1
|
Vos M, Buckling A, Kuijper B, Eyre-Walker A, Bontemps C, Leblond P, Dimitriu T. Why do mobile genetic elements transfer DNA of their hosts? Trends Genet 2024; 40:927-938. [PMID: 39304387 DOI: 10.1016/j.tig.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 09/22/2024]
Abstract
The prokaryote world is replete with mobile genetic elements (MGEs) - self-replicating entities that can move within and between their hosts. Many MGEs not only transfer their own DNA to new hosts but also transfer host DNA located elsewhere on the chromosome in the process. This could potentially lead to indirect benefits to the host when the resulting increase in chromosomal variation results in more efficient natural selection. We review the diverse ways in which MGEs promote the transfer of host DNA and explore the benefits and costs to MGEs and hosts. In many cases, MGE-mediated transfer of host DNA might not be selected for because of a sex function, but evidence of MGE domestication suggests that there may be host benefits of MGE-mediated sex.
Collapse
Affiliation(s)
- Michiel Vos
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Penryn Campus, Penryn TR10 9FE, UK; Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK.
| | - Angus Buckling
- Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK
| | - Bram Kuijper
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
| | - Adam Eyre-Walker
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Cyril Bontemps
- Université de Lorraine, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), DynAMic, F-54000 Nancy, France
| | - Pierre Leblond
- Université de Lorraine, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), DynAMic, F-54000 Nancy, France
| | - Tatiana Dimitriu
- Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK; Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| |
Collapse
|
2
|
Dimitriu T, Szczelkun MD, Westra ER. Various plasmid strategies limit the effect of bacterial restriction-modification systems against conjugation. Nucleic Acids Res 2024:gkae896. [PMID: 39413206 DOI: 10.1093/nar/gkae896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024] Open
Abstract
In bacteria, genes conferring antibiotic resistance are mostly carried on conjugative plasmids, mobile genetic elements that spread horizontally between bacterial hosts. Bacteria carry defence systems that defend them against genetic parasites, but how effective these are against plasmid conjugation is poorly understood. Here, we study to what extent restriction-modification (RM) systems-by far the most prevalent bacterial defence systems-act as a barrier against plasmids. Using 10 different RM systems and 13 natural plasmids conferring antibiotic resistance in Escherichia coli, we uncovered variation in defence efficiency ranging from none to 105-fold protection. Further analysis revealed genetic features of plasmids that explain the observed variation in defence levels. First, the number of RM recognition sites present on the plasmids generally correlates with defence levels, with higher numbers of sites being associated with stronger defence. Second, some plasmids encode methylases that protect against restriction activity. Finally, we show that a high number of plasmids in our collection encode anti-restriction genes that provide protection against several types of RM systems. Overall, our results show that it is common for plasmids to encode anti-RM strategies, and that, as a consequence, RM systems form only a weak barrier for plasmid transfer by conjugation.
Collapse
Affiliation(s)
- Tatiana Dimitriu
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Mark D Szczelkun
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| |
Collapse
|
3
|
Irby I, Brown SP. The social lives of viruses and other mobile genetic elements: a commentary on Leeks et al. 2023. J Evol Biol 2023; 36:1582-1586. [PMID: 37975503 PMCID: PMC10805371 DOI: 10.1111/jeb.14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 11/19/2023]
Abstract
Illustration of life-histories of phages and plasmids through horizontal and vertical transmission (see Figure 1 for more information).
Collapse
Affiliation(s)
- Iris Irby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sam P Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
4
|
Scott TW, West SA, Dewar AE, Wild G. Is cooperation favored by horizontal gene transfer? Evol Lett 2023; 7:113-120. [PMID: 37251586 PMCID: PMC10210433 DOI: 10.1093/evlett/qrad003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 05/31/2023] Open
Abstract
It has been hypothesized that horizontal gene transfer on plasmids can facilitate the evolution of cooperation, by allowing genes to jump between bacteria, and hence increase genetic relatedness at the cooperative loci. However, we show theoretically that horizontal gene transfer only appreciably increases relatedness when plasmids are rare, where there are many plasmid-free cells available to infect (many opportunities for horizontal gene transfer). In contrast, when plasmids are common, there are few opportunities for horizontal gene transfer, meaning relatedness is not appreciably increased, and so cooperation is not favored. Plasmids, therefore, evolve to be rare and cooperative, or common and noncooperative, meaning plasmid frequency and cooperativeness are never simultaneously high. The overall level of plasmid-mediated cooperation, given by the product of plasmid frequency and cooperativeness, is therefore consistently negligible or low.
