated in many human diseases. We present a new technique, QUAD (Quantification of Azidohomoalanine Degradation), to analyze the global degradation rates in tissues using a non-canonical amino acid and mass spectrometry. QUAD analysis reveals that protein stability varied within tissues, but discernible trends in the data suggest that cellular environment is a major factor dictating stability. Within a tissue, different organelles and protein functions were enriched with different stability patterns. QUAD analysis demonstrated that protein stability is enhanced with age in the brain but not in the liver. Overall, QUAD allows the first global quantitation of protein stability rates in tissues, which will allow new insights and hypotheses in basic and translational research.
Collapse
Affiliation(s)
- Daniel B McClatchy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Yu Gao
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Mathieu Lavallée-Adam
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
42
|
Qu H, Zhu F, Dong H, Hu X, Han M. Upregulation of CCT-3 Induces Breast Cancer Cell Proliferation Through miR-223 Competition and Wnt/β-Catenin Signaling Pathway Activation. Front Oncol 2020; 10:533176. [PMID: 33072568 PMCID: PMC7541898 DOI: 10.3389/fonc.2020.533176] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
The clinical significance and the function of chaperonin-containing TCP1 complex 3 (CCT-3) in breast cancer remain unknown. In this study, we found that CCT-3 was markedly overexpressed in breast cancer tissues. Statistical analysis revealed a significant correlation of CCT-3 expression with advanced breast cancer clinical stage and poorer survival. Ablation of CCT-3 knocked down the proliferation and the tumorigenicity of breast cancer cells in vitro and in vivo. CCT-3 may regulate breast cancer cell proliferation through a ceRNA network between miR-223 and β-catenin, thus affecting Wnt/β-catenin signaling pathway activation. We also validated that CCT-3 and β-catenin are novel direct targets of tumor suppressor miR-223. Our results suggest that both mRNA and the protein levels of CCT-3 are potential diagnosis biomarkers and therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Hongbo Qu
- Department of Breast and Thyroid Surgery, The First People's Hospital of Chenzhou, Chenzhou, China
| | - Fang Zhu
- Department of Breast Health Center, The First People's Hospital of Chenzhou (South Hospital), Chenzhou, China
| | - Huaying Dong
- Department of General Surgery, Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Xiongqiang Hu
- Department of Breast and Thyroid Surgery, The First People's Hospital of Chenzhou, Chenzhou, China
| | - Mingli Han
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
43
|
Zheng J, Lu T, Zhou C, Cai J, Zhang X, Liang J, Sui X, Chen X, Chen L, Sun Y, Zhang J, Chen W, Zhang Y, Yao J, Chen G, Yang Y. Extracellular Vesicles Derived from Human Umbilical Cord Mesenchymal Stem Cells Protect Liver Ischemia/Reperfusion Injury by Reducing CD154 Expression on CD4+ T Cells via CCT2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903746. [PMID: 32999825 PMCID: PMC7509664 DOI: 10.1002/advs.201903746] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 07/14/2020] [Indexed: 05/07/2023]
Abstract
As a cause of postoperative complications and early hepatic failure after liver transplantation, liver ischemia/reperfusion injury (IRI) still has no effective treatment during clinical administration. Although the therapeutic potential of mesenchymal stem cells (MSCs) for liver IRI has been previously shown, the underlying mechanisms are not completely clear. It is accepted that MSC-derived extracellular vesicles (MSC-EVs) are newly uncovered messengers for intercellular communication. Herein, it is reported that umbilical cord-derived MSCs (UC-MSCs) improve liver IRI in mice through their secreted EVs. It is also visualized that UC-MSC-EVs mainly concentrate in liver after 6 h of reperfusion. Furthermore, UC-MSC-EVs are found to significantly modulate the membranous expression of CD154 of intrahepatic CD4+ T cells, which is an initiation of inflammatory response in liver and can aggravate liver IRI. Mechanistically, protein mass spectrum analysis is performed and it is revealed that Chaperonin containing TCP1 subunit 2 (CCT2) enriches in UC-MSC-EVs, which regulates the calcium channels to affect Ca2+ influx and suppress CD154 synthesis in CD4+ T cells. In conclusion, these results highlight the therapeutic potential of UC-MSC-EVs in attenuating liver IRI. This finding suggests that CCT2 from UC-MSC-EVs can modulate CD154 expression of intrahepatic CD4+ T cells during liver IRI through the Ca2+-calcineurin-NFAT1 signaling pathway.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Tongyu Lu
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Chaorong Zhou
- Department of Hepatic Surgery and Liver Transplantation CenterThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
- The Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510630China
| | - Jianye Cai
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Xiaomei Zhang
- Organ Transplantation Research Center of Guangdong ProvinceKey Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Jinliang Liang
