1
|
Kramer P. Iconic logic: the visual art of drawing the right conclusion. Front Psychol 2024; 15:1368989. [PMID: 38911953 PMCID: PMC11190960 DOI: 10.3389/fpsyg.2024.1368989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/09/2024] [Indexed: 06/25/2024] Open
Abstract
Most people, evidence suggests, have a hard time thinking straight. Symbolic logic is a tool that can help remedy this problem. Unfortunately, it is highly abstract and uses symbols whose meanings rely on unintuitive arbitrary conventions. Without sacrificing rigor, iconic logic is more concrete and uses icons that resemble what they stand for and whose meanings are thus easier to picture, process, and remember. Here I review and critique iconic existential graphs and concept diagrams-the former link iconic logic to iconic mathematics; the latter expand popular Euler or Venn diagrams and have, to some degree, been empirically investigated for user-friendliness. I lay out how expertise in perception, cognition, and genetics can inform and improve such empirical research to help make iconic logic more ergonomic. After all, logic is a tool, and tools should not only suit their use but also their user.
Collapse
|
2
|
Higgs MJ, Webberley AE, Allan AJ, Talat M, John RM, Isles AR. The parenting hub of the hypothalamus is a focus of imprinted gene action. PLoS Genet 2023; 19:e1010961. [PMID: 37856383 PMCID: PMC10586610 DOI: 10.1371/journal.pgen.1010961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
Imprinted genes are subject to germline epigenetic modification resulting in parental-specific allelic silencing. Although genomic imprinting is thought to be important for maternal behaviour, this idea is based on serendipitous findings from a small number of imprinted genes. Here, we undertook an unbiased systems biology approach, taking advantage of the recent delineation of specific neuronal populations responsible for controlling parental care, to test whether imprinted genes significantly converge to regulate parenting behaviour. Using single-cell RNA sequencing datasets, we identified a specific enrichment of imprinted gene expression in a recognised "parenting hub", the galanin-expressing neurons of the preoptic area. We tested the validity of linking enriched expression in these neurons to function by focusing on MAGE family member L2 (Magel2), an imprinted gene not previously linked to parenting behaviour. We confirmed expression of Magel2 in the preoptic area galanin expressing neurons. We then examined the parenting behaviour of Magel2-null(+/p) mice. Magel2-null mothers, fathers and virgin females demonstrated deficits in pup retrieval, nest building and pup-directed motivation, identifying a central role for this gene in parenting. Finally, we show that Magel2-null mothers and fathers have a significant reduction in POA galanin expressing cells, which in turn contributes to a reduced c-Fos response in the POA upon exposure to pups. Our findings identify a novel imprinted gene that impacts parenting behaviour and, moreover, demonstrates the utility of using single-cell RNA sequencing data to predict gene function from expression and in doing so here, have identified a purposeful role for genomic imprinting in mediating parental behaviour.
Collapse
Affiliation(s)
- Matthew J. Higgs
- Behavioural Genetics Group, Centre for Neuropsychiatric, Genetics and Genomics, Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, United Kingdom
| | - Anna E. Webberley
- Behavioural Genetics Group, Centre for Neuropsychiatric, Genetics and Genomics, Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, United Kingdom
| | | | - Moaz Talat
- The Mary Lyon Centre, MRC Harwell, Didcot, United Kingdom
| | - Rosalind M. John
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Anthony R. Isles
- Behavioural Genetics Group, Centre for Neuropsychiatric, Genetics and Genomics, Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
3
|
Kramer P. Iconic Mathematics: Math Designed to Suit the Mind. Front Psychol 2022; 13:890362. [PMID: 35769758 PMCID: PMC9234488 DOI: 10.3389/fpsyg.2022.890362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Mathematics is a struggle for many. To make it more accessible, behavioral and educational scientists are redesigning how it is taught. To a similar end, a few rogue mathematicians and computer scientists are doing something more radical: they are redesigning mathematics itself, improving its ergonomic features. Charles Peirce, an important contributor to ordinary symbolic logic, also introduced a rigorous but non-symbolic, graphical alternative to it that is easier to picture. In the spirit of this iconic logic, George Spencer-Brown founded iconic mathematics. Performing iconic arithmetic, algebra, and even trigonometry, resembles doing calculations on an abacus, which is still popular in education today, has aided humanity for millennia, helps even when it is merely imagined, and ameliorates severe disability in basic computation. Interestingly, whereas some intellectually disabled individuals excel in very complex numerical tasks, others of normal intelligence fail even in very simple ones. A comparison of their wider psychological profiles suggests that iconic mathematics ought to suit the very people traditional mathematics leaves behind.