Collapse
Affiliation(s)
- Thomas W Scott
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Stuart A West
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Anna E Dewar
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Geoff Wild
- Department of Mathematics, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
5
|
Djermoun S, Reuter A, Derollez E, Lesterlin C, Bigot S. Reprogramming targeted-antibacterial-plasmids (TAPs) to achieve broad-host range antibacterial activity. Plasmid 2023; 126:102680. [PMID: 37001687 DOI: 10.1016/j.plasmid.2023.102680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
The emergence and spread of antimicrobial resistance results in antibiotic inefficiency against multidrug resistant bacterial strains. Alternative treatment to antibiotics must be investigated to fight bacterial infections and limit this global public health problem. We recently developed an innovative strategy based on mobilizable Targeted-Antibacterial-Plasmids (TAPs) that deliver CRISPR/Cas systems with strain-specific antibacterial activity, using the F plasmid conjugation machinery for transfer into the targeted strains. These TAPs were shown to specifically kill a variety of Enterobacteriaceae strains, including E. coli K12 and the pathogen strains EPEC, Enterobacter cloacae and Citrobacter rodentium. Here, we extend the host-range of TAPs using the RP4 plasmid conjugation system for their mobilization, thus allowing the targeting of E. coli but also phylogenetically distant species, including Salmonella enterica Thyphimurium, Klebsiella pneumoniae, Vibrio cholerae, and Pseudomonas aeruginosa. This work demonstrates the versatility of the TAP strategy and represents a significant step toward the development of non-antibiotic strain-specific antimicrobial treatments.
Collapse
|
6
|
Dimitriu T. Evolution of horizontal transmission in antimicrobial resistance plasmids. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35849537 DOI: 10.1099/mic.0.001214] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mobile genetic elements (MGEs) are one of the main vectors for the spread of antimicrobial resistance (AMR) across bacteria, due to their ability to move horizontally between bacterial lineages. Horizontal transmission of AMR can increase AMR prevalence at multiple scales, from increasing the prevalence of infections by resistant bacteria to pathogen epidemics and worldwide spread of AMR across species. Among MGEs, conjugative plasmids are the main contributors to the spread of AMR. This review discusses the selective pressures acting on MGEs and their hosts to promote or limit the horizontal transmission of MGEs, the mechanisms by which transmission rates can evolve, and their implications for limiting the spread of AMR, with a focus on AMR plasmids.
Collapse
|
7
|
Are some species ‘robust’ to exploitation? Explaining persistence in deceptive relationships. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractAnimals and plants trick others in an extraordinary diversity of ways to gain fitness benefits. Mimicry and deception can, for example, lure prey, reduce the costs of parental care or aid in pollination–in ways that impose fitness costs on the exploited party. The evolutionary maintenance of such asymmetric relationships often relies on these costs being mitigated through counter-adaptations, low encounter rates, or indirect fitness benefits. However, these mechanisms do not always explain the evolutionary persistence of some classic deceptive interactions.Sexually deceptive pollination (in which plants trick male pollinators into mating with their flowers) has evolved multiple times independently, mainly in the southern hemisphere and especially in Australasia and Central and South America. This trickery imposes considerable costs on the males: they miss out on mating opportunities, and in some cases, waste their limited sperm on the flower. These relationships appear stable, yet in some cases there is little evidence suggesting that their persistence relies on counter-adaptations, low encounter rates, or indirect fitness benefits. So, how might these relationships persist?Here, we introduce and explore an additional hypothesis from systems biology: that some species are robust to exploitation. Robustness arises from a species’ innate traits and means they are robust against costs of exploitation. This allows species to persist where a population without those traits would not, making them ideal candidates for exploitation. We propose that this mechanism may help inform new research approaches and provide insight into how exploited species might persist.