- Organ Transplantation Research Center of Guangdong ProvinceKey Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Xin Sui
- Surgical ICUThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Xiaoyan Chen
- Biological Treatment CenterThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Liang Chen
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Yao Sun
- Surgical ICUThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Jiebin Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Wenjie Chen
- Biological Treatment CenterThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Yingcai Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Jia Yao
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center, Guangdong Key Laboratory of Liver Disease ResearchGuangdong Province Engineering Laboratory for Transplantation MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhou510630China
| |
Collapse
|
44
|
Dong Y, Lu S, Wang Z, Liu L. CCTs as new biomarkers for the prognosis of head and neck squamous cancer. Open Med (Wars) 2020; 15:672-688. [PMID: 33313411 PMCID: PMC7706129 DOI: 10.1515/med-2020-0114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/30/2020] [Accepted: 06/18/2020] [Indexed: 12/23/2022] Open
Abstract
The chaperonin-containing T-complex protein 1 (CCT) subunits participate in diverse diseases. However, little is known about their expression and prognostic values in human head and neck squamous cancer (HNSC). This article aims to evaluate the effects of CCT subunits regarding their prognostic values for HNSC. We mined the transcriptional and survival data of CCTs in HNSC patients from online databases. A protein-protein interaction network was constructed and a functional enrichment analysis of target genes was performed. We observed that the mRNA expression levels of CCT1/2/3/4/5/6/7/8 were higher in HNSC tissues than in normal tissues. Survival analysis revealed that the high mRNA transcriptional levels of CCT3/4/5/6/7/8 were associated with a low overall survival. The expression levels of CCT4/7 were correlated with advanced tumor stage. And the overexpression of CCT4 was associated with higher N stage of patients. Validation of CCTs' differential expression and prognostic values was achieved by the Human Protein Atlas and GEO datasets. Mechanistic exploration of CCT subunits by the functional enrichment analysis suggests that these genes may influence the HNSC prognosis by regulating PI3K-Akt and other pathways. This study implies that CCT3/4/6/7/8 are promising biomarkers for the prognosis of HNSC.
Collapse
Affiliation(s)
- Yanbo Dong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, 95th Yong'an Road, Xicheng District, Beijing 100050, China
| | - Siyu Lu
- Department of Emergency, Aviation General Hospital, Beijing 100012, China
| | - Zhenxiao Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, 95th Yong'an Road, Xicheng District, Beijing 100050, China
| | - Liangfa Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, 95th Yong'an Road, Xicheng District, Beijing 100050, China
| |
Collapse
|
45
|
Zhang T, Shi W, Tian K, Kong Y. Chaperonin containing t-complex polypeptide 1 subunit 6A correlates with lymph node metastasis, abnormal carcinoembryonic antigen and poor survival profiles in non-small cell lung carcinoma. World J Surg Oncol 2020; 18:156. [PMID: 32631353 PMCID: PMC7339415 DOI: 10.1186/s12957-020-01911-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/10/2020] [Indexed: 12/25/2022] Open
Abstract
Background This study aimed to investigate the correlation of chaperonin containing t-complex polypeptide 1 subunit 6A (CCT6A) expression with clinicopathological features and survival profiles in non-small cell lung carcinoma (NSCLC) patients. Methods A total of 381 NSCLC patients with Tumor, Node, Metastasis (TNM) stage I–IIIA who underwent tumor resection were retrospectively screened. Immunohistochemistry staining and semi-quantitative scoring were used to evaluate CCT6A expression in tumor and adjacent tissues. Clinicopathological features were retrieved. Disease-free survival (DFS) and overall survival (OS) were calculated. Results CCT6A expression was elevated in tumor tissue (CCT6A high 47.5% vs. low 52.5%) compared with adjacent tissue (CCT6A high 30.4% vs. low 69.6%) (P < 0.001), and ROC curve displayed that CCT6A could distinguish tumor tissue from adjacent tissue. Moreover, tumor CCT6A high expression was associated with lymph node metastasis (P = 0.001), elevated TNM stage (P = 0.002), and abnormal carcinoembryonic antigen (P = 0.022). Kaplan–Meier curves displayed that tumor CCT6A high expression was negatively correlated with DFS and OS (all P < 0.001). Cox’s regression analysis disclosed that tumor CCT6A high expression independently predicted worse DFS (P < 0.001) (hazard ratio (HR) 1.659 (95% confidence interval (CI) 1.318–2.089)), and OS (P < 0.001) (HR 1.779 (95%CI 1.378–2.298)). Conclusions CCT6A may present some clinical value in the management of NSCLC.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Nanhua Hospital, University of South China, 336 South of Dongfeng Road, Hengyang, 421000, China
| | - Wang Shi
- Department of Pulmonary and Critical Care Medicine, Affiliated Nanhua Hospital, University of South China, 336 South of Dongfeng Road, Hengyang, 421000, China.