Collapse
Affiliation(s)
- Peter Kramer
- Department of General Psychology, University of Padua, Padua, Italy
| |
Collapse
|
4
|
Kondo S, Kato H, Suzuki Y, Takada T, Eitoku M, Shiroishi T, Suganuma N, Sugano S, Kiyosawa H. Monoallelic, antisense and total RNA transcription in an in vitro neural differentiation system based on F1 hybrid mice. J Cell Sci 2019; 132:jcs.228973. [PMID: 31409693 DOI: 10.1242/jcs.228973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/04/2019] [Indexed: 11/20/2022] Open
Abstract
We developed an in vitro system to differentiate embryonic stem cells (ESCs) derived from reciprocally crossed F1 hybrid mice into neurons, and used it to investigate poly(A)+ and total RNA transcription at different stages of cell differentiation. By comparing expression profiles of transcripts assembled from 20 RNA sequencing datasets [2 alleles×(2 cell lines×4 time-points+2 mouse brains)], the relative influence of strain, cell and parent specificities to overall expression could be assessed. Divergent expression profiles of ESCs converged tightly at neural progenitor stage. Patterns of temporal variation of monoallelically expressed transcripts and antisense transcripts were quantified. Comparison of sense and antisense transcript pairs within the poly(A)+ sample, within the total RNA sample, and across poly(A)+ and total RNA samples revealed distinct rates of pairs showing anti-correlated expression variation. Unique patterns of sharing of poly(A)+ and poly(A)- transcription were identified in distinct RNA species. Regulation and functionality of monoallelic expression, antisense transcripts and poly(A)- transcription remain elusive. We demonstrated the effectiveness of our approach to capture these transcriptional activities, and provided new resources to elucidate the mammalian developmental transcriptome.
Collapse
Affiliation(s)
- Shinji Kondo
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Tokyo 105-0001, Japan
| | - Hidemasa Kato
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Toyoyuki Takada
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Tokyo 105-0001, Japan.,Mammalian Genetics Laboratory, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Masamitsu Eitoku
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Kochi 783-8505, Japan
| | - Toshihiko Shiroishi
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Tokyo 105-0001, Japan.,Mammalian Genetics Laboratory, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Narufumi Suganuma
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Kochi 783-8505, Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Hidenori Kiyosawa
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Tokyo 105-0001, Japan .,Department of Environmental Medicine, Kochi Medical School, Kochi University, Kochi 783-8505, Japan
| |
Collapse
|
5
|
Gardner A, Úbeda F. The meaning of intragenomic conflict. Nat Ecol Evol 2017; 1:1807-1815. [PMID: 29109471 DOI: 10.1038/s41559-017-0354-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/22/2017] [Indexed: 01/30/2023]
Abstract
Recent years have seen an explosion of interest in genes that function for their own good and to the detriment of other genes that reside in the same genome. Such intragenomic conflicts are increasingly recognized to underpin maladaptation and disease. However, progress has been impeded by a lack of clear understanding regarding what intragenomic conflict actually means, and an associated obscurity concerning its fundamental drivers. Here we develop a general theory of intragenomic conflict in which genes are viewed as inclusive-fitness-maximizing agents that come into conflict when their inclusive-fitness interests disagree. This yields a classification of all intragenomic conflicts into three categories according to whether genes disagree about where they have come from, where they are going, or where they currently are. We illustrate each of these three basic categories, survey and classify all known forms of intragenomic conflict, and discuss the implications for organismal maladaptation and human disease.