Collapse
|
8
|
Jamieson-Lane AD, Blasius B. The gossip paradox: Why do bacteria share genes? MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:5482-5508. [PMID: 35603365 DOI: 10.3934/mbe.2022257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacteria, in contrast to eukaryotic cells, contain two types of genes: chromosomal genes that are fixed to the cell, and plasmids, smaller loops of DNA capable of being passed from one cell to another. The sharing of plasmid genes between individual bacteria and between bacterial lineages has contributed vastly to bacterial evolution, allowing specialized traits to 'jump ship' between one lineage or species and the next. The benefits of this generosity from the point of view of both recipient cell and plasmid are generally understood: plasmids receive new hosts and ride out selective sweeps across the population, recipient cells gain new traits (such as antibiotic resistance). Explaining this behavior from the point of view of donor cells is substantially more difficult. Donor cells pay a fitness cost in order to share plasmids, and run the risk of sharing advantageous genes with their competition and rendering their own lineage redundant, while seemingly receiving no benefit in return. Using both compartment based models and agent based simulations we demonstrate that 'secretive' genes which restrict horizontal gene transfer are favored over a wide range of models and parameter values, even when sharing carries no direct cost. 'Generous' chromosomal genes which are more permissive of plasmid transfer are found to have neutral fitness at best, and are generally disfavored by selection. Our findings lead to a peculiar paradox: given the obvious benefits of keeping secrets, why do bacteria share information so freely?
Collapse
Affiliation(s)
- Alastair D Jamieson-Lane
- Department of Mathematics, University of Auckland, Auckland, 1010, New Zealand
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky, Universität Oldenburg, Oldenburg, 26129, Germany. Helmholtz Institute for Functional Marine Biodiversity, Carl von Ossietzky, Universität Oldenburg, Oldenburg, 26129, Germany
| | - Bernd Blasius
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky, Universität Oldenburg, Oldenburg, 26129, Germany. Helmholtz Institute for Functional Marine Biodiversity, Carl von Ossietzky, Universität Oldenburg, Oldenburg, 26129, Germany
| |
Collapse
|
9
|
Jamieson-Lane A, Blasius B. Comment on "Indirect Fitness Benefits Enable the Spread of Host Genes Promoting Costly Transfer of Beneficial Plasmids". PLoS Biol 2021; 19:e3001449. [PMID: 34932574 PMCID: PMC8691605 DOI: 10.1371/journal.pbio.3001449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/20/2021] [Indexed: 11/19/2022] Open
Abstract
Plasmid transfer contributes significantly to bacterial evolution, but the forces selecting such generosity are poorly understood; this Formal Comment revisits a study which examined these forces both analytically and experimentally, making a correction to the algebra and reaching strikingly different results.
Collapse
Affiliation(s)
- Alastair Jamieson-Lane
- Institut für Chemie und Biologie des Meeres, Carl von Ossietzky Universität Oldenburg, Oldenburg, Lower Saxony, Germany
- * E-mail:
| | - Bernd Blasius
- Institut für Chemie und Biologie des Meeres, Carl von Ossietzky Universität Oldenburg, Oldenburg, Lower Saxony, Germany
| |
Collapse
|
10
|
Dimitriu T, Misevic D, Lindner AB, Taddei F, Brown SP. Bacteria can be selected to help beneficial plasmids spread. PLoS Biol 2021; 19:e3001489. [PMID: 34933321 PMCID: PMC8691593 DOI: 10.1371/journal.pbio.3001489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/22/2021] [Indexed: 11/19/2022] Open
Abstract
A recent commentary raised concerns about aspects of the model and assumptions used in a previous study which demonstrated that selection can favor chromosomal alleles that confer higher plasmid donation rates. Here, the authors of that previous study respond to the concerns raised.
Collapse
Affiliation(s)
- Tatiana Dimitriu
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, United Kingdom
| | - Dusan Misevic
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity, Paris, France
| | - Ariel B. Lindner
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity, Paris, France
| | - Francois Taddei
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity, Paris, France
| | - Sam P. Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
11
|
Lee IPA, Eldakar OT, Gogarten JP, Andam CP. Bacterial cooperation through horizontal gene transfer. Trends Ecol Evol 2021; 37:223-232. [PMID: 34815098 DOI: 10.1016/j.tree.2021.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022]
Abstract
Cooperation exists across all scales of biological organization, from genetic elements to complex human societies. Bacteria cooperate by secreting molecules that benefit all individuals in the population (i.e., public goods). Genes associated with cooperation can spread among strains through horizontal gene transfer (HGT). We discuss recent findings on how HGT mediated by mobile genetic elements promotes bacterial cooperation, how cooperation in turn can facilitate more frequent HGT, and how the act of HGT itself may be considered as a form of cooperation. We propose that HGT is an important enforcement mechanism in bacterial populations, thus creating a positive feedback loop that further maintains cooperation. To enforce cooperation, HGT serves as a homogenizing force by transferring the cooperative trait, effectively eliminating cheaters.