| | - Ke Tian
- Department of Pulmonary and Critical Care Medicine, Affiliated Nanhua Hospital, University of South China, 336 South of Dongfeng Road, Hengyang, 421000, China
| | - Yushan Kong
- Department of Pulmonary and Critical Care Medicine, Affiliated Nanhua Hospital, University of South China, 336 South of Dongfeng Road, Hengyang, 421000, China
| |
Collapse
|
46
|
Hallal S, Azimi A, Wei H, Ho N, Lee MYT, Sim HW, Sy J, Shivalingam B, Buckland ME, Alexander-Kaufman KL. A Comprehensive Proteomic SWATH-MS Workflow for Profiling Blood Extracellular Vesicles: A New Avenue for Glioma Tumour Surveillance. Int J Mol Sci 2020; 21:ijms21134754. [PMID: 32635403 PMCID: PMC7369771 DOI: 10.3390/ijms21134754] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
Improving outcomes for diffuse glioma patients requires methods that can accurately and sensitively monitor tumour activity and treatment response. Extracellular vesicles (EV) are membranous nanoparticles that can traverse the blood-brain-barrier, carrying oncogenic molecules into the circulation. Measuring clinically relevant glioma biomarkers cargoed in circulating EVs could revolutionise how glioma patients are managed. Despite their suitability for biomarker discovery, the co-isolation of highly abundant complex blood proteins has hindered comprehensive proteomic studies of circulating-EVs. Plasma-EVs isolated from pre-operative glioma grade II-IV patients (n = 41) and controls (n = 11) were sequenced by Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) and data extraction was performed by aligning against a custom 8662-protein library. Overall, 4054 proteins were measured in plasma-EVs. Differentially expressed proteins and putative circulating-EV markers were identified (adj. p-value < 0.05), including those reported in previous in-vitro and ex-vivo glioma-EV studies. Principal component analysis showed that plasma-EV protein profiles clustered according to glioma histological-subtype and grade, and plasma-EVs resampled from patients with recurrent tumour progression grouped with more aggressive glioma samples. The extensive plasma-EV proteome profiles achieved here highlight the potential for SWATH-MS to define circulating-EV biomarkers for objective blood-based measurements of glioma activity that could serve as ideal surrogate endpoints to assess tumour progression and allow more dynamic, patient-centred treatment protocols.
Collapse
Affiliation(s)
- Susannah Hallal
- Neurosurgery Department, Chris O’Brien Lifehouse, Camperdown 2050, Australia; (S.H.); (B.S.)
- Brainstorm Brain Cancer Research, Brain and Mind Centre, The University of Sydney, Camperdown 2050, Australia; (H.W.); (N.H.); (M.Y.T.L.); (M.E.B.)
- Discipline of Pathology, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
- Neuropathology Department, Royal Prince Alfred Hospital, Camperdown 2050, Australia;
| | - Ali Azimi
- Dermatology Department, School of Medical Sciences, The University of Sydney, Westmead 2145, Australia;
| | - Heng Wei
- Brainstorm Brain Cancer Research, Brain and Mind Centre, The University of Sydney, Camperdown 2050, Australia; (H.W.); (N.H.); (M.Y.T.L.); (M.E.B.)
- Neuropathology Department, Royal Prince Alfred Hospital, Camperdown 2050, Australia;
| | - Nicholas Ho
- Brainstorm Brain Cancer Research, Brain and Mind Centre, The University of Sydney, Camperdown 2050, Australia; (H.W.); (N.H.); (M.Y.T.L.); (M.E.B.)
| | - Maggie Yuk Ting Lee
- Brainstorm Brain Cancer Research, Brain and Mind Centre, The University of Sydney, Camperdown 2050, Australia; (H.W.); (N.H.); (M.Y.T.L.); (M.E.B.)