Collapse
Affiliation(s)
- Andy Gardner
- School of Biology, University of St Andrews, St Andrews, KY16 9TH, UK.
| | - Francisco Úbeda
- School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK.
| |
Collapse
|
6
|
O'Brien EK, Wolf JB. The coadaptation theory for genomic imprinting. Evol Lett 2017; 1:49-59. [PMID: 30283638 PMCID: PMC6121825 DOI: 10.1002/evl3.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/23/2017] [Accepted: 03/21/2017] [Indexed: 12/14/2022] Open
Abstract
Imprinted genes are peculiar in that expression of the two copies differs depending on whether the copy was maternally or paternally inherited. The discovery of this striking pattern of gene expression inspired myriad evolutionary theories, the most successful of which identify scenarios that create an asymmetry between the maternally and paternally inherited gene copies that favors silencing of one of the copies. Most notably, imprinting can evolve when gene dosage affects kin interactions (typically involving conflict) or when silencing enhances coadaptation by coordinating traits expressed by interacting kin. Although we have a well-established theory for the former process (the "Kinship Theory"), the coadaptation process has only been explored for the specific case of interactions between mothers and offspring. Here, we fill this critical gap in our understanding by developing a general "Coadaptation Theory" that explains how imprinting can evolve to coordinate interactions between all types of relatives. Using a simple model in which fitness of an individual is determined by an interaction between its own phenotype (and hence genotype) and that of its social partner(s), we find that when the relatedness of interactants differs through their maternally versus paternally inherited gene copies, then selection favors expression of the allele through which relatedness is higher. The predictions of this Coadaptation Theory potentially apply whenever a gene underlies traits that mediate the outcome of conspecific interactions, regardless of their mechanism or the type of organism, and therefore provide a potential explanation for enigmatic patterns of imprinting, including those underlying adult traits. By providing simple testable predictions that often directly contrast with those derived from alternative theories, our model should play an important role in consolidating our understanding of the evolution of imprinting across genes and species, which will ultimately provide crucial insights into imprinted gene function and dysfunction.
Collapse
Affiliation(s)
- Eleanor K. O'Brien
- Milner Centre for Evolution and Department of Biology & BiochemistryUniversity of BathClaverton DownBathBA2 7AYUnited Kingdom
| | - Jason B. Wolf
- Milner Centre for Evolution and Department of Biology & BiochemistryUniversity of BathClaverton DownBathBA2 7AYUnited Kingdom
| |
Collapse
|
7
|
Faria GS, Varela SAM, Gardner A. Sexual selection modulates genetic conflicts and patterns of genomic imprinting. Evolution 2017; 71:526-540. [PMID: 27991659 PMCID: PMC5347858 DOI: 10.1111/evo.13153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/03/2016] [Indexed: 12/16/2022]
Abstract
Recent years have seen a surge of interest in linking the theories of kin selection and sexual selection. In particular, there is a growing appreciation that kin selection, arising through demographic factors such as sex-biased dispersal, may modulate sexual conflicts, including in the context of male-female arms races characterized by coevolutionary cycles. However, evolutionary conflicts of interest need not only occur between individuals, but may also occur within individuals, and sex-specific demography is known to foment such intragenomic conflict in relation to social behavior. Whether and how this logic holds in the context of sexual conflict-and, in particular, in relation to coevolutionary cycles-remains obscure. We develop a kin-selection model to investigate the interests of different genes involved in sexual and intragenomic conflict, and we show that consideration of these conflicting interests yields novel predictions concerning parent-of-origin specific patterns of gene expression and the detrimental effects of different classes of mutation and epimutation at loci underpinning sexually selected phenotypes.
Collapse
Affiliation(s)
- Gonçalo S. Faria
- School of BiologyUniversity of St AndrewsDyers Brae, St AndrewsKY16 9THUnited Kingdom
| | - Susana A. M. Varela
- cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de LisboaCampo Grande1749‐016LisboaPortugal
| | - Andy Gardner
- School of BiologyUniversity of St AndrewsDyers Brae, St AndrewsKY16 9THUnited Kingdom
| |
Collapse
|
8
|
Micheletti AJC, Ruxton GD, Gardner A. Intrafamily and intragenomic conflicts in human warfare. Proc Biol Sci 2017; 284:20162699. [PMID: 28228515 PMCID: PMC5326533 DOI: 10.1098/rspb.2016.2699] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/30/2017] [Indexed: 02/04/2023] Open
Abstract
Recent years have seen an explosion of multidisciplinary interest in ancient human warfare. Theory has emphasized a key role for kin-selected cooperation, modulated by sex-specific demography, in explaining intergroup violence. However, conflicts of interest remain a relatively underexplored factor in the evolutionary-ecological study of warfare, with little consideration given to which parties influence the decision to go to war and how their motivations may differ. We develop a mathematical model to investigate the interplay between sex-specific demography and human warfare, showing that: the ecology of warfare drives the evolution of sex-biased dispersal; sex-biased dispersal modulates intrafamily and intragenomic conflicts in relation to warfare; intragenomic conflict drives parent-of-origin-specific patterns of gene expression-i.e. 'genomic imprinting'-in relation to warfare phenotypes; and an ecological perspective of conflicts at the levels of the gene, individual, and social group yields novel predictions as to pathologies associated with mutations and epimutations at loci underpinning human violence.