Collapse
Affiliation(s)
- Isaiah Paolo A Lee
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Omar Tonsi Eldakar
- Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| | - J Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| | - Cheryl P Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA.
| |
Collapse
|
12
|
Sheppard RJ, Barraclough TG, Jansen VAA. The Evolution of Plasmid Transfer Rate in Bacteria and Its Effect on Plasmid Persistence. Am Nat 2021; 198:473-488. [PMID: 34559608 DOI: 10.1086/716063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractPlasmids are extrachromosomal segments of DNA that can transfer genes between bacterial cells. Many plasmid genes benefit bacteria but cause harm to human health by granting antibiotic resistance to pathogens. Transfer rate is a key parameter for predicting plasmid dynamics, but observed rates are highly variable, and the effects of selective forces on their evolution are unclear. We apply evolutionary analysis to plasmid conjugation models to investigate selective pressures affecting plasmid transfer rate, emphasizing host versus plasmid control, the costs of plasmid transfer, and the role of recipient cells. Our analyses show that plasmid-determined transfer rates can be predicted with three parameters (host growth rate, plasmid loss rate, and the cost of plasmid transfer on growth) under some conditions. We also show that low-frequency genetic variation in transfer rate can accumulate, facilitating rapid adaptation to changing conditions. Furthermore, reduced transfer rates due to host control have limited effects on plasmid prevalence until low enough to prevent plasmid persistence. These results provide a framework to predict plasmid transfer rate evolution in different environments and demonstrate the limited impact of host mechanisms to control the costs incurred when plasmids are present.
Collapse
|
13
|
Dimitriu T, Szczelkun MD, Westra ER. Evolutionary Ecology and Interplay of Prokaryotic Innate and Adaptive Immune Systems. Curr Biol 2021; 30:R1189-R1202. [PMID: 33022264 DOI: 10.1016/j.cub.2020.08.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Like many organisms, bacteria and archaea have both innate and adaptive immune systems to defend against infection by viruses and other parasites. Innate immunity most commonly relies on the endonuclease-mediated cleavage of any incoming DNA that lacks a specific epigenetic modification, through a system known as restriction-modification. CRISPR-Cas-mediated adaptive immunity relies on the insertion of short DNA sequences from parasite genomes into CRISPR arrays on the host genome to provide sequence-specific protection. The discovery of each of these systems has revolutionised our ability to carry out genetic manipulations, and, as a consequence, the enzymes involved have been characterised in exquisite detail. In comparison, much less is known about the importance of these two arms of the defence for the ecology and evolution of prokaryotes and their parasites. Here, we review our current ecological and evolutionary understanding of these systems in isolation, and discuss the need to study how innate and adaptive immune responses are integrated when they coexist in the same cell.
Collapse
Affiliation(s)
- Tatiana Dimitriu
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK.
| | - Mark D Szczelkun
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.
| | - Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK.
| |
Collapse
|
14
|
Dimitriu T, Matthews AC, Buckling A. Increased copy number couples the evolution of plasmid horizontal transmission and plasmid-encoded antibiotic resistance. Proc Natl Acad Sci U S A 2021; 118:e2107818118. [PMID: 34326267 PMCID: PMC8346908 DOI: 10.1073/pnas.2107818118] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Conjugative plasmids are mobile elements that spread horizontally between bacterial hosts and often confer adaptive phenotypes, including antimicrobial resistance (AMR). Theory suggests that opportunities for horizontal transmission favor plasmids with higher transfer rates, whereas selection for plasmid carriage favors less-mobile plasmids. However, little is known about the mechanisms leading to variation in transmission rates in natural plasmids or the resultant effects on their bacterial host. We investigated the evolution of AMR plasmids confronted with different immigration rates of susceptible hosts. Plasmid RP4 did not evolve in response to the manipulations, but plasmid R1 rapidly evolved up to 1,000-fold increased transfer rates in the presence of susceptible hosts. Most evolved plasmids also conferred on their hosts the ability to grow at high concentrations of antibiotics. This was because plasmids evolved greater copy numbers as a function of mutations in the copA gene controlling plasmid replication, causing both higher transfer rates and AMR. Reciprocally, plasmids with increased conjugation rates also evolved when selecting for high levels of AMR, despite the absence of susceptible hosts. Such correlated selection between plasmid transfer and AMR could increase the spread of AMR within populations and communities.