- Neuropathology Department, Royal Prince Alfred Hospital, Camperdown 2050, Australia;
| | - Hao-Wen Sim
- Department of Medical Oncology, Chris O’Brien Lifehouse, Camperdown 2050, Australia;
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown 2050, Australia
- The Kinghorn Cancer Centre, St Vincent’s Hospital, Darlinghurst 2010, Australia
| | - Joanne Sy
- Neuropathology Department, Royal Prince Alfred Hospital, Camperdown 2050, Australia;
| | - Brindha Shivalingam
- Neurosurgery Department, Chris O’Brien Lifehouse, Camperdown 2050, Australia; (S.H.); (B.S.)
- Brainstorm Brain Cancer Research, Brain and Mind Centre, The University of Sydney, Camperdown 2050, Australia; (H.W.); (N.H.); (M.Y.T.L.); (M.E.B.)
| | - Michael Edward Buckland
- Brainstorm Brain Cancer Research, Brain and Mind Centre, The University of Sydney, Camperdown 2050, Australia; (H.W.); (N.H.); (M.Y.T.L.); (M.E.B.)
- Discipline of Pathology, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
- Neuropathology Department, Royal Prince Alfred Hospital, Camperdown 2050, Australia;
| | - Kimberley Louise Alexander-Kaufman
- Neurosurgery Department, Chris O’Brien Lifehouse, Camperdown 2050, Australia; (S.H.); (B.S.)
- Brainstorm Brain Cancer Research, Brain and Mind Centre, The University of Sydney, Camperdown 2050, Australia; (H.W.); (N.H.); (M.Y.T.L.); (M.E.B.)
- Discipline of Pathology, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
- Neuropathology Department, Royal Prince Alfred Hospital, Camperdown 2050, Australia;
- Correspondence: ; Tel.: +61-2-8514-0675
| |
Collapse
|
47
|
Suppression of CCT3 inhibits the proliferation and migration in breast cancer cells. Cancer Cell Int 2020; 20:218. [PMID: 32518527 PMCID: PMC7275521 DOI: 10.1186/s12935-020-01314-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Background CCT3 is a subunit of chaperonin-containing TCP-1 (CCT), which folds many proteins involved in cancer development and plays an important role in many cancers. However, the role of CCT3 in breast cancer is still unclear. Methods CCT3 expression was knocked down by transfecting breast cancer cells with lentiviral shRNA. The proliferation of breast cancer cells (HCC1937 and MDA-MB-231) was detected by Celigo image cytometry and MTT assay, the migration of the cells was measured by Transwell analysis, cell cycle distribution and apoptosis was detected by flow cytometry, and changes in signal transduction proteins were detected by western blot analysis. Results The expression of CCT3 was significantly suppressed by transduction with lentiviral shRNA; CCT3 knockdown significantly reduced the proliferation and metastasis ability of breast cancer cells (HCC 1937 and MDA-MB-231), increased the proportion of cells in S phase, and decreased the proportion of cells in G1 phase compared to those in shControl cells. There was no significant change in the number of cells in the G2/M phase. Apoptosis analysis showed that knockdown of CCT3 induced apoptosis in breast cancer cells. Western blot analysis showed that the expression of many signal transduction proteins was changed after suppression of CCT3. A rescue experiment showed that overexpression of NFκB-p65 rescued the cell proliferation and migration affected by CCT3 in breast cancer cells. Conclusion CCT3 is closely related to the proliferation and migration of breast cancer and may be a novel therapeutic target.
Collapse
|
48
|
Investigating Chaperonin-Containing TCP-1 subunit 2 as an essential component of the chaperonin complex for tumorigenesis. Sci Rep 2020; 10:798. [PMID: 31964905 PMCID: PMC6972895 DOI: 10.1038/s41598-020-57602-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
Chaperonin-containing TCP-1 (CCT or TRiC) is a multi-subunit complex that folds many of the proteins essential for cancer development. CCT is expressed in diverse cancers and could be an ideal therapeutic target if not for the fact that the complex is encoded by eight distinct genes, complicating the development of inhibitors. Few definitive studies addressed the role of specific subunits in promoting the chaperonin’s function in cancer. To this end, we investigated the activity of CCT2 (CCTβ) by overexpressing or depleting the subunit in breast epithelial and breast cancer cells. We found that increasing total CCT2 in cells by 1.3-1.8-fold using a lentiviral system, also caused CCT3, CCT4, and CCT5 levels to increase. Likewise, silencing cct2 gene expression by ~50% caused other CCT subunits to decrease. Cells expressing CCT2 were more invasive and had a higher proliferative index. CCT2 depletion in a syngeneic murine model of triple negative breast cancer (TNBC) prevented tumor growth. These results indicate that the CCT2 subunit is integral to the activity of the chaperonin and is needed for tumorigenesis. Hence CCT2 could be a viable target for therapeutic development in breast and other cancers.