Collapse
Affiliation(s)
| | - Graeme D Ruxton
- School of Biology, University of St Andrews, Dyers Brae, St Andrews KY16 9TH, UK
| | - Andy Gardner
- School of Biology, University of St Andrews, Dyers Brae, St Andrews KY16 9TH, UK
| |
Collapse
|
9
|
Perez JD, Rubinstein ND, Dulac C. New Perspectives on Genomic Imprinting, an Essential and Multifaceted Mode of Epigenetic Control in the Developing and Adult Brain. Annu Rev Neurosci 2016; 39:347-84. [PMID: 27145912 DOI: 10.1146/annurev-neuro-061010-113708] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mammalian evolution entailed multiple innovations in gene regulation, including the emergence of genomic imprinting, an epigenetic regulation leading to the preferential expression of a gene from its maternal or paternal allele. Genomic imprinting is highly prevalent in the brain, yet, until recently, its central roles in neural processes have not been fully appreciated. Here, we provide a comprehensive survey of adult and developmental brain functions influenced by imprinted genes, from neural development and wiring to synaptic function and plasticity, energy balance, social behaviors, emotions, and cognition. We further review the widespread identification of parental biases alongside monoallelic expression in brain tissues, discuss their potential roles in dosage regulation of key neural pathways, and suggest possible mechanisms underlying the dynamic regulation of imprinting in the brain. This review should help provide a better understanding of the significance of genomic imprinting in the normal and pathological brain of mammals including humans.
Collapse
Affiliation(s)
- Julio D Perez
- Department of Molecular and Cellular Biology, Harvard University, Howard Hughes Medical Institute, Cambridge, Massachusetts 02138;
| | - Nimrod D Rubinstein
- Department of Molecular and Cellular Biology, Harvard University, Howard Hughes Medical Institute, Cambridge, Massachusetts 02138;
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Harvard University, Howard Hughes Medical Institute, Cambridge, Massachusetts 02138;
| |
Collapse
|
10
|
Wilkins JF, Úbeda F, Van Cleve J. The evolving landscape of imprinted genes in humans and mice: Conflict among alleles, genes, tissues, and kin. Bioessays 2016; 38:482-9. [PMID: 26990753 DOI: 10.1002/bies.201500198] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Three recent genome-wide studies in mice and humans have produced the most definitive map to date of genomic imprinting (gene expression that depends on parental origin) by incorporating multiple tissue types and developmental stages. Here, we explore the results of these studies in light of the kinship theory of genomic imprinting, which predicts that imprinting evolves due to differential genetic relatedness between maternal and paternal relatives. The studies produce a list of imprinted genes with around 120-180 in mice and ~100 in humans. The studies agree on broad patterns across mice and humans including the complex patterns of imprinted expression at loci like Igf2 and Grb10. We discuss how the kinship theory provides a powerful framework for hypotheses that can explain these patterns. Finally, since imprinting is rare in the genome despite predictions from the kinship theory that it might be common, we discuss evolutionary factors that could favor biallelic expression.
Collapse
Affiliation(s)
| | - Francisco Úbeda
- School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | - Jeremy Van Cleve
- Department of Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
11
|
|
12
|
Wolf JB, Cowley M, Ward A. Coadaptation between mother and offspring: why not? PLoS Biol 2015; 13:e1002085. [PMID: 25786111 PMCID: PMC4365009 DOI: 10.1371/journal.pbio.1002085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/21/2015] [Indexed: 11/23/2022] Open
Abstract
A Formal Comment has challenged the interpretation of a study into an imprinted gene, maintaining that conflict, rather than mother-offspring co-adaptation, provides a better mechanistic explanation. Here authors of the original Research Article reply.
Collapse
Affiliation(s)
- Jason B. Wolf
- Department of Biology & Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Michael Cowley
- Department of Biological Sciences and Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Andrew Ward
- Department of Biology & Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| |
Collapse
|