Collapse
Affiliation(s)
- Tatiana Dimitriu
- Department of Biosciences, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Andrew C Matthews
- Department of Biosciences, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Angus Buckling
- Department of Biosciences, University of Exeter, Cornwall TR10 9FE, United Kingdom
| |
Collapse
|
15
|
Samantarrai D, Yakkala H, Siddavattam D. Analysis of indigenous plasmid sequences of A. baumannii DS002 reveals the existence of lateral mobility and extensive genetic recombination among Acinetobacter plasmids. J Genet 2020. [DOI: 10.1007/s12041-020-01232-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Sheppard RJ, Beddis AE, Barraclough TG. The role of hosts, plasmids and environment in determining plasmid transfer rates: A meta-analysis. Plasmid 2020; 108:102489. [DOI: 10.1016/j.plasmid.2020.102489] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/18/2019] [Accepted: 12/08/2019] [Indexed: 12/19/2022]
|
17
|
Diversity and Horizontal Transfer of Antarctic Pseudomonas spp. Plasmids. Genes (Basel) 2019; 10:genes10110850. [PMID: 31661808 PMCID: PMC6896180 DOI: 10.3390/genes10110850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/22/2019] [Accepted: 10/26/2019] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas spp. are widely distributed in various environments around the world. They are also common in the Antarctic regions. To date, almost 200 plasmids of Pseudomonas spp. have been sequenced, but only 12 of them were isolated from psychrotolerant strains. In this study, 15 novel plasmids of cold-active Pseudomonas spp. originating from the King George Island (Antarctica) were characterized using a combined, structural and functional approach, including thorough genomic analyses, functional analyses of selected genetic modules, and identification of active transposable elements localized within the plasmids and comparative genomics. The analyses performed in this study increased the understanding of the horizontal transfer of plasmids found within Pseudomonas populations inhabiting Antarctic soils. It was shown that the majority of the studied plasmids are narrow-host-range replicons, whose transfer across taxonomic boundaries may be limited. Moreover, structural and functional analyses enabled identification and characterization of various accessory genetic modules, including genes encoding major pilin protein (PilA), that enhance biofilm formation, as well as active transposable elements. Furthermore, comparative genomic analyses revealed that the studied plasmids of Antarctic Pseudomonas spp. are unique, as they are highly dissimilar to the other known plasmids of Pseudomonas spp.
Collapse
|
18
|
Dimitriu T, Marchant L, Buckling A, Raymond B. Bacteria from natural populations transfer plasmids mostly towards their kin. Proc Biol Sci 2019; 286:20191110. [PMID: 31238848 PMCID: PMC6599995 DOI: 10.1098/rspb.2019.1110] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Plasmids play a key role in microbial ecology and evolution, yet the determinants of plasmid transfer rates are poorly understood. Particularly, interactions between donor hosts and potential recipients are understudied. Here, we investigate the importance of genetic similarity between naturally co-occurring Escherichia coli isolates in plasmid transfer. We uncover extensive variability, spanning over five orders of magnitude, in the ability of isolates to donate and receive two different plasmids, R1 and RP4. Overall, transfer is strongly biased towards clone-mates, but not correlated to genetic distance when donors and recipients are not clone-mates. Transfer is limited by the presence of a functional restriction-modification system in recipients, suggesting sharing of strain-specific defence systems contributes to bias towards kin. Such restriction of transfer to kin sets the stage for longer-term coevolutionary interactions leading to mutualism between plasmids and bacterial hosts in natural communities.