Collapse
|
49
|
The TRiC/CCT Chaperonin and Its Role in Uncontrolled Proliferation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:21-40. [PMID: 32297209 DOI: 10.1007/978-3-030-40204-4_2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The cell cycle is a sophisticated space-time regulated mechanism where a wide variety of protein modules and complexes associate functioning in a concerted manner to regulate and transfer the genetic material to daughter cells. CCT (chaperonin containing TCP-1, also known as TRiC) is a molecular machine that forms a high molecular weight complex (1000 KDa). CCT is emerging as a key molecule during mitosis due to its essential role in the folding of many important proteins involved in cell division (Cdh1, Plk1, p27, Cdc20, PP2a regulatory subunits, tubulin or actin) suggesting its involvement in uncontrolled proliferation. The assembly is formed by eight different subunits called CCTα, β, γ, δ, ε, ζ, η and θ in mammals corresponding to CCT1-8 in yeast. CCT/TRiC is organized in a unique intra- and inter-ring arrangement. The chaperonin monomers share a common domain structure including an equatorial domain, which contains all the inter-ring contacts, most of the intra-ring contacts and the ATP binding site, whose binding and hydrolysis triggers the conformational changes that take place during the functional cycle. All chaperonins display an open substrate-receptive conformation, where the unfolded protein is recognized and trapped, and a closed conformation where the substrate is isolated from the bulk of the intracellular environment. In this chapter we discuss the complex set of intra- and inter-ring allosteric signals during chaperonin function.
Collapse
|
50
|
Zeng G, Wang J, Huang Y, Lian Y, Chen D, Wei H, Lin C, Huang Y. Overexpressing CCT6A Contributes To Cancer Cell Growth By Affecting The G1-To-S Phase Transition And Predicts A Negative Prognosis In Hepatocellular Carcinoma. Onco Targets Ther 2019; 12:10427-10439. [PMID: 31819524 PMCID: PMC6890186 DOI: 10.2147/ott.s229231] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/05/2019] [Indexed: 01/06/2023] Open
Abstract
Purpose To determine the oncogenic role of the sixth subunit of chaperonin-containing tailless complex polypeptide 1 (CCT6A) in hepatocellular carcinoma (HCC) and address the correlation of CCT6A with clinicopathological characteristics and survival. Additionally, this study aimed to explore the effect of CCT6A on HCC cells and the underlying mechanisms. Methods We searched for levels of CCT6A expression in the Oncomine database and GEPIA database, which was then validated by analyzing cancer and adjacent non-cancerous tissues of HCC patients using quantitative PCR, Western blot, and immunohistochemistry assays. The relationship between CCT6A expression and survival was analyzed from the GEPIA database and confirmed by immunohistochemistry assays of 133 HCC tissue sections. In addition, the effect of depleting CCT6A on cell proliferation was assessed by CCK-8 and colony formation assays. Cell cycle analysis, immunofluorescence assays, GSEA analysis, and cyclin D expression analyzed by Western blot were used to explore the possible underlying mechanism how dysregulated CCT6A affect the proliferation of HCC. Results Both mRNA and protein levels of CCT6A were increased in HCC tissues. Higher CCT6A expression was significantly associated with reduced overall survival (P = 0.023). CCT6A depletion inhibited cell proliferation and downregulated cyclin D, hindering the G1-to-S phase arrest. Conclusion CCT6A may contribute to HCC cell proliferation by accelerating the G1-to-S transition, as it maintains the expression of cyclin D. CCT6A could be considered an oncogene of HCC and could be used as a prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Guofen Zeng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, People's Republic of China
| | - Jialiang Wang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, People's Republic of China
| | - Yanlin Huang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, People's Republic of China
| | - Yifan Lian
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, People's Republic of China
| | - Dongmei Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, People's Republic of China
| | - Huan Wei
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, People's Republic of China
| | - Chaoshuang Lin
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, People's Republic of China
| | - Yuehua Huang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, People's Republic of China
| |
Collapse
|