Collapse
Affiliation(s)
- Tatiana Dimitriu
- Department of Biosciences, University of Exeter , Penryn Campus, Cornwall TR10 9FE , UK
| | - Lauren Marchant
- Department of Biosciences, University of Exeter , Penryn Campus, Cornwall TR10 9FE , UK
| | - Angus Buckling
- Department of Biosciences, University of Exeter , Penryn Campus, Cornwall TR10 9FE , UK
| | - Ben Raymond
- Department of Biosciences, University of Exeter , Penryn Campus, Cornwall TR10 9FE , UK
| |
Collapse
|
19
|
Phylogenomic Analysis of Extraintestinal Pathogenic Escherichia coli Sequence Type 1193, an Emerging Multidrug-Resistant Clonal Group. Antimicrob Agents Chemother 2018; 63:AAC.01913-18. [PMID: 30348668 DOI: 10.1128/aac.01913-18] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/17/2018] [Indexed: 12/30/2022] Open
Abstract
The fluoroquinolone-resistant sequence type 1193 (ST1193) of Escherichia coli, from the ST14 clonal complex (STc14) within phylogenetic group B2, has appeared recently as an important cause of extraintestinal disease in humans. Although this emerging lineage has been characterized to some extent using conventional methods, it has not been studied extensively at the genomic level. Here, we used whole-genome sequence analysis to compare 355 ST1193 isolates with 72 isolates from other STs within STc14. Using core genome phylogeny, the ST1193 isolates formed a tightly clustered clade with many genotypic similarities, unlike ST14 isolates. All ST1193 isolates possessed the same set of three chromosomal mutations conferring fluoroquinolone resistance, carried the fimH64 allele, and were lactose non-fermenting. Analysis revealed an evolutionary progression from K1 to K5 capsular types and acquisition of an F-type virulence plasmid, followed by changes in plasmid structure congruent with genome phylogeny. In contrast, the numerous identified antimicrobial resistance genes were distributed incongruently with the underlying phylogeny, suggesting frequent gain or loss of the corresponding resistance gene cassettes despite retention of the presumed carrier plasmids. Pangenome analysis revealed gains and losses of genetic loci occurring during the transition from ST14 to ST1193 and from the K1 to K5 capsular types. Using time-scaled phylogenetic analysis, we estimated that current ST1193 clades first emerged approximately 25 years ago. Overall, ST1193 appears to be a recently emerged clone in which both stepwise and mosaic evolution have contributed to epidemiologic success.
Collapse
|
20
|
O'Brien S, Luján AM, Paterson S, Cant MA, Buckling A. Adaptation to public goods cheats in Pseudomonas aeruginosa. Proc Biol Sci 2018; 284:rspb.2017.1089. [PMID: 28747481 PMCID: PMC5543229 DOI: 10.1098/rspb.2017.1089] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/23/2017] [Indexed: 01/25/2023] Open
Abstract
Cooperation in nature is ubiquitous, but is susceptible to social cheats who pay little or no cost of cooperation yet reap the benefits. The effect such cheats have on reducing population productivity suggests that there is selection for cooperators to mitigate the adverse effects of cheats. While mechanisms have been elucidated for scenarios involving a direct association between producer and cooperative product, it is less clear how cooperators may suppress cheating in an anonymous public goods scenario, where cheats cannot be directly identified. Here, we investigate the real-time evolutionary response of cooperators to cheats when cooperation is mediated by a diffusible public good: the production of iron-scavenging siderophores by Pseudomonas aeruginosa. We find that siderophore producers evolved in the presence of a high frequency of non-producing cheats were fitter in the presence of cheats, at no obvious cost to population productivity. A novel morphotype independently evolved and reached higher frequencies in cheat-adapted versus control populations, exhibiting reduced siderophore production but increased production of pyocyanin—an extracellular toxin that can also increase the availability of soluble iron. This suggests that cooperators may have mitigated the negative effects of cheats by downregulating siderophore production and upregulating an alternative iron-acquisition public good. More generally, the study emphasizes that cooperating organisms can rapidly adapt to the presence of anonymous cheats without necessarily incurring fitness costs in the environment they evolve in.
Collapse
Affiliation(s)
- Siobhán O'Brien
- Center for Adaptation to a Changing Environment (ACE), ETH Zürich, 8092 Zürich, Switzerland
| | - Adela M Luján
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Michael A Cant
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - Angus Buckling
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| |
Collapse
|
21
|
Ramsay JP, Firth N. Diverse mobilization strategies facilitate transfer of non-conjugative mobile genetic elements. Curr Opin Microbiol 2017; 38:1-9. [PMID: 28391142 DOI: 10.1016/j.mib.2017.03.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
Abstract
Conjugation is a dominant mechanism of horizontal gene transfer and substantially contributes to the plasticity and evolvability of prokaryotic genomes. The impact of conjugation on genetic flux extends well beyond self-transmissible conjugative elements, because non-conjugative 'mobilizable elements' utilize other elements' conjugative apparatus for transfer. Bacterial genome comparisons highlight plasmids as vehicles for dissemination of pathogenesis and antimicrobial-resistance determinants, but for most non-conjugative plasmids, a mobilization mechanism is not apparent. Recently we discovered many Staphylococcus aureus plasmids lacking mobilization genes carry oriT sequences that mimic those on conjugative plasmids, suggesting that significantly more elements may be mobilizable than previously recognized. Here we summarize our findings, review the diverse mobilization strategies employed by mobile genetic elements and discuss implications for future gene-transfer research.
Collapse
Affiliation(s)
- Joshua P Ramsay
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia.
| | - Neville Firth
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|